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Abstract

In this paper, we decouple unsupervised human mesh re-

covery into the well-studied problems of unsupervised 3D

pose estimation, and human mesh recovery from estimated

3D skeletons, focusing on the latter task. The challenges

of the latter task are two folds: (1) pose failure (i.e., pose

mismatching – different skeleton definitions in dataset and

SMPL , and pose ambiguity – endpoints have arbitrary joint

angle configurations for the same 3D joint coordinates). (2)

shape ambiguity (i.e., the lack of shape constraints on body

configuration). To address these issues, we propose Skele-

ton2Mesh, a novel lightweight framework that recovers hu-

man mesh from a single image. Our Skeleton2Mesh con-

tains three modules, i.e., Differentiable Inverse Kinematics

(DIK), Pose Refinement (PR) and Shape Refinement (SR)

modules. DIK is designed to transfer 3D rotation from

estimated 3D skeletons, which relies on a minimal set of

kinematics prior knowledge. Then PR and SR modules are

utilized to tackle the pose ambiguity and shape ambiguity

respectively. All three modules can be incorporated into

Skeleton2Mesh seamlessly via an end-to-end manner. Fur-

thermore, we utilize an adaptive joint regressor to allevi-

ate the effects of skeletal topology from different datasets.

Results on the Human3.6M dataset for human mesh recov-

ery demonstrate that our method improves upon the previ-

ous unsupervised methods by 32.6% under the same setting.

Qualitative results on in-the-wild datasets exhibit that the

recovered 3D meshes are natural, realistic. Our project is

available at https://sites.google.com/view/skeleton2mesh.

1. Introduction

Recovering human mesh from in-the-wild monocular

images has been a promising goal in the vision commu-

nity. This is considered as a crucial step for a variety

of downstream applications such as robot interaction [38],

*equal contribution
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Model-based

methods

Paired

3D Sup.

Unpaired

3D Sup.

Temporal

Information

Optimized

Module

SMPLify [4] ✗ ✓ ✗ ✓

Song et al. [46] ✗ ✓ ✗ ✓

NBF [40] ✓ ✗ ✗ ✓

Pavlakos et al. [42] ✓ ✗ ✗ ✗

HMR [22] ✗ ✓ ✗ ✗

SPIN [27] ✗ ✓ ✗ ✓

PoseNet [48] ✗ ✗ ✓ ✗

Ours ✗ ✗ ✗ ✗

Table 1: Characteristic comparison of our method against

previous model-based methods, in terms of supervision sig-

nals and the usage of optimized module.

augmented reality [16], animation industry [1], etc. Recent

methods based on parametric models, such as SCAPE [2],

SMPL [22] and SMPL-X [41] can be simply divided into

two categories: regression-based and optimization-based.

Regression-based methods [22, 49] or Optimization-

based methods [4, 13, 30] rely on 3D annotations or opti-

mized module. Different from above, our method requires

3D supervision training scheme but free from 3D annota-

tion (i.e., 3D skeleton, β or θ in SMPL), optimized module,

and temporal information (illustrated in Tab. 1).

Specifically, unsupervised human mesh recovery aims to

recover the SMPL model, which is comprised of pose pa-

rameters (3D rotation) and shape parameters. (a) In terms

of pose parameters, most existing methods [22, 14] directly

regress 3D rotation from images or 2D pose. However,

these methods all heavily rely on paired or unpaired 3D an-

notations. However, we can easily see that the SMPL model

with 3D rotation alone is similar to the corresponding 3D

skeleton, disregarding the shape information. Recent un-

supervised 3D pose estimation [6] has achieved promising

performance, which motivates us to use estimated 3D skele-

ton to facilitate human mesh recovery [14, 48]. HybrIK

exploits inverse kinematics process to establish strict cor-

respondence between 24 3D joints and 24 3D rotations pro-

vided by SMPL model, which heavily relies on supervised
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3D annotation. Notably, 24 3D joints (includes hands and

feet) and 24 3D rotations are highly difficult to obtain. (b)

In terms of shape parameters, most recent methods [22, 27]

exploit discriminator by unpaired 3D pose (such as CMU

prior [27]) or simple regularizer via the average shape [48]

to obtain more valid 3D human mesh. However, unpaired

3D pose is also expensive to capture and a simple regular-

izer based on the average shape is unable to capture more

reasonable shape for specific human character. This inspires

us to use silhouettes to obtain more valid shape.

3D Mesh

shape ambiguity

3D joint

ground truth

pose failure

ill-posed problem

Figure 1: Transforming 3D skeleton to mesh is an ill-posed

problem with no unique solution. Notably, pose failure is

comprised of pose mismatching and pose ambiguity.

To this end, we decouple human mesh recovery into

the well-studied problems of unsupervised 3D pose esti-

mation [6], and unsupervised human mesh recovery from

estimated 3D skeleton, focusing on the latter. Specifically,

the challenges of the latter task are two folds (see Fig. 1):

(1a.) Pose mismatching. Different skeleton definitions,

mismatching joint numbers, and the cases that a single

3D skeleton possibly corresponds to multiple 3D meshes,

which causes the large accuracy gap between pose estima-

tion and reconstruction [14, 27, 43, 51]. (1b.) Pose am-

biguity. Pose ambiguity refers to ambiguities in rotations

of endpoints. In other words, endpoints have arbitrary joint

angle configurations for the same 3D joint coordinates. (2.)

Shape ambiguity. It can be easily seen that we are unable

to obtain sufficient shape information from 3D skeleton.

In this paper, we propose Skeleton2Mesh, a novel

lightweight framework that recovers human mesh from a

single image. Our Skeleton2Mesh consists of three mod-

ules, i.e., DIK, PR, and SR modules. These three modules

would be discussed in detail as follows: (a) Differentiable

inverse kinematics module. Inverse kinematics methods

have been studied to enable robots to imitate human body

motion from a person. We are thus motivated to design the

differentiable inverse kinematics (DIK) module to infer 3D

rotations from the estimated 3D skeletons. DIK module re-

lies on a minimal set of prior knowledge that defines the

underlying kinematic 3D structure, and it can be incorpo-

rated into our framework seamlessly without any trainable

parameters. (b) Pose refinement module. Most existing

unsupervised 3D pose estimation methods commonly out-

put 3D skeleton with 14-17 joints [6, 32]), which do not es-

timate hand or foot. Furthermore, the head positions cross

datasets are different from each other. For example, the

head position in Human3.6M dataset [18] and that in 3DHP

dataset [36] are different. Thus it is unreasonable to trans-

form these joints to the corresponding uniform 3D rotation.

To this end, we use a pose refinement module to address

above issues. (c) Shape refinement module. Extra shape

information is obtained by silhouettes from the off-the-shelf

detector. We exploit the shape refinement module to allevi-

ate shape ambiguity. In summary, all the modules can be

integrated into the lightweight framework seamlessly in an

end-to-end manner.

We benchmark the proposed approach on various 3D hu-

man pose datasets and it outperforms state-of-the-art un-

supervised methods [48, 49] by 4.0 mm PMPJPE on Hu-

man3.6M [18], 7.6 AUC on MPI-INF-3DHP [36] and 11.8

mm PMPJPE on Surreal [50].

2. Related Work

Unsupervised 3D Pose Estimation. Previous unsuper-

vised 2D to 3D approaches can be widely classified into

unsupervised 3D pose estimation [44, 6, 29, 24] and un-

supervised human mesh recovery [4, 30, 26, 48]. Rhodin

et al. [44] propose to learn a geometry-aware body rep-

resentation from generated multi-view images without 3D

labels, which exploits the consistency in camera geometry

and multi-view information. Geometric self-supervision is

presented by Chen et al. [6] without requiring any multi-

view correspondence. It provides a simple yet effective

baseline for unsupervised 3D pose estimation, which is also

adopted in our work. Kundu et al. [29] exploit a minimal set

of prior kinematics knowledge or encoder and decoder mod-

ule in a self-supervised manner to facilitate pose estimation.

Despite considerable progress in unsupervised 3D pose es-

timation, unsupervised 3D human mesh recovery still re-

mains challenging due to the lack of 3D mesh supervision,

which is more difficult to capture compared with 3D joints.

Unsupervised 3D Human Mesh Recovery. Unsuper-

vised human mesh recovery is much more difficult than

unsupervised 3D pose estimation due to richer reconstruc-

tion information. Recent model-based methods [4, 30, 22,

49, 42, 26, 48] can be simply divided into two categories:

optimization-based methods and regression-based methods.

SMPLify [4] and Lassner et al. [30] are the earliest end-to-

end approaches, which fit the SMPL body model to 2D ev-

idence(predicted 2D keypoints or silhouettes). HMR [22]

directly regresses SMPL parameters from images using

adversarial learning to exploit unpaired 3D data. Re-

cently, SPIN [27] combines optimization-based methods
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Figure 2: Detailed architecture of Skeleton2Mesh framework. Given a single image, 2D joints are estimated by a pre-

trained 2D pose detector (e.g., CPN [7]), and masks are predicted by a new universal human parsing agent named “Graphon-

omy” [12]. Specifically, PR, DIK, and SR in the left denote pose refinement, differentiable inverse kinematics, and shape

refinement, respectively. Ĵ2D and J
2D denote 2D joints. Ĵ3D and J

3D denote 3D skeletons. I and Iref denote silhouettes.

and regression-based methods to form a self-improving cy-

cle. However, the embedded optimization module is still

time-consuming, making it hard to apply to real-time task.

Also, most existing methods aforementioned use unpaired

3D supervision, which is also expensive and tedious to ob-

tain. In comparison, our method does not use any form of

3D annotation, optimization module.

Inverse Kinematics. There have been sufficient

works [53, 19, 9, 10] that try to encode kinematics pri-

ors into the learning paradigm of 2D/3D human pose es-

timation. Inverse kinematics (IK) calculates the variable

joint parameters (e.g. rotation vectors) needed to place

the end of a kinematic chain in a given position and is

widely used in human imitation [39, 33] and robotic con-

trol [8]. Typically IK solvers are based on iterative opti-

mization [5, 11, 17, 25]. There also exist heuristic methods

(FABRIK [3], IK-FA[45]) designed to speed up the con-

vergence and analytical solutions designed for some special

applications [21, 47]. The concurrent work HybrIK [31]

is most correlated to ours, which also integrates inverse

kinematics in an end-to-end human mesh recovery pipeline.

HybrIK decouples joint rotation into an analytical solved

swing component and a learnable twist component. Differ-

ent from HybrIK, we focus on totally unsupervised setting

and provide efficient analytical IK solutions for the human

body system. Our DIK module is efficient and can be easily

plugged into any learning paradigm.

3. Method

3.1. Overview

The overall framework of Skeleton2Mesh is summarized

in Fig 2. We can see that Skeleton2Mesh contains pose

matching and shape matching branch. More concretely,

Pose matching branch includes lifting 2D joint to 3D skele-

ton, transforming 3D skeleton to 3D rotation (DIK and PR

modules). Shape matching branch contains SR module.

However, we only introduce DIK, PR, and SR modules in

Sec. 3. The detailed information of lifting 2D joint to 3D

skeleton can be seen in the supplementary materials.

3D Body Representation We encode the 3D mesh

of a human body using the Skinned Multi-Person Linear

(SMPL) model. The model is parameterized by Θ that con-

tains the pose and shape parameters θ ∈ R
72 and β ∈ R

10

respectively. Pose parameters are comprised of global body

rotation R and the relative rotation of 23 joints in axis-angle

format, while the shape parameters are the first 10 coef-

ficients of a PCA shape space. SMPL is a differentiable

function, M(θ,β) ∈ R
6890×3, which shapes a template

mesh based on forward kinematics constrained by θ and β.

3D skeleton Ĵ
3D can be obtained from mesh vertices via

Ĵ
3D = RWM(θ,β) utilizing an adaptive regressor W.

Camera Projection As the inverse kinematics module

is designed to be view-invariant, we rely on estimates of

the camera intrinsics π in the canonical system C, to obtain

2D landmarks of the skeleton. Note that, these 2D land-

marks are expected to register with the corresponding joint

locations in the input image. Thus, 2D landmarks are ob-

tained as, Ĵ2D
i = P(Ĵ3D

i ,π), where P denotes the projec-

tion function of a weak-perspective camera.

3.2. Pose Matching Branch

In this section, the pose matching branch aims to gen-

erate the same body movement as the corresponding SMPL

with pose parameters alone from the generated 3D skeleton.

We identify two types of pose mismatching as follows:
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Figure 3: Illustration of pose failure. (a). Pose mismatching

and pose ambiguity focus on different types of joints, i.e.,

blue and orange ones, respectively, resulting from different

types of reasons. Specifically, pose mismatching refers to

joint number mismatch, e.g., 17 joints defined in dataset and

24 joints in SMPL [35], and joint angle mismatch, e.g., am-

biguities in rotations around an axis (addressed by DIK, see

Fig. 3(b)). Pose ambiguity, Fig. 3(c), refers to the rotations

of endpoints which are can not be constrained by DIK.

• Joint number mismatch. Joints estimated in 3D pose

estimation (14-17 joints) are commonly less than local

3D rotations in SMPL (23 local 3D rotations), which

lacks enough information to recover accurate 3D rota-

tion in SMPL from estimated 3D skeleton.

• Joint angle mismatch. Root orientation is unable to

be computed by analytical solution from 3D skele-

ton. Pose estimation and reconstruction have differ-

ent forms of representation, which causes a large ac-

curacy gap between these two types of representa-

tions [14, 27, 43, 51]. This can be addressed by IK

methods.

As is illustrated in Fig. 3, 3D joints (blue ones) are

utilized to match the corresponding local 3D rotations

(θmain). 3D joints (orange ones) in 3D skeleton (including

head, hand, and foot) lack sufficient kinematics constraint

(please refer to DIK module), thus we use PR module to

learn the suitable local 3D rotations (θPR) from silhouettes.

Additionally, some local 3D rotations (θother) have little ef-

fect on SMPL. To this end, we do not do any matching op-

erations these local 3D rotations (θother) and set these ones

to the default value in SMPL. Please refer to the supplemen-

tary materials for more detail.

Differentiable Inverse Kinematics. Inverse kinemat-

ics methods have been studied to enable robots to imitate

human body motion [33, 39], we thus motivated to design

DIK module to transform 3D skeleton to 3D rotation. DIK

module relies a minimal set of prior knowledge that defines

the underlying kinematic 3D structure. On the basis of the

kinematic skeletal structure (i.e., skeletal joint connectivity

information in SMPL), a unique mapping equation is ap-

plied for each unit via inverse kinematics. That is to say, for

each joint (blue circle) in 3D skeleton, we use DIK mod-

ule to calculate the corresponding local 3D rotations via the

specific matching equations respectively.

We choose suitable axis definition to drive skeleton to

match SMPL directly, and the definition of coordinate sys-

tem is exactly similar as SMPL. To clarify this, we describe

the detailed matching process of right elbow (see Fig. 4).

Specifically, we consider 3D rotation in SMPL as multi-

rigid-body system in order to express convenience. Rigid

bodies in this system (correspond to joints in 3D skele-

ton) are then termed as units, which are divided into two

categories: connect units and leaf units (shown in Fig. 4).

The coordinate system of joint in 3D skeleton is denoted

as [xc, yc, zc], then the parent coordinate system of right

elbow [xp, yp, zp] is calculated by Eqn. 1,















[xp, yp, zp] = [
−lre rs

|lre rs|
,

lre rw ⊗ lre rs

|lre rw ⊗ lre rs|
,

yp ⊗ xp

|yp ⊗ xp|
]

[xc, yc, zc] = [
lre rw

|lre rw|
, yp,

yc ⊗ xc

|yc ⊗ xc|
]

(1)

where each item (e.g., xc) is a 3× 1 vector in camera coor-

dinate system. la b indicates the vector pointing from joint

b to joint a. Subscripts re, rs, and rw denote right elbow,

right shoulder, and right wrist, respectively. Specifically,

lre rs means the vector pointing from the right elbow joint

to right shoulder joint. The coordinate is defined as left-

handed coordinate system, which is the same as SMPL. Af-

ter declaring the configuration of coordinate system bound

with each joint, we can obtain rotation matrix via Eqn. 2,

Tp
c = Tc

p
T =

[

xp yp zp
] [

xc yc zc
]T

(2)

where T
p

c
is the transport matrix between the child and

the parent coordinate system. Then relative rotation vector

θre ∈ R
3 can be calculated via Eqn. 3,



































|θre| = arccos(
tr(Tp

c)− 1

2
)





0 −rz ry
rz 0 −rx
−ry rx 0



 =
Tp
c − Tp

c
T

2sin|θre|

(3)

where |θre| is the norm of θre, and [rx, ry, rz]
T =

θre/|θre|. After performing the similar mapping operation

on the other nine units, we can obtain the corresponding ten

local 3D rotations termed θDIK . For more matching details

of the other nine units, please refer to the supplementary

materials. Note that we only align ten local 3D rotations in

SMPL, thus DIK module is able to be generalized to all the

datasets with different topologies with little modification of

the matching operation.
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Figure 4: The left is multi-rigid-body system, whose units

are rigid bodies including connect unit and leaf unit. In-

tuitively, connect unit has parent node and child node, and

leaf unit only has parent node.The right is process of DIK

module taking right elbow as example.

Pose Refinement. In DIK module, we perform the ex-

plicit pose mapping in a simple yet efficient manner. Eqn. 2

and Eqn. 3 show that child unit and parent unit are both

required to calculate specific local 3D rotation. For exam-

ple, the local 3D rotation of wrist estimated in 3D pose es-

timation is commonly unable to be derived by DIK mod-

ule due to lack of the corresponding parent unit (i.e., hand

joint). We thus propose PR module, which aims at cap-

turing end-point local rotations. PR module takes feature

maps, encoding silhouette information, as inputs and out-

puts 3D rotations of endpoint parts (i.e., head, hands, and

feet, which are not addressed in DIK module). We experi-

mentally find that PR and SR modules are complementary

with each other. Finally, θ = θroot∪θDIK ∪θPR∪θother.

where ∪ is vector concatenation, θPR is the output of PR

module, θroot is the root orientation and θother is all other

3D rotations, as in Fig. 4. We also add a regularization term

Lpreg =
∑

i∈S
∥θPR,i∥ to penalize the magnititude of limb

rotations, where θPR,i ∈ R
3 is the ith rotation vector, and

set S indicates the human parts that need refinement. After

obtaining refined human pose θ and shape β, we obtain the

3D mesh M = M(θ,β), 3D keypoints Ĵ3D = RWM and

2D keypoints Ĵ
2D = P(Ĵ2D,π). Then we add loss terms

to enforce consistency on 2D and 3D keypoints

L2D = ∥Ĵ2D − J
2D∥ , L3D = ∥Ĵ3D − J

3D∥ (4)

where J
2D can be ground-truth 2D annotations or pre-

dictions of 2D detector. J
3D is predictions from a pre-

trained lifting module.

3.3. Shape Matching Branch

Compared with 3D skeletons, silhouettes embody abun-

dant cues about body shapes and body orientation. We thus

exploit resnet18 [15] with parallel layers attached to learn

body shapes β, the global 3D rotation R, and camera in-

trinsics π respectively from silhouettes.

Specifically, we use a differentiable renderer F
(NMR [23]) taking human mesh M and a weak-perspective

camera π as input to render a mask (i.e., I = F(M,π)).
Formally, the pixel-level re-projection loss is defined as fol-

lows:

Lmask = D(I, Iref ) (5)

D(·, ·) is a distance function, which can take the form of

IoU(Intersection Over Union) and MSE(Mean Squared Er-

ror) between rendered mask I and reference mask Iref (ob-

tained from an off-the-shelf detector [12]). In addition,

Lsreg = ∥β∥ is used to penalize the norm of β.

3.4. Adaptive Joint Regressor

Joint regressor mapping dense human vertices to 3D

skeleton from [35] is coarse due to the following two

folds: (a) The similar meshes correspond to similar skele-

tons given specific joint regressor. However, similar meshes

in different datasets (e.g. Human3.6M [18] and SMPL [35])

commonly have diverse skeletons. (b) Original joint regres-

sor from [35] is trained using ground-truth θ and β. How-

ever, we are unable to obtain 3D annotations. To address

these issues, we adopt an adaptive joint regressor W, and

then pre-train a joint regressor with objective Lwpre,

Lwpre = ∥J3D −WM(θ,β)∥+ λ
∑

i

∥
∑

j

Wij − 1∥1

(6)

where J3D indicates pseudo ground-truth 3D keypoints ob-

tained from pretrained lifting module, the second term is a

regularization term encouraging each joint to be represented

as a convex combination of vertices. λ is a hyper-parameter.

W is integrated into the model seamlessly without fixing

the corresponding parameters, and then optimized by the

additional regularization Lwreg (same as the second term in

Eqn. 6) is utilized to optimize W.

4. Experiments

4.1. Implementation Details

Network Design. Following [6], we use the residual

block as the building block in our framework. We adopt

Resnet18 [15] as the CNN feature extractor from silhou-

ettes, where four parallel fully connected layers are attached

to perform shape refinement, pose refinement, learn global

orientation and learn camera intrinsics.

Training strategy. Without access to the source code,

we first re-implement a lifting module according to [6],

train the module in a totally unsupervised manner and then

freeze all parameters. Details about the lifting module can

be found in supplementary material. Besides, we train an

adaptive joint regressor as in Sec 3.4. Then we combine loss
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Figure 5: Qualitative results on 4 different datasets. 1st Column: Human3.6M dataset [18]. 2nd Column: MPI-INF-3DHP

dataset [36]. 3rd Column: Surreal dataset [50]. 4th Column: LSP dataset [20]

functions in Eqn. 4, Eqn. 5 and other regularization terms to

train our framework.

L =w2DL2D + w3DL3D + wmaskLmask

+ wsregLsreg + wwregLwreg + wpregLpreg

(7)

where w2D = 1.0, w3D = 2.5, wmask = 0.15, wsreg =
0.06, wwreg = 1.0, wpreg = 0.05 respectively. We adopt

IoU as the distance function in SR and downsample the

number of vertices in SMPL, as in [28], to speed up the

rendering process. We set λ = 0.4 for joint regressor pre-

training. We set batch size to 512, learning rate of all com-

ponents to 3e− 5 with decay rate 0.95 per epoch. We adopt

Adam optimizer and train our framework for 200 epochs.

4.2. Datasets And Metrics.

Human3.6M [18]. Human3.6M is one of the largest in-

door datasets with Mosh [34] available. We report mean

per-joint position error (MPJPE) and PMPJPE (MPJPE af-

ter rigid alignment).

MPI-INF-3DHP [36]. MPI-INF-3DHP is collected

both indoors and outdoors. In addition to PMPJPE, we

report the Percentage of Correct Keypoints (PCK) thresh-

olded at 150mm and the Area Under the Curve (AUC).

Surreal [50]. Surreal contains many video clips with

human characters of various shapes and poses. We report

Per-Vertex-Error (PVE) and PPVE (PVE after rigid align-

ment) to show body shape capture performance.

LSP [20]. LSP consists of 2000 in-the-wild images

without ground-truth 3D annotation. We perform qualita-

tive evaluation to illustrate the generalization ability.

4.3. Qualitative Results

Qualitative results on Human3.6M [18], 3DHP [36], Sur-

real [50] and LSP [20] are exhibited in Fig. 5. Note that

to demonstrate the generalization ability of the proposed

model, the human mesh on LSP [20] is recovered with the

model trained on Human3.6M [18]. As illustrated in Fig. 5,

we visualize rendered meshes on background images. Our

method can generally provide reasonable and promising re-

sults. More visualization can be found in the supplementary

material for reference.

4.4. Quantitative Evaluation

Algorithm 3D Data MPJPE PMPJPE

HMR [22] CVPR’2018 P 87.9 58.1

HoloPose [14] CVPR’2019 P - 46.5

SPIN [27] ICCV’2019 P - 41.1

HybrIK [31] CVPR’2021 P 54.4 34.5

SMPLify [4] ECCV’2016 Pose Prior - 82.3

HMR [22] CVPR’2018 U 106.8 67.5

SPIN [27] ICCV’2019 Pose Prior - 62.0

*VIBE [26] CVPR’2020 U 65.6 41.4

Lassner et al. [30] CVPR’2017 None - 93.9

*PoseNet [48] 3DV’2020 None - 59.4

Ours None 87.1 55.4

Table 2: Results on the test set of Human3.6M[18]. * indi-

cates methods using temporal information. P and U indi-

cates paired and unpaired 3D supervision respectively.

Results on Human3.6M [18]. As illustrated in Tab. 2,

we obtain 2D joints and silhouettes using an off-the-shelf
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detector and present mesh recovery results in terms of

MPJPE and PMPJPE. We show results from using paired

3D annotation, unpaired 3D annotation(or pose prior), and

no 3D annotation. Our method surpasses Lassner et al. [30]

under the same settings by a significant margin (55.4 vs.

93.9) in terms of PMPJPE, which is possibly boosted by

DIK module. Moreover, we outperform PoseNet3D [48]

using temporal information by about 5% in terms of PM-

PJPE. Moreover, we surpass some methods that use paired

3D data(e.g. NBF [40], HMR [22]) or unpaired 3D supervi-

sion(e.g. SPIN [27], proving the effectiveness of our design.

Results on MPI-INF-3DHP [36]. As shown in Tab. 3,

we obtain 2D keypoints and silhouettes using off-the-shelf

models and present mesh recovery results in terms of

PCK and AUC after rigid alignment. Besides recent work

PoseNet3D [48], we also compare with previous works

that use paired 3D data or unpaired 3d data. Only trained

on MPI-INF-3DHP [36], our model is able to outperform

VNect [37] with paired supervision and HMR [22] with

unpaired supervision. Furthermore, when transferred from

Human3.6M [18], our method is able to surpass [48], prov-

ing the generalization ability of our model.

Results on Surreal [50]. Surreal [50] is one of the

largest synthetic dataset, which has high diversity in human

body configuration. We report quantitative results in Tab. 4.

Following [49], we use ground-truth 2D keypoints and sil-

houettes as inputs. Tung et al. [49] use supervised pretrain-

ing with paired 3D data, but we surpass their method in

terms of PMPJPE and is comparable in terms of PPVE.

Algorithm 3D Data Training Set Rigid Alignment

PCK AUC PMPJPE

Vnect [37] P H3.6M+3DHP 83.9 47.3 98.0

HMR [22] P H3.6M+3DHP 86.3 47.8 89.8

SPIN [27] P Various 92.5 55.6 67.5

HMR [22] U H3.6M+3DHP 77.1 40.7 113.2

SPIN [27] U Various 87.0 48.5 80.4

*PoseNet [48] None H3.6M 81.9 43.2 102.4

Ours None H3.6M 83.9 42.5 100.8

Ours None 3DHP 87.0 50.8 87.4

Table 3: Results on the test set of MPI-INF-3DHP [36]. P
indicates paired supervision and U indicates unpaired su-

pervision. * indicates methods using temporal information.

4.5. Ablation Studies

Analysis on DIK module. (a) Quantitative results.

In DIK module, we directly infer 3D rotations from esti-

mated 3D skeletons. To verify the effectiveness of such kind

of DIK module, we compare our method with a learning-

based alternative, which learns human poses from estimated

3D skeletons via several residual blocks. As shown in

Algorithm 3D Data MPJPE PMPJPE PVE PPVE

*Zhe et al. [52] P - 37.1 - -

Tung et al. [49] P 203.9 64.4 - 74.5

Ours None 99.5 53.1 107.8 75.1

Ours(w/o SR) None 95.1 52.6 112.9 80.8

Ours(w/o PR) None 97.8 53.9 111.1 82.5

Table 4: Results on the validation set of Surreal [50]. *

indicates pose estimation method. P indicates paired 3D

supervision used in training or pretraining.

Figure 6: 1st column: input image. 2nd column: model

w/o differentiable renderer and w/o pose refinement. 3rd

column: model w/ differentiable renderer and w/o pose re-

finement. 4th column: model with all components.

Method Inference Time Mean Joint Angle Error

Iterative Baseline 30.6s 0.592

DIK 0.019s 0.391

DIK + PR 0.169s 0.389

DIK + PRall 0.169s 0.404

Table 5: Quantitative results on the DIK module. Evalua-

tion is performed on Human3.6M dataset. Superscript all

indicates we refine all the local rotations in PR module.

Tab. 7, this learning-based method shows worse perfor-

mance. Also, we calculate the joint angle error 1 produced

by our DIK module and compare with an iterative inverse

kinematics counterpart 2. The results are shown in Tab. 5.

Notably, we experiment with refining only endpoint rota-

tions and all the local rotations, and find that the former ob-

tains better performance. This may be caused by an absence

of 3D supervision. Our DIK module outperforms simple it-

erative solver in terms of both speed (0.019s/it vs 30.6s/it)

and accuracy (0.391 vs 0.592 joint angle error). Further-

more, we illustrate that the pose refinement module can

improve the joint angle error by correcting endpoint rota-

tions. We perform rigid alignment since the optimization

of iterative IK is sensitive to global rotation due to high

non-convexity. (b) Stability of DIK module. Considering

that the discontinuity on the rotation is hard to be formally

defined, to verify such kind of property, we compute the

maximum position change of the right elbow joint between

1Refer to https://github.com/aymenmir1/3dpw-eval
2https://github.com/CalciferZh/Minimal-IK
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two consecutive frames, which are 0.0647m (ground truth)

and 0.0680m (recovered from the outputs of DIK module).

The difference is less than 5mm, proving the continuity of

the joints. Furthermore, if temporal information is avail-

able(e.g. the input is a video sequence), we can identity dis-

continuous frames by checking the neighbours and correct

them. The performance before/after temporal correction is

reported in Tab. 6. The discontinuity rarely happens and has

negligible effects on the whole sequence.

Sample PPVE(before TC) PPVE(after TC)

Discontinuous Frames 81.98 69.70

The Whole Sequence 51.09 51.03

Table 6: Performance before/after TC(temporal correction).

Evaluation is performed on Human3.6M dataset.

Analysis on SR module. In Fig. 6, we show qualita-

tive results generated by our method with/without the dif-

ferentiable renderer (i.e., 2nd and 3rd column). It is obvious

that more valid and reasonable human meshes are achieved

with the differentiable renderer. Quantitatively, in Tab. 7,

we can observe that PVE drops 1.8 points with renderer

on Human3.6M [18]. Compared with Human3.6m con-

taining limited subjects, we would like to highlight that for

challenging dataset (e.g., Surreal [50]) with diverse body

shapes, significant improvement can be observed in terms

of PVE and PPVE in Tab. 4. It can be seen that the renderer

results in worse performance in terms of MPJPE. The rea-

son is that the differentiable renderer optimizes our model

at mesh-level, which does not necessarily mean better per-

formance in terms of joint metrics.

Analysis on PR module. We conduct ablation studies

on PR module, show a qualitative comparison in Fig. 6 and

report quantitative results in Tab. 4 (Surreal [50]) and Tab. 7

(Human3.6M [18]). As can be seen in Fig. 6, our model

with PR module can better capture the poses of limb ends

(e.g. head, foot). Since the method only fits silhouettes

and 3D joint positions (learned in an unsupervised manner)

without any ground truth rotations available, it is hard to

learn limb orientations such as head orientations and twist-

ing movements very well. On Human3.6M [18], PR module

only improves PVE by 0.5% and PPVE by 0.8%. On Sur-

real [50], the improvement is more obvious (3.0% on PVE

and 9.0% on PPVE). To evaluate the ability to capture limb

rotations, we calculate the joint angle error acrross the vali-

dation set of Surreal [50], the average error decreases from

0.325 (w/o PR module) to 0.314 (w/ PR module). More-

over, the PR module is complementary to the SR module

and can help to capture body shapes. If optimized together,

the improvement is more substantial (reported in Tab. 4).

Analysis on adaptive joint regressor. We visualize

our joint regressor along with that from GraphCMR [28]

in Fig. 7. SMPL based meshes from GT pose/shape

and pose/shape predictions (obtained by our framework)

are given in the left and right part respectively. In the

left part (GT space), our adaptive regressor (blue) gives

larger MPJPE w.r.t. ground-truth 3D skeletons (green, di-

rectly obtained from 3D annotations) compared with [28]

(red). However, in the learnt parameter space, joints from

our regressor give a smaller error (85mm) compared with

GraphCMR (89mm). This illustrates that during learning

process, our regressor can adaptively map SMPL parame-

ters to more accurate 3D joints. Also, from Tab. 7, we ex-

perimentally find that our model without adaptive regressor

has much worse performance.

shape gt & pose gt learnt shape & inferred pose

gt
ours
cmr

gt
ours
cmr

Figure 7: Comparison between our joint regressor and that

from GraphCMR [28] on Human3.6M [18]. Green key-

points are directly obtained from 3D annotations. Red key-

points and blue keypoints are obtained from the mesh using

joint regressor in [28] and ours respectively. Left: Mesh

given by ground-truth θ, β. Right: Mesh given by pre-

dicted θ and β from our framework.

DIK SR Regressor PR MPJPE PMPJPE PVE PPVE

✗ ✓ ✓ ✓ 159.1 111.9 - -

✓ ✗ ✓ ✓ 90.4 55.3 122.6 81.5

✓ ✓ ✗ ✓ 108.6 63.7 - -

✓ ✓ ✓ ✗ 87.7 55.3 121.8 81.4

✓ ✓ ✓ ✓ 87.1 55.4 120.8 80.8

Table 7: The analysis on different component modules. Per-

formance is evaluated on test set of Human3.6M [18].

5. Conclusion

In this paper, we decouple unsupervised human mesh re-

covery into the well-studied problems of unsupervised 3D

pose estimation, and human mesh recovery from estimated

3D skeleton. Proposed Skeleton2Mesh, a novel lightweight

framework which relies on a minimal set of kinematics prior

knowledge. In future, we would like to extend such frame-

work for real-time robot or carton character control.
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d’Alché-Buc, Emily B. Fox, and Roman Garnett, edi-

tors, NIPS, pages 3809–3819, 2019. 2

[25] Charles A. Klein and Ching-Hsiang Huang. Review

of pseudoinverse control for use with kinematically

redundant manipulators. IEEE Trans. Syst. Man Cy-

bern., 13(2):245–250, 1983. 3

[26] Muhammed Kocabas, Nikos Athanasiou, and

Michael J. Black. VIBE: video inference for

human body pose and shape estimation. CoRR,

abs/1912.05656, 2019. 2, 6

[27] Nikos Kolotouros, Georgios Pavlakos, Michael J.

Black, and Kostas Daniilidis. Learning to reconstruct

3d human pose and shape via model-fitting in the loop.

In ICCV, pages 2252–2261. IEEE, 2019. 1, 2, 4, 6, 7

[28] Nikos Kolotouros, Georgios Pavlakos, and Kostas

Daniilidis. Convolutional mesh regression for single-

image human shape reconstruction. In CVPR, pages

4501–4510. Computer Vision Foundation / IEEE,

2019. 6, 8

[29] Jogendra Nath Kundu, Siddharth Seth, Rahul M.

V., Mugalodi Rakesh, Venkatesh Babu Radhakrish-

nan, and Anirban Chakraborty. Kinematic-structure-

preserved representation for unsupervised 3d human

pose estimation. In AAAI2020. 2

[30] Christoph Lassner, Javier Romero, Martin Kiefel,

Federica Bogo, Michael J. Black, and Peter V. Gehler.

Unite the people: Closing the loop between 3d and 2d

human representations. In CVPR, pages 4704–4713,

2017. 1, 2, 6, 7

[31] Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin

Yang, and Cewu Lu. Hybrik: A hybrid analytical-

neural inverse kinematics solution for 3d human pose

and shape estimation. CoRR, abs/2011.14672, 2020.

3, 6

[32] Yang Li, Kan Li, Shuai Jiang, Ziyue Zhang, Con-

gzhentao Huang, and Richard Yi Da Xu. Geometry-

driven self-supervised method for 3d human pose es-

timation. In AAAI2020. 2

[33] Minas V. Liarokapis, Panagiotis K. Artemiadis, and

Kostas J. Kyriakopoulos. Mapping human to robot

motion with functional anthropomorphism for teleop-

eration and telemanipulation with robot arm hand sys-

tems. In 2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Tokyo, Japan, Novem-

ber 3-7, 2013, page 2075. IEEE, 2013. 3, 4

[34] Matthew Loper, Naureen Mahmood, and Michael J.

Black. Mosh: motion and shape capture from sparse

markers. ACM Trans. Graph., 33(6):220:1–220:13,

2014. 6

[35] Matthew Loper, Naureen Mahmood, Javier Romero,

Gerard Pons-Moll, and Michael J. Black. SMPL:

a skinned multi-person linear model. ACMMM,

34(6):248:1–248:16, 2015. 4, 5

[36] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal

Fua, Oleksandr Sotnychenko, Weipeng Xu, and Chris-

tian Theobalt. Monocular 3d human pose estimation

in the wild using improved CNN supervision. In 3DV,

pages 506–516. IEEE Computer Society, 2017. 2, 6, 7

[37] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotny-

chenko, Helge Rhodin, Mohammad Shafiei, Hans-

Peter Seidel, Weipeng Xu, Dan Casas, and Christian

Theobalt. Vnect: real-time 3d human pose estima-

tion with a single RGB camera. ACM Trans. Graph.,

36(4):44:1–44:14, 2017. 7

[38] Itay Mosafi, Eli (Omid) David, and Nathan S. Ne-

tanyahu. Deepmimic: Mentor-student unlabeled data

based training. In Artificial Neural Networks and Ma-

chine Learning - ICANN, pages = 440–455, year =

2019,. 1

[39] Jaesung Oh, Buyoun Cho, and Jun-Ho Oh. Remote

control for redundant humanoid arm using optimized

arm angle. In 17th IEEE-RAS International Confer-

ence on Humanoid Robotics, Humanoids 2017, Birm-

ingham, United Kingdom, November 15-17, 2017,

pages 324–331. IEEE, 2017. 3, 4

[40] Mohamed Omran, Christoph Lassner, Gerard Pons-

Moll, Peter V. Gehler, and Bernt Schiele. Neural body

fitting: Unifying deep learning and model based hu-

man pose and shape estimation. In 3DV, pages 484–

494. IEEE Computer Society, 2018. 1, 7

8628



[41] Georgios Pavlakos, Vasileios Choutas, Nima Ghor-

bani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios

Tzionas, and Michael J. Black. Expressive body cap-

ture: 3d hands, face, and body from a single image. In

CVPR. 1

[42] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and

Kostas Daniilidis. Learning to estimate 3d human pose

and shape from a single color image. In CVPR, pages

459–468, 2018. 1, 2

[43] Dario Pavllo, Christoph Feichtenhofer, David Grang-

ier, and Michael Auli. 3d human pose estima-

tion in video with temporal convolutions and semi-

supervised training. In CVPR, pages 7753–7762,

2019. 2, 4

[44] Helge Rhodin, Mathieu Salzmann, and Pascal Fua.

Unsupervised geometry-aware representation for 3d

human pose estimation. In Vittorio Ferrari, Martial

Hebert, Cristian Sminchisescu, and Yair Weiss, edi-

tors, ECCV, volume 11214, pages 765–782. Springer,

2018. 2

[45] Nizar Rokbani, Alicia Casals, and Adel M. Alimi. Ik-

fa, a new heuristic inverse kinematics solver using fire-

fly algorithm. In Ahmad Taher Azar and Sundara-

pandian Vaidyanathan, editors, Computational Intelli-

gence Applications in Modeling and Control, volume

575 of Studies in Computational Intelligence, pages

369–395. Springer, 2015. 3

[46] Jie Song, Xu Chen, and Otmar Hilliges. Human

body model fitting by learned gradient descent. In

Andrea Vedaldi, Horst Bischof, Thomas Brox, and

Jan-Michael Frahm, editors, Computer Vision - ECCV

2020 - 16th European Conference, Glasgow, UK,

August 23-28, 2020, Proceedings, Part XX, volume

12365 of Lecture Notes in Computer Science, pages

744–760. Springer, 2020. 1

[47] Deepak Tolani, Ambarish Goswami, and Norman I.

Badler. Real-time inverse kinematics techniques for

anthropomorphic limbs. Graph. Model., 62(5):353–

388, 2000. 3

[48] Shashank Tripathi, Siddhant Ranade, Ambrish Tyagi,

and Amit Agrawal. Posenet3d: Unsupervised

3d human shape and pose estimation. CoRR,

abs/2003.03473, 2020. 1, 2, 6, 7

[49] Hsiao-Yu Tung, Hsiao-Wei Tung, Ersin Yumer, and

Katerina Fragkiadaki. Self-supervised learning of

motion capture. In Isabelle Guyon, Ulrike von

Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fer-

gus, S. V. N. Vishwanathan, and Roman Garnett, edi-

tors, NIPS, pages 5236–5246, 2017. 1, 2, 7

[50] Gül Varol, Javier Romero, Xavier Martin, Nau-

reen Mahmood, Michael J. Black, Ivan Laptev, and

Cordelia Schmid. Learning from synthetic humans.

In CVPR, 2017. 2, 6, 7, 8

[51] Jingbo Wang, Sijie Yan, Yuanjun Xiong, and Dahua

Lin. Motion guided 3d pose estimation from videos.

CoRR, abs/2004.13985, 2020. 2, 4

[52] Zhe Wang, Daeyun Shin, and Charless C. Fowlkes.

Predicting camera viewpoint improves cross-dataset

generalization for 3d human pose estimation. CoRR,

abs/2004.03143, 2020. 7

[53] Wei Yang, Wanli Ouyang, Hongsheng Li, and Xiao-

gang Wang. End-to-end learning of deformable mix-

ture of parts and deep convolutional neural networks

for human pose estimation. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR

2016, Las Vegas, NV, USA, June 27-30, 2016, pages

3073–3082. IEEE Computer Society, 2016. 3

8629


