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Abstract

A standard practice of deploying deep neural networks
is to apply the same architecture to all the input instances.
However, a fixed architecture may not be suitable for dif-
ferent data with high diversity. To boost the model capac-
ity, existing methods usually employ larger convolutional
kernels or deeper network layers, which incurs prohibitive
computational costs. In this paper, we address this issue by
proposing Differentiable Dynamic Wirings (DDW), which
learns the instance-aware connectivity that creates differ-
ent wiring patterns for different instances. 1) Specifically,
the network is initialized as a complete directed acyclic
graph, where the nodes represent convolutional blocks and
the edges represent the connection paths. 2) We generate
edge weights by a learnable module, Router, and select the
edges whose weights are larger than a threshold, to adjust
the connectivity of the neural network structure. 3) Instead
of using the same path of the network, DDW aggregates fea-
tures dynamically in each node, which allows the network
to have more representation power.

To facilitate effective training, we further represent the
network connectivity of each sample as an adjacency ma-
trix. The matrix is updated to aggregate features in the for-
ward pass, cached in the memory, and used for gradient
computing in the backward pass. We validate the effective-
ness of our approach with several mainstream architectures,
including MobileNetV2, ResNet, ResNeXt, and RegNet. Ex-
tensive experiments are performed on ImageNet classifica-
tion and COCO object detection, which demonstrates the
effectiveness and generalization ability of our approach.

1. Introduction

Deep neural networks have driven a shift from feature
engineering to feature learning. The great progress largely
comes from well-designed networks with increasing capac-
ity of models [10, 41, 13, 34]. To achieve the superior
performance, a useful practice is to add more layers [33]
or expand the size of existing convolutions (kernel width,
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number of channels) [14, 34, 21]. Meantime, the computa-
tional cost significantly increases, hindering the deployment
of these models in realistic scenarios. Instead of adding
much more computational burden, we prefer adding input-
dependent modules to networks, increasing the model ca-
pacity by accommodating the data variance.

Several existing work attempt to augment the input-
dependent modules into network. For example, Squeeze-
and-Excitation network (SENet) [12] learns to scale the ac-
tivations in the channel dimension conditionally on the in-
put. Conditionally Parameterized Convolution (CondConv)
[43] uses over-parameterization weights and generates in-
dividual convolutional kernels for each sample. GaterNet
[4] adopts a gate network to extract features and generate
sparse binary masks for selecting filters in the backbone net-
work based upon inputs. All these methods focus on the
adjustment of the micro structure of neural networks, using
a data-dependent module to influence the feature represen-
tation at the same level. Recall the deep neural network to
mammalian brain mechanism in biology [26], the neurons
are linked by synapses and responsible for sensing different
information, the synapses are activated to varying degrees
when the neurons perceive external information. Such a
phenomenon inspires us to design a network where different
samples activate different network paths.

In this paper, we learn to optimize the connectivity
of neural networks based upon inputs. Instead of using
stacked-style or hand-designed manners, we allow a more
flexible selection for wiring patterns. Specifically, we re-
formulate the network into a directed acyclic graph, where
nodes represent the convolution block while edges indi-
cate connections. Different from randomly wired neural
networks [42] that generate random graphs as connectiv-
ity using predefined generators, we rewire the graph as a
complete graph so that all nodes establish connections with
each other. Such a setting allows more possible connections
and makes the task of finding the most suitable connectiv-
ity for each sample equivalent to finding the optimal sub-
graph in the complete graph. In the graph, each node aggre-
gates features from the preceding nodes, performs feature

327



transformation (e.g. convolution, normalization, and non-
linear operations), and distributes the transformed features
to the succeeding nodes. The output of the last node in the
topological order is employed as the representation through
the graph. To adjust the contribution of different nodes to
the feature representation, we further assign weights to the
edges in the graph. The weights are generated dynamically
for each input via an extra module (denoted as router) along
with each node. During the inference, only crucial connec-
tions are maintained, which creates different paths for dif-
ferent instances. As the connectivity for each sample is gen-
erated through non-linear functions determined by routers,
our method can enable the networks to have more represen-
tation power than the static network.

We dub our proposed framework as the Differentiable
Dynamic Wirings (DDW). It doesn’t increase the depth or
width of the network, while only introduces an extra neg-
ligible cost to compute the edge weights and aggregate the
features. To facilitate the training, we represent the network
connection of each sample as an adjacent matrix and design
a buffer mechanism to cache the matrices of a sample batch
during training. With the buffer mechanism, we can conve-
niently aggregate the feature maps in the forward pass and
compute the gradient in the backward pass by looking up
the adjacent matrices. In summary, Differentiable Dynamic
Wirings (DDW) has three appealing properties:

* We investigate and introduce the dynamic wirings
based upon inputs to exploit the model capacity of
neural networks. Without bells and whistles, sim-
ply replacing static connectivity with dynamic one in
many networks achieves solid improvements with only
a slight increase of (~ 1%) parameters and (~ 2%)
computational cost (see Table 1).

* DDW is easy and memory-efficient to train. The pa-
rameters of networks and routers can be optimized in a
differentiable manner. We also design a buffer mech-
anism to conveniently access the network connectiv-
ity, aggregate the feature maps in the forward pass and
compute the gradient in the backward pass.

* We show that DDW not only improves the perfor-
mance for human-designed networks (e.g. Mobiel-
NetV2, ResNet, ResNeXt) but also boosts the perfor-
mance for automatically searched architectures (e.g.
RegNet). It demonstrates good generalization ability
on ImageNet classification (see Table 1) and COCO
object detection (see Table 2) tasks.

2. Related Works

Non-Modular Network Wiring. Different from the
modularized designed network which consists of topolog-
ically identical blocks, there exists some work that explores

more flexible wiring patterns [1, 9, 42, 39]. MaskConnect
[1] removes predefined architectures and learns the connec-
tions between modules in the network with £ conenctions.
Randomly wired neural networks [42] use classical graph
generators to yield random wiring instances and achieve
competitive performance with manually designed networks.
DNW [39] treats each channel as a node and searches a
fine-grained sparse connectivity among layers. Prior work
demonstrates the potential of more flexible wirings, and
DDW pushes the boundaries of this paradigm, by enabling
each example to be processed with different connectivity.

Dynamic Networks. Dynamic networks, adjusting the
network architecture to the corresponding input, have been
recently studied in the computer vision domain. SkipNet
[38], BlockDrop [40] and HydraNet [22] use reinforcement
learning to learn the subset of blocks needed to process a
given input. Some approaches prune channels [15, 44] for
efficient inference. However, most prior methods are chal-
lenging to train, because they need to obtain discrete routing
decisions from individual examples. Different from these
approaches, DDW learns continuous weights for connectiv-
ity to enable propagation of features, so can be easily opti-
mized in a differentiable way.

Conditional Attention. Some recent work proposes to
adapt the distribution of features or weights through atten-
tion conditionally on the input. SENet [12] boosts the rep-
resentational power of a network by adaptively recalibrat-
ing channel-wise feature responses by assigning attention
over channels. CondConv [43] and dynamic convolution
[3] are restricted to modulating different experts/kernels, re-
sulting in attention over convolutional weights. Attention-
based models are also widely used in language modeling
[20, 2, 35], which scale previous sequential inputs based on
learned attention weights. In the vision domain, previous
methods most compute attention over micro structure, ig-
noring the influence of the features produced by different
layers on the final representation. Unlike these approaches,
DDW focuses on learning the connectivity based upon in-
puts, which can be seen as attention over features with dif-
ferent semantic hierarchies.

Neural Architecture Search. Recently, Neural Architec-
ture Search (NAS) has been widely used for automatic net-
work architecture design. With evolutionary algorithm [27],
reinforcement learning [24] or gradient descent [19], one
can obtain task-dependent architectures. Different from
these NAS-based approaches, which search for a single ar-
chitecture, the proposed DDW generates forward paths on
the fly according to the input without searching. We also
notice a recent method InstaNAS [5] that generates domain-
specific architectures for different samples. It trained a con-
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Figure 1. The framework of DDW. Left: For a training batch, each sample performs different forward paths that are determined by the
input-dependent macro connectivity. Right: Node operations at the micro level. Here we illustrate a node with 2 active input edges and
output edges. First, it aggregates input features from preceding nodes by weighted sum. Second, convolutional blocks transform the
aggregated features. Third, a router predicts routing weights for each sample on the output edges according to the transformed features.
Last, the transformed data is sent out by the output edges to the following nodes. Arrows indicate the data flow.

troller to select child architecture from the defined meta-
graph, achieving latency reduction during inference. Dif-
ferent from them, DDW focuses on learning connectivity in
a complete graph using a differentiable way and achieves
higher performance.

3. Methodology
3.1. Network Representation with DAGs

The architecture of a neural network can be represented
by a directed acyclic graphs (DAG), consisting of an or-
dered sequence of nodes. Specifically, we map both com-
binations (e.g., addition) and transformation (e.g., convolu-
tion, normalization, and activation) into a node. And con-
nections between layers are represented as edges, which de-
termine the path of the features in the network. For simplic-
ity, we denote a DAG with IV ordered nodes as G = (N ,€),
where N is the set of nodes and £ is the set of edges. We
show £ = {e(#9)]1 < i < j < N}, where e(*/) indicates a
directed edge from the ¢-th node to the j-th node.

Most traditional convolutional neural networks can be
represented with DAGs. For example, VGGNet [31] is
stacked directly by a series of convolutional layers, where
a current layer is only connected to the previous layer. The
connectivity in each stage can be represented as &4y =
{e#3)]j = i+1|1<;<n}. To ease problems of gradient van-
ishing and exploding, ResNets [10] build additional short-
cut and enable cross-layer connections whose nature view !
can be denoted by &5 = {7 |j € {i+1,i+2}|1<icn}.

'In [36), its unrolled type can be viewed as Egense = {e(9)]i €
(1,7 = h<j<n}

It is worth noting that some NAS methods [27, 19] also
follow this wiring pattern that blocks connect two imme-
diate preceding blocks. Differently, DenseNets [13] ag-
gregate features from all previous layers in the manner of
Edense = {e"|i € [1,j — 1]]1<j<n}. Given these pat-
terns of connectivity, the forward procedure of network can
be performed according to the topological order. For the
j-th node, the output feature xU) is computed by:

<) — f(j)(z Le(e®) . xD) st 1g(e®)) € {0,1}

i<j

e
where f()(.) is the corresponding mapping function for
transformations, and 1¢(e(®/)) stands for the indicator
function and equals to one when e(*7) exists in £.

In each graph, the first node is treated as the input one
that only performs the distribution of features. The last
node is the output one that only generates final output by
gathering preceding inputs. For a network with K stages,
K DAGs are initialized and connected sequentially. Each
graph is linked to its preceding or succeeding stage by out-
put or input node. Let F(*)(.) be the mapping function of
the k-th stage, which is established by G*) with nodes \/(¥)
and connectivity £*). Given an input x, the mapping func-
tion from the sample to the feature representation can be
written as:

T(x) = FEO( FOFN () @)
3.2. Expanding Search Space for Connectivity

As shown in Eq.(1), most traditional networks adopt bi-
nary codes to formulate the connectivity, resulting in a rela-

329



tively sparse and static connection pattern. But these prior-
based methods limit the connection possibilities, the type
of feature fusion required by different samples may be dif-
ferent. In this paper, we raise two modifications in DDW
to expand the search space with more possible connectiv-
ity. First, we remove the constraint on the in/out-degree of
nodes and initialize the connectivity to be a complete graph
where edges exist between any nodes. The search space
is different from DenseNet in that we replace the aggrega-
tion method from concatenation to addition. This avoids
the misalignment of channels caused by the removal or ad-
dition of edges. In this way, finding good connectivity is
akin to finding optimal sub-graphs. Second, instead of se-
lecting discrete edges in the binary type, we assign a soft
weight o("7) to the edge which reflects the magnitude of
connections. This also benefits the connectivity so that it
can be optimized in a differentiable manner.

In neural networks, features generated by different layers
exhibit various semantic representations [46, 45]. Recall
the mammalian brain mechanism in biology [26] that the
synapses are activated to varying degrees when the neurons
perceive external information, the weights of edges in the
graph can be parameterized upon inputs. As shown in the
left of Fig. 1, DDW can generate appropriate connectivity
for each sample. Different from Eq.(1), the output feature
can be computed by:

<) — f(j)(z albd) . X(i)) (3)

1<j

where a("7) is a vector that contains the weights related to
samples in a batch.

3.3. Instance-Aware Connectivity through
Routing Mechanism

To obtain o(*7) and allow instance-aware connectivity
for the network, we add an extra conditional router mod-
ule along with each node, as presented in the right of Fig.
1. The calculation procedure in a node can be divided
into four steps. First, the node aggregates features from
preceding connected nodes by weighted addition. Second,
the node performs feature transformation with convolution,
normalization, and activation layers (determined by the net-
work). Third, the router receives the transformed feature
and applies squeeze-and-excitation to compute instance-
aware weights over edges with succeeding nodes. Last,
the node distributes the transformed features to succeeding
nodes according to the weights.

Structurally, the router applies a lightweight module con-
sisting of a global average pooling ¢(-), a fully-connected
layer and a sigmoid activation o(-). The global spatial
information is firstly squeezed by global average pooling.
Then we use a fully-connected layer and sigmoid to gener-
ate normalized routing weights o/(*7) for output edges. The

|

Batch Matrices Buffer

Figure 2. The procedure of updating the adjacency matrix and the
proposed buffer for storing. A node obtains the weights of input
edges from the row (blue) and stores weights to output edges sav-
ing in the column (green). The matrices are saved in a buffer that
supports batch training efficiently.

mapping function of the router can be written as:
p(x) = o(Wp(x) +b), st.o(-) €[0,1), (@)

where w and b are weights and bias of the fully-connected
layer. Particularly, DDW is computationally efficient be-
cause of the 1-D dimension reduction of ¢(-). For an in-
put feature map with dimension H x W x Cj,, the con-
volutional operation requires C;,,Coye H WD% Multi-Adds
(for simplicity, only one layer of convolution is calculated),
where Dy, is the kernel size. As for the routing mechanism,
it only introduces extra O(p(x)) = Ciy (our Multi-Adds,
where (,,,; is the number of output edges for the node. This
is much less than the computational cost of convolution.

Besides, we set a learnable weight of 7 that acts as a
threshold for each node to control the connectivity. When
the weight is less than the threshold, the connection will be
closed during inference. When a(*7) = 0, the edge from
i-th node to j-th node will be marked as closed. If the in-
put or output edges for a node are all closed, the node will
be removed to accelerate inference time. Meanwhile, all
the edges with a(*/) > 0 will be reserved, continuously
enabling feature fusion. This can be noted by:

(i9) — 0
a™ —{ )

During training, this can be implemented in a differentiable
manner of ¥(a) = a - o(a — 7).

®)

3.4. Buffer Mechanism for Feature Aggregation

DDW allows flexible wiring patterns for the connectiv-
ity, which requires the aggregation of the features among
nodes that need to be recorded and shared within a graph.
For this purpose, we store the connectivity in an adjacency
matrix (denoted as M € RV*™). The order of rows and
columns indicates the topological order of the nodes in the
graph. Elements in the matrix represent the weights of
edges, as shown in the left of Fig. 2, where rows reflect the
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weights of input edges and columns are of output edges for a
node. During the forward procedure, the i-th node performs
aggregation through weights acquired from the correspond-
ing row of M;_; .. Then the node generates weights over
output edges through accompanying the router and stores
them into the column of M. ;. In this way, the adjacency
matrix is updated progressively and shared within the graph.
For a batch with B samples, different matrices are concate-
nated in the dimension of batch and cached in a defined
buffer (denoted as M € REXNXN ' where M,.. = M), as
shown in the right of Fig. 2. With the buffer mechanism,
DDW can be trained as an ordinary network without intro-
ducing excessive computation or time-consuming burden.

3.5. Optimization of DDW

During training, the parameters of the network W,,, as
well as the parameters of routers W,., are optimized simul-
taneously using gradients back-propagation. Given an input
x and corresponding label y, the objective function can be
represented as:

Wi Lo(T (6 W, W) y) (6)
where £;(-,-) denotes the loss function w.r.t specific tasks
(e.g. cross-entropy loss for image classification and regres-
sion loss for object detection). This method has two ben-
efits. First, simultaneous optimization can effectively re-
duce the time consumption of training. The time to obtain
a trained dynamic network is the same as that of a static
network. Second, different from DARTS [19] that selects
operation with the maximum probability, our method learns
the connectivity in a continuous manner, which better pre-
serves the consistency between training and testing.

Set gvfj be the gradients that the network flows back-

wards to the convolutional weights of the j-th node w
Let ‘gﬁ; be the gradients to x(/). Then the gradients w.r.t
to the weights of router w9 the biases of router b%/) and
threshold 7(7) are of the form:

9

a‘ct o aﬁt 8fj i 8()0] i

S = 2lgg O ga ©X) 5 PO
9L, _ oL, _afi . 0

) 2o © g7 ©%) ®
5 = 2505 0x) 55 ©)

where wgi’j ) e R¢*1 and bgi’j ) € R! are the weights
and bias of the router that determine the output edge of
(7). And x7" is the aggregated features of 3" /("9 . x()
in Eqn. (3), 2* is calculated by W(i’j)TqS(xi) +b(9) in Eqn.
). And 2% is ¥ - (a7 — 79) - ((a¥ — 79) —1). And ©
indicates entrywise product. The gradients w.r.t o(*) can

be noted as Y° (25t © 21 o x¥).

oxJ

4. Experiments
4.1. ImageNet Classification

Datasets and Evaluation Metrics. We evaluate our ap-
proach on the ImageNet 2012 classification dataset [29].
The ImageNet dataset consists of 1.28 million training im-
ages and 50,000 validation images from 1000 classes. We
train all models on the entire training set and compare the
single-crop top-1 validation set accuracy with input image
resolution 224x224. We measure performance as Ima-
geNet top-1 accuracy relative to the number of parameters
and computational cost in FLOPs.

Network Architectures and Implementation Details.
We validate our approach on a number of widely used mod-
els including MobileNetV2-1.0 [30], ResNet-18/50/101
[10] and ResNeXt50-32x4d [41]. To further test the effec-
tiveness of DDW, we attempt to optimize recent NAS-based
networks of RegNets [25], which are the best models out of
a search space with ~ 1018 possible configurations. Our im-
plementation is based on PyTorch [23] and all experiments
are conducted using 16 NVIDIA Tesla V100 GPUs with a
total batch of 1024. All models are trained using SGD opti-
mizer with 0.9 momentum.

Evaluation Results. We verify that DDW improves per-
formance on a wide range of architectures in Table 1. For
fair comparison, we retrain all of our baseline models with
the same hyperparameters as the DDW models’. Com-
pared with baselines, DDW gets considerable gains with
a small relative increase in the number of parameters (<
2%) and inference cost of FLOPs (< 1%). This includes
architectures with mobile setting [30], classical residual
wirings [10, 41], multi-branch operation [41] and architec-
ture search [25]. We further find that DDW benefits from
the large search space which can be seen in the improve-
ments of ResNets. With the increase of the depth from 18
to 101, the formed complete graph includes more nodes,
resulting in larger search space and more possible wirings.
And the gains raise from 1.02% to 1.61% in top-1 accuracy.

4.2. COCO Object Detection

We report the transferability results by fine-tuning the
networks for COCO object detection [17]. We use Faster
R-CNN [28] with FPN [16] as the object detector. Our fine-
tuning is based on the 1x setting of the publicly available

2Qur re-implementation of the baseline models and our DDW mod-
els use the same hyperparameters. For reference, published results for
baselines are: MobileNetV2-1.0 [30]: 72.00%, ResNet-18 [11], 69.57%,
ResNet-50 [8]: 76.40%, ResNet-101 [8]: 77.92%, ResNeXt50-32x4d
[41]: 77.80%, RegNetX-600M [25]: 74.10%, RegNetX-1600M [25]:
77.00%.
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Table 1. ImageNet validation accuracy (%) and inference cost. DDW improves the accuracy of all baseline architectures with small relative

increase in the number of parameters and inference cost.

Network ‘ Baselines ‘ DDW ‘ A Top-1
| Params(M) ~ FLOPs(M) Top-1 | Params(M) FLOPs(M) Top-1 |
MobileNetV2-1.0 | 351 299 7260 | 3.58 312 7354 | +0.94
ResNet18 | 11.69 1813 70.30 | 1171 1826 7132 | +1.02
ResNet50 | 2555 4087 76.70 | 25.62 4125 78.28 | +1.58
ResNetl0l | 4454 7799 7829 | 4490 7837 7990 | +1.61
ResNeX150-32x4d | 25.02 4228 7797 | 25.09 4305 7939 | +1.42
RegNet-X-600M | 6.19 599 7403 | 622 600 74.68 | +0.65
RegNet-X-1600M | 9.19 1602 7726 | 922 1604 7791 | +0.65
EfficientNet-BO | 528 390 76.30 | 538 402 7742 | +1.12

Table 2. COCO object detection minival performance. APs (%) of bounding box detection are reported.

provement across multiple backbones on all scales.

DDW brings consistently im-

Backbone | Method  GFLOPs | AP AP5 AP7s APg APy APp
ResNet50 Baseline 174 36.42 58.54  39.11 2193 40.02 46.58
DDW 176 38.12(+1.7( 60.53  41.00 23.61 4152 48.39
ResNet101 Baseline 333 38.59 60.56 41.63 2245 43.08 49.46
eshe DDW 335 | 41.32(+2.73)  63.54 4497 2571 4560 52.62
Baseline 181 38.07 6042  41.01 2297 42,10 48.68
ResNeX150-32x4d ‘ DDW 183 ‘ 39.52(+1.45) 6241 4256 2571 4334 49.83
Detectron2 [7]. We replace the backbone trained in Ta- in Table 3 demonstrate DDW can generate better instance-

ble 1. The object detection results are given in Table 2. And
FLOPs of the backbone are computed with an input size
of 800x1333. Compared with the static network, DDW
improves AP by 1.70% with ResNet-50 backbone. When
using a larger search space of ResNet101, our method sig-
nificantly improves the performance by 2.73% in AP. It is
worth noting that stable gains are obtained for objects of
different scales varying from small to large. This further
verifies that instance-aware connectivity can improve the
representation capacity toward the dataset with a large dis-
tribution variance.

4.3. Comparison with State-of-the-Arts

Comparison with InstaNAS [5]. InstaNAS generates
data-dependent networks from a designed meta-graph. Dur-
ing inference, it uses a controller to sample possible archi-
tectures by a Bernoulli distribution. But it needs to care-
fully design the training process to avoid collapsing the con-
troller. Differently, DDW builds continuous connections
between nodes, which allowing more possible connectivity.
And the proposed method is compatible with gradient de-
scent, and can be trained in a differentiable way easily. Mo-
bileNetV2 is used as the backbone network in InstaNAS. It
provides multiple searched architectures under different la-
tencies. For a fair comparison, DDW adopts the same struc-
ture as the backbone and reports the results of ImageNet.
The latency is tested using the same hardware. The results

aware architectures in the dimension of connectivity.

Comparison with RandWire [42]. Randomly wired
neural networks explore using flexible graphs generated by
different graph generators as networks, losing the constraint
on wiring patterns. But for the entire dataset, the network
architecture it uses is still consistent. Furthermore, DDW
allows instance-aware connectivity patterns learned from
the complete graph. We compare three types of genera-
tors in their paper with the best hyperparameters, includ-
ing Erdos-Rényi (ER), Barabasi-Albert (BA), and Watts-
Strogatz (WS). Since the original paper does not release
codes, we reproduce these graphs using NetworkX>. We
follow the small computation regime to form networks.
Experiments are performed in ImageNet using its origi-
nal training setting except for the DropPath and DropOut.
Comparison results are shown in Table 4. DDW is supe-
rior to three classical graph generators in a similar com-
putational cost. This proves that under the same search
space, the optimized data-dependent connectivity is better
than randomly wired static connectivity.

Comparison with NAS-based Methods. For complete-
ness, we compare with the most accurate NAS-based net-
works under the mobile setting (~ 600M FLOPs) in Im-

3https://networkx.github.io
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Table 3. Compared with InstaNAS under comparable latency in
ImageNet.

Model ‘ Top-1 ‘ Latency (ms)
InstaNAS-ImgNet-A 71.9 0.23940.014
InstaNAS-ImgNet-B 71.1 0.18940.012
InstaNAS-ImgNet-C 69.9 0.17140.011

DDW-MBV2-1.0 | 73.5+0.06 | 0.257+0.015

Table 4. Compared with RandWire under small computation
regime in ImageNet.

Wiring Type ‘ Top-1 ‘ FLOPs(M)
ER (P=0.2) 71.34+0.40 602
BA (M=5) 71.1640.34 582

WS (K=4, P=0.75) | 72.26+0.27 572
DDW | 78.5210.05 | 611

Table 5. Comparision with NAS methods under mobile setting.
Here we train for 250 epochs similar to [47, 27, 42, 18, 19], for
fair comparisons.

Network | Params(M)  FLOPs(M) | SearchCost | Top-1
NASNet-A [47] 5.3 564 2000 74.0
NASNet-B [47] 53 488 2000 72.8
NASNet-C [47] 4.9 558 2000 72.5
Amoeba-A [27] 5.1 555 3150 74.5
Amoeba-B [27] 5.3 555 3150 74.0

RandWire-WS [42] 5.6 583 - 74.7
PNAS [18] 5.1 588 ~225 74.2
DARTS [19] 49 595 4 73.1
EfficientNet-BO [34] 5.3 390 - 76.3
DDW-A 6.2 601 1.5 75.8
DDW-B 6.3 601 1.5 77.0

ageNet. It is worth noting that this is not the focus of
this paper. We select RegNet as the basic architecture as
shown in Table 1. For fair comparisons, here we train 250
epochs and other settings are the same with section 4.1. We
note RegNet-X with the dynamic wirings as DDW-A and
RegNet-Y with dynamic wirings as DDW-B * (with SE-
module for comparison with particular searched architec-
tures e.g. EfficientNet). The experimental results are given
in Table 5. It shows that with a single operation type (Regu-
lar Bottleneck), DDW can obtain considerable performance
with other NAS methods with less search cost.

4.4. Ablation Study

Static vs. Dynamic. We conduct an ablation study on dif-
ferent connectivity methods to reflect the effectiveness of
the proposed DDW. The experiments are performed in Im-
ageNet and follow the training setting in section 4.1. For
a fair comparison, we select ResNet-50/101 as the back-
bone structure. The symbol o denotes assigning learnable
parameters to the edge directly, which learns static connec-
tivity for all samples. The symbol «; denotes the type of

“The original performance of RegNet-X-600M is 75.03%, and
RegNet-Y-600M is 76.10% under this training setting.

Table 6. Ablation study on different connectivity methods. Re-
sults show that DDW outperforms static networks with/without
learnable weights of edges in large margins.

Backbone ‘ a oy ‘ Top-1 ‘ A Top-1
ResNet-18 70.30 -
v 70.51 +0.21
v 71.32 +1.02
ResNet-50 76.70 -
v 77.00 +0.30
v 78.28 +1.58
ResNet-101 78.29 -
v 78.64 +0.35
v 79.90 + 1.61
MobileNetV2-1.0 72.60 -
v 72.86 +0.26
v 73.54 +0.94

DDW, which learns dynamic connectivity. The experimen-
tal results are given in Table 6. In this way, ResNet-50 with
ay, still outperforms one with o by 1.28% in top-1 accuracy.
And ResNet-101 is the same. This demonstrates that due to
the enlarged optimization space, dynamic wiring is better
than static wiring in these networks.

Initialization Schemes of Routers. The routing transfor-
mation is defined as ¢(x) = o(wl ¢(x) + b), where w’ is
the weight matrix and b the bias vector. A simple initializa-
tion scheme is suggested that the bias can be initialized with
a positive value (e.g. 3 etc.) such that the network is ini-
tially biased towards existence connections behavior. This
scheme is strongly inspired by the proposal of [6] to initially
bias the gates in a Long Short-Term Memory recurrent net-
work to help bridge long-term temporal dependencies early
in learning. And this initialization scheme is also adpoted
in Highway netowrks [32] and Non-local networks [37].

We conduct an ablation study using DDW based on
ResNet-50 in ImageNet. Details of the training procedure
are the same in section 4.1. The bias is initialized with
{3,0, —3} respectively. These initialization methods corre-
spond to existence connections, unbiased and non-existent
connections. Experimental results are given in Fig. 3. It
can be seen that the positive initialization of bias achieves
lower training loss in the early training procedure and ob-
tains higher validation Top-1 accuracy of 78.28%. This sug-
gests that initializing the connections to existing is better
than unbiased initialization and non-existent.

4.5. Further Analysis

To analyze the architecture representations, we visualize
the learned connectivity through the adjacency matrices as
noted in section 3.4. The validation dataset that contains
50000 images of ImageNet is used for inference. We select
the trained DDW with ResNet-50 that contains 4 stages. We
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Figure 3. Different initialization schemes for routers. The positive bias initializes the connections as existence, obtains lower training loss
in the early training procedure, and achieves higher validation accuracy than negative and zero biases.
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Figure 4. The distribution of the mean of weights of edges in
different graphs/stages. Darker colors represent larger weights.

show the distribution of the mean of the weights of edges in
Fig. 4 and the distribution of standard deviation in Fig. 5.
Some observations and analysis can be made:

1) The weights of connections have obvious differences.
Statistically, in a graph, the output edges of the nodes in the
front of topological orders often have larger weights. This
can be explained that for a node with the order of ¢, the gen-
erated x; can be received by node 5 (where j > 7). This
causes the features generated by the front nodes to partic-
ipate in aggregation as a downstream input. It makes the
front nodes contribute more, which can be used to reallo-
cate calculation resources in future work.

2) There exist discrepancies in weight changes for dif-
ferent edges to input samples. In a stage, the edges of the
nodes in the back of topological orders have a larger vari-
ance. The weights of edges in deeper stages also have a
larger variance. We speculate that it is related to the level of
semantic information of features. Specifically, features gen-
erated by the deep layers have high-level semantic informa-
tion and the correlation of samples is stronger than features
with low-level information generated by the shallow layers.

Standard Deviation of weights in stage-1 Standard Deviation of weights in stage-2

0.03 0.049 0.036 0.05

0.032 0.039

0.055 0,051 0.048 0.085 0.075 0.082
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0.150
0125
0.100
0.075
0.050
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0.000

Figure 5. The distribution of standard deviation of weights of
edges in different stages. Darker colors represent larger weights.

5. Conclusion

In this paper, we present the DDW, which allows learn-
ing instance-aware connectivity for neural networks. With-
out introducing much computation cost, the model capacity
can be increased to ease the difficulties of feature represen-
tation for data with high diversity. We show that DDW is su-
perior to many static networks, including human-designed
and automatically searched architectures. Besides, DDW
demonstrates good generalization ability on ImageNet clas-
sification as well as COCO object detection. DDW explores
the connectivity in an enlarged search space, which we be-
lieve is a new research direction. In future work, we con-
sider verifying DDW on more NAS-searched architectures.
Moreover, we will study learning dynamic operations be-
yond the connectivity as well as adjusting the computation
cost based upon the difficulties of samples.
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