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Abstract
Event-based video frame interpolation is promising as

event cameras capture dense motion signals that can greatly
facilitate motion-aware synthesis. However, training exist-
ing frameworks for this task requires high frame-rate videos
with synchronized events, posing challenges to collect real
training data. In this work we show event-based frame in-
terpolation can be trained without the need of high frame-
rate videos. This is achieved via a novel weakly supervised
framework that 1) corrects image appearance by extracting
complementary information from events and 2) supplants
motion dynamics modeling with attention mechanisms. For
the latter we propose subpixel attention learning, which
supports searching high-resolution correspondence effi-
ciently on low-resolution feature grid. Though trained on
low frame-rate videos, our framework outperforms exist-
ing models trained with full high frame-rate videos (and
events) on both GoPro dataset and a new real event-based
dataset. Codes, models and dataset will be made available
at: https://github.com/YU-Zhiyang/WEVI.

1. Introduction
Modern dedicated cameras are now capable of captur-

ing high frame rate videos (e.g. 240 FPS for Sony GoPro
series), allowing users to create professional slow motion
effect. However, most prevailing devices, like smartphones,
still cannot compete with them before overcoming various
challenges on hardware and software designing. It is thus
desired to develop computational techniques to synthesize
high temporal resolution videos from lower resolution ones.

Foremost among the challenges of video interpolation is
the loss of motion caused by the insufficient temporal sam-
pling rate of the input video. Many previous works “hal-
lucinate” the missing motion by assuming a parameterized
motion model (e.g. linear or quadratic flows [14, 48], phase
models [25, 24]) or data-driven models [13, 7, 34, 18, 32].

† The work is done during an internship at SenseTime Research.
∗ Corresponding authors: Yu Zhang (zhangyulb@gmail.com) and Xijun

Chen (chenxijun@hit.edu.cn).

Figure 1. Motivation of this work. For interpolating challenging
real-world videos, even the state-of-the-art Quadratic Video Inter-
polation (QVI) [48] fails to inferring correct motion. The event-
based method (EDVI) [21] generates better but still sub-optimal
reconstructions due to gap between training and testing. Capable
of being trained directly on the raw low frame-rate videos, our
approach possesses best generalization behavior. Due to lack of
ground truth inbetweens, an input frame is shown as reference.

However, despite the rapid advances on end-to-end learn-
ing video interpolation, the task is inherently ill-posed, with
large ambiguity that cannot be trivially addressed from only
the sparse set of input frames.

Characteristically for this age, event-based sensors [20]
start to play roles in solving ill-posed low-level tasks such as
deblurring [15, 33] and frame interpolation [47, 21]. Event
cameras capture per-pixel change of intensities at high tem-
poral resolution and limited power cost, making them ideal
supplement to low frame-rate image sensors with the capa-
bility to capture dense motion signals [2]. Despite its po-
tential, event signals have distinct mode discrepancy when
working with video frames. In recent works [15, 47, 21], it
is largely addressed with modern deep networks by translat-
ing events to image-space representations at dense temporal
sites. Nevertheless, collecting synchronized training events
and high frame-rate videos requires complicated hardware

14589



calibration of dedicated cameras; this is why recent meth-
ods [15, 47, 21] mostly adopt synthesized training data.

In this work, we propose a weakly supervised frame-
work for video frame interpolation that bypasses the need
of high frame-rate training videos with events. Instead of
synthetic training, our framework is dedicatedly designed
to be trained on low frame-rate videos with event streams,
improving generalization on real data (see Fig. 1 for exam-
ple). For interpolation at intermediate time instants, we first
warp input frames with coarse motion models. Such gen-
erated immediate reconstructions are then corrected by fus-
ing complementary appearance cues extracted from events
at multiple scales. We further leverage temporal context to
improve the first-stage estimation, with a lightweight trans-
former architecture [45, 50]. This supplants the need of
densely modeling motion dynamics, which is difficult in
case of low frame-rate training, with attention mechanisms.
We develop novel attention modules learning subpixel off-
sets from low-resolution feature grid to efficiently extract
accurate motion correspondences without the cost on pro-
cessing high-resolution features. Though with low frame-
rate training, the proposed framework surpasses the state-
of-the-art image-based and event-based models trained with
full high frame-rate videos, on both the GroPro dataset [28]
and a new dataset captured by DAVIS240C camera [1].

In summary, the contributions of this paper include: 1) A
novel framework for weakly supervised video interpolation
with events, which surpasses state-of-the-art fully super-
vised models and shows better generalization; 2) Comple-
mentary appearance fusion that adaptively aggregates im-
age and event appearance at multiple scales; 3) Subpixel at-
tention mechanism that supports high-resolution correspon-
dence learning on the low-resolution grid; Finally, 4) a new
real event dataset and benchmarking results on it to facili-
tate future research on event-based frame interpolation.

2. Related Work
Video frame interpolation is typically solved by infer-

ring plausible immediate motion from sparse input frames.
Much of the recent research concentrates on inferring one
single immediate frame [30, 23, 24, 29, 4, 9]. Theoreti-
cally, applying single frame interpolation recursively can
reach to any desired frame-rate, yet is inefficient and suf-
fers the risk of accumulating errors [14]. In contrast, dense
video interpolation requires continuous motion representa-
tions. It could be achieved by computing optical flows and
fitting linear [14, 30, 34], quadratic [48] or cubic [7] tra-
jectory models. Another crucial topic is to fix occlusions
caused by the variation of scene geometry. Various propos-
als emerge including the Gaussian resampling of flows [48],
soft splatting [30], flow refinement [22], contextual feature
incorporation [29]. There were also motion representations
learned in data-driven manner, e.g. voxel flows [23], deep

phase model [24], feature flows [11], pixel-varying ker-
nels [31, 32, 18, 41], task-specific flows [49, 16]. Depth,
semantic and scene-adaptive cues were explored to boost
accuracy [3, 51, 8]. In [39], cycle consistency is explored
as free self-supervision to alleviate the need of high frame-
rate training videos. However, above methods all address
an ill-posed setting of frame interpolation that does not ob-
serve intermediate motion among input frames.

Event-based sensors [20] capture temporally dense sig-
nals that represent the change of local pixel intensities at
microsecond level. It gives the opportunity to counter the
ill-poseness of video interpolation by supplying low frame-
rate image sensors with a synchronized event camera, which
has already industrial models [1, 2]. Solutions were pro-
posed for event-based deblurring [33, 47, 15] and frame
interpolation [21]. In these methods, events contribute to
final image results by modeling the physical relations be-
tween images and events, while deep networks were ex-
plored in [47, 15, 21] to learn data-driven reconstructions.
To train such networks, high frame-rate videos and synchro-
nized events are required, which are difficult to collect in
practice and largely bypassed with synthetic data.

What worthies to mention is that events themselves could
reconstruct videos without the need of images [27, 40, 38,
52]. However, such contrast-based reconstructions do not
look naturally. Similar with [15, 21], we are interested in
synthesizing natural look videos likely to be produced by a
high frame-rate image sensor, using events as guidance.

3. Approach

3.1. Overview

Given consecutive video frames I0 and I1, we are in-
terested in interpolating any intermediate frame It where
t ∈ (0, 1) is a normalized fractional time instant. Follow-
ing [47, 15, 21], we assume the availability of dense spa-
tiotemporal events simultaneously captured for the same in-
put scene. For a frame It at time t, it gives a set of events
Et incurred at a local time window. We propose a two-stage
framework that supports training on triplets of consecutive,
temporally sparse frames I0, I1, I2, but applies to arbi-
trary time instant during inference. As shown in in Fig. 2.
It consists of a Complementary Appearance Fusion (CAF)
network and a Subpixel Motion Transformer (SMT).

In CAF, we first warp I0 and I2 to the middle frame with
optical flows, yielding coarsely aligned reconstructions with
potential errors around where flow estimation is unreliable.
CAF corrects such errors by exploring complementary cues
from events E1. To this end, a two-branch UNet separately
consumes the images and events, fuses their decoder out-
puts at multiple scales with a Adaptive Appearance Fusion
Blocks (AAFB), and outputs the refined interpolation result
Î1. Unlike previous works [14, 48, 7] that corrects interme-
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Figure 2. Pipeline of our framework, consisting of two stages: complementary appearance fusion and subpixel motion transfer. See Sect. 3.1
for elaborations. Due the limit of space, we refer the detailed layer configurations to the supplementary material. Best viewed with color.

diate motion, we cast CAF as correcting intermediate ap-
pearance with events. It ensures generalization on unseen
time instant by eliminating the need of motion modeling.

To further explore motion context, the second stage of
our framework is implemented as a transformer [45, 50, 6].
It treats (Î1,E1) as the query and surrounding observations
(I0,E0), (I2,E2) as support memory. A subpixel attention
module finds accurate correspondence among the query and
memory, by which the relevant information from the mem-
ory is retrieved and aggregated with subpixel patch transfer,
resuting into multi-scale context features. As a final step,
we fuse these features and the decoded features produced
by the first stage with AAFB and residual blocks, to produce
the final refined interpolation result. SMT leverages motion
context with attention mechanisms, in contrast with previ-
ous works [15, 21] that explicitly model motion dynamics
evolved along dense temporal sites. Doing so largely closes
the gap between training and testing, with no need of un-
realistic high frame-rate video synthesis at training stage.

3.2. Complementary Appearance Fusion (CAF)

To create the input of CAF network, we compute for-
ward optical flows [43] from I0 or I2 to I1, by which input
images are warped with forward rendering [44] to achieve
I0→1 and I2→1. Using forward instead of backward warp-
ing, we eliminate the need for occlusion filling while leav-
ing it for later processing. Alongside with warped input
images are stacked frame representations [46] (details ex-
plained in Sect. 3.4) of events E1. As illustrated in Fig. 2,
CAF is a two-branch UNet, each of whose branches han-
dles a particular modality. To effectively arrange cross-
modality information, we adaptively fuse features of images
and events at multiple levels among the decoder outputs.

Multi-scale adaptive fusion. Our fusion module is in-
spired from recent high-fidelity image synthesis that gradu-
ally modulates immediate features with transferred statistics
in coarse-to-fine manner [35, 17, 19]. The fused features at
the sth scale, denoted with xs, are recursively produced as:

xs = g
(
xs−1
↑ ; fs, es

)
, s ∈ {1, 2, 3, 4, 5}, (1)

where xs−1
↑ denotes the 2x upsampled version of xs−1 to

match resolution, fs and es are decoder outputs at the sth
scale of image and event branches, respectively. For initial-
ization, x0 is obtained by concatenating the deepest encoder
outputs of both branches followed by 1× 1 convolution.

To effectively modulate xs with image and event fea-
tures at the current scale, we regard fs, es as two different
views of the underlying reconstructions. We follow learned
feature renormalization [12, 19] that aligns the feature dis-
tributions of different views while preserving fine-grained
spatial details. For either fs or es, we process them with
separate convolution layers to learn spatial-varying pixel-
wise scalings and biases sf and bf , or se and be. We trans-
fer these statistics to the fused features as follows, i.e.

ye =

(
xs
↑ − µ(xs

↑)

σ(xs
↑)

)
⊙ se + be, (2)

where µ(·) and σ(·) are statistical means and standard de-
viations of xs

↑ computed on spatial dimensions, operator ⊙
denotes Hadamard product. With doing so, ye overwrites
xs
↑ with event-induced information. We can obtain yf anal-

ogously, by substituting sf and bf into (2).
Generally events are sensitive to physical motion bound-

aries due to the fast illuminance change, where image opti-
cal flows are often less reliable. For textureless area events
are less active and reliable than optical flows. Such comple-
mentary cues are combined with an adaptive soft mask m
produced from xs−1

↑ by a convolution and a sigmoid layer:

y = ye ⊙m+ yf (1−m). (3)

Steps (2) and (3) complete a single fusion pass, which
are summarized in Fig. 3. We gain non-linearity by stack-
ing 2 fusion passes, interleaved with a 3 × 3 convolution
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followed by LeakyReLU non-linearity. All these opera-
tions constitute to our Adaptive Appearance Fusion Block
(i.e. the AAFB in Fig. 2 and the function g(·) in (1)).

3.3. Subpixel Motion Transformer (SMT)

We adopt a lightweight transformer to capture the con-
text cues to improve the estimation of CAF. As shown in
Fig. 2, SMT starts by taking as input concatenated image
and event representations (I,E), then feeds them into a
shared encoder with three convolutional blocks, yielding 3-
scale features {vs|s ∈ {0, 1, 2}}. The deepest scale and
lowest resolution features v2 are also cloned and denoted
with k. For (I0,E0) or (I2,E2), the obtained vs

0 or vs
2 is

named values, while k0 or k2 is named keys. For (Î1,E1),
the computed k̂1 is named query. Keys, values and query
constitute the ingredients of attention modules in a trans-
former, used frequently for memory retrieval [42, 26].

To retrieve memory stored in the values, we search cor-
respondence for each pixel of the query map k̂1 on both
key maps, which we take k0 as example. Since that we op-
erate with key maps with 1

8 of input resolution, a limited
offset indicates large pixel motion in original image. Thus
we restrict correspondence search within a (2m + 1)2 lo-
cal window (m = 3) around each pixel. Given pixel site i
on k̂1 and a spatial offset p ∈ [−m,m]2, the relevance is
measured as Euclidean distance on ℓ2 normalized features:

D0(i,p) =

∥∥∥∥∥ k̂1(i)

∥k̂1(i)∥2
− k0(i+ p)

∥k0(i+ p)∥2

∥∥∥∥∥
2

2

, (4)

where ∥·∥2 denotes the ℓ2 norm. The correlation matrix D0

can be utilized to aggregate information from memory val-
ues vs

0. Conventional transformer achieves it via soft cod-
ing, which performs softmax normalization on such corre-
lation matrix and transfers knowledge as the weighted sum
of values at all locations. For image synthesis, it may blur
immediate features and degenerate final quality. This issue
is addressed by [53, 50] with hard coding, that computes
hard locations of maximal affinity (minimal distance here)
and gathers values only at those locations. However, as the
offset p is defined on 1

8 resolution, even the optimal offsets
may not align the higher resolution features in {vs} well.

Subpixel attention learning. We introduce a solution
that computes subpixel-level offsets on a low resolution im-
age grid, which indicates improved accuracy when upsam-
pled to high resolution. For a feature pixel i on the k̂1, hard
attention computation gives us its matched pixel j on the k0,
i.e. j = i + p∗ where p∗ = argminp D0(i,p). In proper
manner, the row elements {D0(i,p)|p ∈ [−m,m]2} could
be organized into a (2m+1)2 patch of distances, where p∗

corresponds to the index of its minimum.
To reach at subpixel level, we make inductive bias that

the local distance field centered around p∗ can be well ap-
proximated by continuous representation parametrized by

Figure 3. One-pass process of the proposed adaptive fusion, see
text for details. In this figure, “UP” and “IN” represent 2x bilinear
upsampling and instance normalization, respectively.

second-order polynomials [36, 10], whose global minimum
is achievable in closed-form. By plugging polynomial fit-
ting in learning, it gives the chance to regularize the shape of
distance field and provides subpixel-level accuracy. Specifi-
cally, we sample a smaller local (2n+1)2 window (n = 1 in
our implementation) centered at p∗ from the distance patch,
denoted with d. We define the local distance field as

d(u) = D0(i,p
∗ + u),u ∈ Z2 ∩ [−n, n]2. (5)

To make this field continuously defined on [−n, n]2, we fit
a local quadratic surface as follows:

d(u) ≈ d̂(u) =
1

2
uTAu+ bTu+ c, (6)

where A is assumed a 2 × 2 positive definite matrix, b is
a 2 × 1 vector, and c is a bias constant. These conditions
render (6) a valid quadratic surface with global minimum.

To estimate the unknown parameters A, b and c we use
weighted least squares, according to the (2n + 1)2 known
mappings between u and d(u):

min
A,b,c

∑
u

w(u)
∥∥∥d̂(u)− d(u)

∥∥∥2 , (7)

where the weights w(u) can be defined with various ways,
e.g. a spatial Gaussian w(u) = 1

2πσ2 exp
(
−uTu

2σ2

)
.

It can be proved1 that for constant weights w, the ele-
ments of A, b and c all can be simply estimated via the
form cTvec(d), where c is constant vector depending on
the element, vec(·) denotes vectorization. This makes the
polynomial fitting a differentiable layer friendly to be im-
plemented and plugged into the network. However, the es-
timated A is not guaranteed positive definite, which we ad-
dress simply. We assume off-diagonal elements of A be ze-
ros, only optimize the diagonal ones, and half-rectify them

1Please check our supplementary material for detailed derivations.
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with max(0, ·) if they are negative. Disgarding off-diagonal
parameters makes (6) only capable of fitting isotropic sur-
faces; however, by integrating subpixel fitting into network
training, shape of the distance field (5) could be regularized
with backpropagation to remedy this limitation.

The optimal minimum of (6) takes the form

u∗ =

(
− b(0)

A(0,0) + ϵ
,− b(1)

A(1,1) + ϵ

)T

, (8)

where ϵ is a small constant to avoid dividing by zero. After
estimating u∗, we shift the inital matched position by j∗ ←
j+ u∗ to inject the learned subpixel information.

Subpixel patch transfer. Via previous steps we obtain
for each pixel i on k̂1 a matched subpixel position j∗ on k0,
by which the multiscale values {vs

0} are warped. Assume
the value map of sth scale vs

0 is t times the size of k0 in each
border. We crop a t × t patch centered at j∗ on the vs

0 and
address the subpixel patch indices via bilinear interpolation.
This yields a N×t2 tensor zs0 after looping over all is, which
is then reshaped to the size of vs

0 by organizing the patches
spatially on the N sites of k̂1. It can be seen as a subpixel
extension of patch swapping on integer lattice [53, 50].

In practice we apply subpixel fitting and patch transfer to
both k0 and k2, yielding transferred values zs0 and zs2. We
perform hard selection of patches, depending on distances:

zs1(i) =

{
zs0(i), if D0(i,p

∗
0) < D2(i,p

∗
2),

zs2(i), otherwise.
(9)

It exploits the fact that a pixel on an intermediate frame of-
ten finds correspondence from at least one input frame [14].

Cross-stage fusion. As shown in Fig. 2, the retrieved
temporal context is incorporated to enhance first stage es-
timation. Specifically, zs1 at the sth scale is first reshaped
to the size of vs

1, yielding multiscale warped context values
{ṽs

1}. The multiscale features fused from the two decoder
branches of the first stage CAF are further aggregated with
{ṽs

1}, using another adaptive fusion process enhanced with
residual blocks. The fused features at the highest resolution
are decoded to produce the refined residualsR1 of the input
Î1, giving the result I∗1 = Î1 +R1.

3.4. Implementation Details

Event representation. For a time instant t, we quantize
the local time window (t−τ, t+τ) to 20 bins, where τ is half
of the time interval between consecutive frames. Polarities
of events falling into each bin are summed pixel-wisely, and
clipped to the range [−10, 10] to form a 20-channel tensor
Et. It resembles to the stacked event representations [46].

Architecture. For CAF we build a two-branch UNet
with 4 scales, whose encoder of each branch expands the
features to 32, 64, 128, 256, 256 channels with convolution

blocks. The first block maintains resolution, while the oth-
ers sequentially downsample the features by 2x. The de-
coder is set up symmetrically with skip connections. After
multiscale branch fusion, the highest resolution features go
through two convolution blocks with 32 output channels to
generate final output. For SMT, we directly inherit the same
feature extractor of [50] to generate the key and value maps.

Loss functions. We first train CAF to convergence then
fix its weights to train SMT. For both stages, the Charbon-
nier error [5] between the prediction and groundtruth of the
middle frame in a training triplet is the only loss function.

Inference. Given the input video frames and an interme-
diate time instant to interpolate, we locate the nearest two
frames and warp them to the target time instant with forward
rendering to form the inputs of CAF. To warp intermediate
results, we compute optical flows [43] among input frames
and fit a quadratic motion model for each pixel, so that inter-
mediate forward flows to the target time could be estimated.
Readers are referred to [48] for more details. However, as
shall be shown in Sect. 4.3, CAF is robust to the choice of
motion models thanks to the guidance of events.

4. Experiments

4.1. Experimental settings

Datasets. We evaluate the proposed framework on two
datasets. The GoPro dataset introduced by Nah et al. [28]
consists of 720p high frame-rate videos with 240FPS. We
follow the official dataset split, using 22 videos for train-
ing and 11 for testing. The evaluation policies of previous
works on GoPro dataset have inconsistency: recent event-
based methods [15, 21] adopt 10x interpolation, while many
image-based approaches (e.g. [14, 48]) adopt 7x. For fair-
ness we unify the evaluations with 10x setting. To this end
we sample training sequences with 21 consecutive frames,
using the 1th, 11th and 21th frames to form a sparse training
triplet to train our approach, while dense frames to train pre-
vious works accordingly. In total there are 4304 sequences
for training and 1190 for testing. We follow [15] and adopt
ESIM simulator [37] to synthesize event streams.

Besides GoPro dataset, we introduce a real dataset cap-
tured with DAVIS240C camera [1], named SloMo-DVS. It
consists of 60 staged slow-motion videos with synchronized
video frames and event streams, covering indoor, outdoor
and lab scenes such as standard test charts. To provide quan-
titative comparisons we create a synthetic 4x interpolation
setting, by sampling 9 consecutive frames in which the 1th,
5th and 9th are used to form the training triplet of our ap-
proach, and the complete sequence to train fully supervised
approaches. In total there are 24500 sequences for training,
and 5115 for testing. On this dataset we also evaluate gen-
eralization behaviors on real data, through qualitative com-
parisons on 20 additionally captured videos without down-
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Table 1. Comparing models on GoPro dataset, measured in PSNR and SSIM. Bold indicates the top place while underline the second.

Supervision High FPS videos High FPS videos + events Low FPS videos + events
Methods SloMo[14] QVI[48] DAIN[3] TAMI†[7] FLAVR[16] ETV[38] SloMo*[14] QVI*[48] EMD[15] EDVI[21] BHA[33] Proposed

PSNR 27.79 29.54 27.30 32.91 31.10 32.25 32.79 33.07 29.67 30.90 28.49 33.33
SSIM 0.838 0.872 0.836 0.943 0.917 0.925 0.940 0.943 0.927 0.905 0.920 0.940

† TAMI also adopts external private datasets for training. ∗ Enhanced variants with events added into the inputs of network.

Table 2. Comparing models on SloMo-DVS dataset, measured in PSNR and SSIM. Bold indicates the top place while underline the second.

Supervision High FPS videos High FPS videos + events Low FPS videos + events
Methods SloMo[14] QVI[48] DAIN[3] FLAVR[16] ETV[38] SloMo*[14] QVI*[48] EDVI[21] BHA[33] Proposed

PSNR 30.69 30.93 30.38 30.79 32.06 33.46 33.70 33.60 22.95 34.17
SSIM 0.915 0.920 0.914 0.917 0.936 0.950 0.953 0.948 0.828 0.952

Figure 4. Representative results generated from different approaches on GoPro (top) and Slomo-DVS (bottom) datasets. Best compared in
the electronic version of this paper with zoom.

sampling frame rate.
State-of-the-art methods. We report benchmarking re-

sults of 9 representative methods for dense video frame in-
terpolation, falling into two groups. The image-based group
consists of SloMo [14], DAIN [3], QVI [48], FLAVR [16],
and TAMI [7], trained by high-frame videos without events.
The event-based group includes EMD [15], EDVI [21] and
ETV [38] trained on high frame-rate videos and events, and
the learning-free approach BHA [33]. As the original ETV
is purely event based, its reconstructions are not compara-
ble with the lack of dataset-specific appearance. To this end
the model is adjusted so that at each of its inference step,
the temporally nearest 2 frames in the input video are fed in
along with the events, and that finetuned on both datasets.

To evaluate 10x interpolation, we retrain SloMo, DAIN
and QVI with the released code, use the pretrained model of

FLAVR on GoPro and retrain it on SloMo-DVS. For them
we guarantee the reproduction of original results, and refer
the details to our supplementary material. For TAMI and
EMD, we copy the original results due to the unavailability
of code/model. EDVI is retrained on both datasets for fair
comparisons (we obtain the code from the authors).

Training details. For each stages we train 100 and 600
epochs respectively on GoPro, 200 and 1000 epochs on
SloMo-DVS, both with initial learning rate 5e-4, using ex-
ponential decay policy. On GoPro dataset we use a batch
of 16 images cropped to 640 × 480, while on SloMo-DVS
a batch of 128 images without cropping. No data augmen-
tation is performed. Xavier initialization is adopted for all
learnable weights. Training is distributed on 16 NVIDIA
GTX1080 TI GPUs, taking about 50 GPU hours.
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Figure 5. Qualitative comparisons on real data. In the first column (Ref.) we visualize the nearest input frame as reference since there is no
groundtruth. We suggest the readers to watch our supplementary video for more qualitative comparisons on real-world video interpolation.

Table 3. Performance in PSNR with low frame-rate training.

Method SloMo*[14] QVI*[48] Proposed
Frame rate High Low High Low Low

GoPro 32.79 31.40 33.07 29.88 33.33
SloMo-DVS 33.46 32.76 33.70 31.80 34.17

Table 4. Analysing the performance of CAF network.

Setting PSNR SSIM

Replacing AFFB with cat.+conv. 32.27 0.930
Using image branch only 29.43 0.882
Using event branch only 31.37 0.927
Full model 32.47 0.929

4.2. Comparisons with State-of-the-Art Models

Benchmarking results. We summarize the results in Ta-
ble 1 and 2, respectively, in which the proposed framework
surpasses all the others in PSNR, while performing com-
parably with the leading ones in SSIM. To show that the
improvement does not fully attribute to the incorporation of
events, we train enhanced variants of SloMo and QVI by
feeding the same event representations Et for interpolation
at time instant t. In Fig. 4 we show visual comparisons of
different approaches. Our approach recovers correct scene
geometry (top), preserves object structures in case of fast
motion (top), and restores fine details (bottom).

Comparisons with low frame-rate training. Most
previous methods are trained with high-frame rate videos,
while our training framework only observes low frame-rate
videos. To show the advantage of our framework under low
frame-rate training, we retrain two of the top performing
methods, SloMo* and QVI*, with the triplets used to train
our approach, and report the results in Table 3. It shows a
notable performance drop for SloMo*, while interestingly,
a significant drop for QVI*. We suspect that since QVI
adopts a more powerful and thus flexible motion model, it
requires denser video frames for necessary regularization.
This experiment illustrates the advantage of our framework
that learns motion from low frame-rate videos.

Generalization behavior on real data. The biggest ad-
vantage of our approach is that it could be trained on the

Figure 6. Visualizing the impact of adaptively fusing image and
event appearance features in the CAF network.

low frame-rate videos without synthesizing high frame-rate
training data, making it generalize better when applied on
real-world video interpolation. To illustrate this we test var-
ious models on the additional real sequences from SloMo-
DVS, improving further their original frame-rate by 4x. We
show in Fig. 5 that existing methods trained on synthe-
sized data generate more artifacts particularly on fast mo-
tion videos, while our approach does not.

4.3. Performance Analysis

In this section we analyse the proposed framework via a
series of experiments, conducted on the GoPro dataset.

Analysing the CAF network. To justify several key de-
signs of the Complementary Appearance Fusion (CAF) net-
work, we report the results under several settings in Table 4.
First, we evaluate the effectiveness of the proposed fusion
mechanisms by replacing AFFB in Fig. 2 with simple con-
catenation of features followed by convolution blocks. This
clearly makes final results degenerated, demonstrating the
advantage of AFFB. Second, we also evaluate contributions
of the image and event branch. Eliminating either branch
would lead to a loss of performance, showing that image
and event cues are complementary to each other.

Visualizing the learned fusion mask. We further illus-
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Table 5. Analysing the performance of SMT network.

ID Key type Value type Att. type Fused stage PSNR

1 img.+evt. image subpix. both 32.72
2 img.+evt. event subpix. both 32.91
3 image img.+evt. subpix. both 33.01
4 event img.+evt. subpix. both 33.03
5 img.+evt. img.+evt. subpix. first 33.00
6 img.+evt. img.+evt. subpix. second 32.56
7 img.+evt. img.+evt. hard both 33.02
8 img.+evt. img.+evt. soft both 32.50
9 img.+evt. img.+evt. subpix. both 33.33

trate the complementary effect in Fig. 6. Excluding event
cues, the foreground windmill is not reconstructed well due
to its complicated motion, which poses difficulty to existing
motion estimation models. Using event cues only addresses
the foreground motion well, yet the background is blurry for
the lack of event evidence under static background move-
ment. The fusion mask clearly expresses such adaptiveness,
identifying regions to be explained for either modality.

Analysing the SMT network. To justify the key de-
signs of the Subpixel Motion Transformer (SMT) network,
we vary several important building blocks and summarize
the final results in Table 5. In the first group of experiments
(ID 1 ∼ 4), we aim to see the contributions of image and
event cues in query-key matching and value transfer. We
find that isolating any modality in either key or value repre-
sentations would lead to suboptimal results. In the second
group (ID 5 ∼ 6), we analyse the contribution of the in-
formation extracted from the first and second stages by re-
moving either one from the AAFB fusion. The results show
that using only the second stage context information does
not achieve good results, demonstrating the effectiveness
of the first-stage appearance correction. In the last group
(ID 7 ∼ 9), subpixel attention is replaced with hard or soft
attention. We empirically find that soft attention does not
work well as also commented in [50]. Subpixel attention
improves over hard attention by roughly 0.3dB, showing the
effectiveness of integrating subpixel fitting into learning.

Visualizing patch transfer. In Fig. 7 we visualize the
warping results of an input frame to the reference frame
with the warping fields learned from different types of at-
tention. Soft attention leads to blurry result, while hard at-
tention generates sharper one but with block artifact due to
the large stride of patch positions. Learning subpixel offsets
of patches renders more accurate transfer with less artifact.

Robustness to the choice of motion model. Initializing
our CAF network requires a heuristic motion model for in-
put frame warping. By default we adopt quadratic model
as in [48], yet in Fig. 8 we showcase the results of less ac-
curate models. We estimate intermediate flows with linear
models, and alpha blending them with the results estimated
from quadratic models. We evaluate the proposed CAF and
QVI, and a variant of CAF that excludes events in the input.

Figure 7. Patch transfer results with different types of attention.

Figure 8. Performance of our approach and QVI as functions of
the linearity of the motion model that warps input frames.

The PSNR of the full CAF degrades much slower than those
of others, showing that event guidance brings robustness to
the inaccuracy of motion model.

5. Conclusion

We propose in this work a novel framework for weakly
supervised video interpolation with events. We equip it with
complementary appearance fusion blocks and motion trans-
former with subpixel attention. Trained with low frame-rate
videos only, it achieves the state-of-the-art results on two
benchmarks and generalizes better to real-world videos.

Via this work we aim to provide a new routine of training
event-based vision other than data simulation, through bet-
ter exploring event cues to“weakly supervised learning” the
task objective. It could be further extended to address more
tasks, such as deblurring and depth/motion from events.
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