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Abstract

Motivated by the success of Transformers in natural lan-
guage processing (NLP) tasks, there emerge some attempts
(e.g., ViT and DeiT) to apply Transformers to the vision
domain. However, pure Transformer architectures often
require a large amount of training data or extra supervi-
sion to obtain comparable performance with convolutional
neural networks (CNNs). To overcome these limitations,
we analyze the potential drawbacks when directly borrow-
ing Transformer architectures from NLP. Then we propose
a new Convolution-enhanced image Transformer (CeiT)
which combines the advantages of CNNs in extracting low-
level features, strengthening locality, and the advantages
of Transformers in establishing long-range dependencies.
Three modifications are made to the original Transformer:
1) instead of the straightforward tokenization from raw in-
put images, we design an Image-to-Tokens (I12T) module
that extracts patches from generated low-level features; 2)
the feed-froward network in each encoder block is replaced
with a Locally-enhanced Feed-Forward (LeFF) layer that
promotes the correlation among neighboring tokens in the
spatial dimension; 3) a Layer-wise Class token Attention
(LCA) is attached at the top of the Transformer that utilizes
the multi-level representations.

Experimental results on ImageNet and seven down-
stream tasks show the effectiveness and generalization abil-
ity of CeiT compared with previous Transformers and state-
of-the-art CNNs, without requiring a large amount of train-
ing data and extra CNN teachers. Besides, CeiT models
demonstrate better convergence with 3x fewer training it-
erations, which can reduce the training cost significantly '.

1. Introduction

Transformers [37] have become the de-facto standard for
natural language processing (NLP) tasks due to their abili-
ties to model long-range dependencies and to train in par-
allel. Recently, there exist some attempts to apply Trans-
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Figure 1: The fast convergence ability of CeiT models.
CeiT models trained with 100 epochs obtain comparable
results with DeiT models trained with 300 epochs. Other
settings are given in Table 8.

formers to vision domains [7, 10, 35, 5, 52, 6, 50], leading
promising results in different tasks. Among them, Vision
Transformer (ViT) [10] is the first pure Transformer archi-
tecture that is directly inherited from NLP, and applied to
image classification. It obtains promising results compared
to many state-of-the-art CNNs [25, 43, 19]. But it relies
heavily on the large amount of dataset of JFT-300M [33],
which limits the application in the scenarios with limited
computing resources or labeled training data. To alleviate
the dependence on a large amount of data, the Data-efficient
image Transformers (DeiT) [35] introduce a CNN model as
a teacher and applies knowledge distillation [ 4] to improve
the student model of ViT. Thus DeiT that is only trained on
ImageNet can obtain satisfactory results. But the require-
ment of trained high-performance CNN models is a po-
tential computation burden. Besides, the choice of teacher
models, distillation types may affect the final performance.
Therefore, we intend to design a new visual Transformer
that can overcome these limitations.

Some existing observations in these work can help us de-
sign desired architectures. In ViT, Transformer-based mod-
els underperform CNNs in the realm of ~10M training sam-
ples. It claims that “Transformers lack some of the inductive
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biases inherent to CNNs, and therefore do not generalize
well when trained on insufficient data”. In DeiT, a CNN
teacher gives better performance than using a Transformer
one, which probably due to “the inductive bias inherited by
the Transformer through distillation”. These observations
make us rethink whether it is appropriate to remove all con-
volutions from the Transformer. And should the inductive
biases inherited in the convolution be forgotten?

Looking back to the convolution, the main characteris-
tics are translation invariance and locality [22, 31]. Trans-
lation invariance is relevant to the weight sharing mecha-
nism, which can capture information about the geometry
and topology in vision tasks [23]. For the locality, it is a
common assumption in visual tasks [ 1, 26, 9] that neigh-
boring pixels always tend to be correlated. However, pure
Transformer architectures do not fully utilize these prior bi-
ases that existed in images. First, ViT performs direct to-
kenization of patches from the raw input image with a size
of 16 x 16 or 32 x 32. It is difficult to extract the low-level
features which form some fundamental structures in images
(e.g. corners and edges). Second, the self-attention modules
concentrate on building long-range dependencies among to-
kens, ignoring the locality in the spatial dimension.

To address these problems, we design a Convolution-
enhanced image Transformer (CeiT) to combine the advan-
tages of CNNss in extracting low-level features, strengthen-
ing locality, and the advantages of Transformers in asso-
ciating long-range dependencies. Three modifications are
made compared to the vanilla ViT. To solve the first prob-
lem, instead of the straightforward tokenization from raw
input images, we design an Image-to-Tokens (I2T) mod-
ule that extracts patches from generated low-level features,
where patches are in a smaller size and then flattened into
a sequence of tokens. Due to a well-designed structure, the
I2T module does not introduce more computation costs. 7o
solve the second problem, the feed-froward network in each
encoder block is replaced with a Locally-enhanced Feed-
Forward (LeFF) layer that promotes the correlation among
neighboring tokens in the spatial dimension. To exploit the
ability of self-attention, a Layer-wise Class token Attention
(LCA) is attached at the top of the Transformer that utilizes
the multi-level representations to improve the final repre-
sentation. In summary, our contributions are as follows:

* We design a new visual Transformer architecture
namely Convolution-enhanced image Transformer
(CeiT). It combines the advantages of convolutional
neural networks in extracting low-level features,
strengthening locality, and the advantages of Trans-
formers in establishing long-range dependencies.

* Experimental results on ImageNet and seven down-
stream tasks show the effectiveness and generaliza-
tion ability of CeiT compared with previous Trans-

formers and state-of-the-art CNNs, without requiring
a large amount of training data and extra CNN teach-
ers. For example, with a similar model size as ResNet-
50, CeiT-S obtains a Top-1 accuracy of 82.0% on Im-
ageNet. And the result boosts into 83.3% when fine-
tuned in the resolution of 384 x 384.

* CeiT models demonstrate better convergence than pure
Transformer models with 3x fewer training iterations,
which can reduce the training cost significantly.

2. Related Work

Transformer in Vision. iGPT [7] first introduce trans-
former to auto-regressively predict pixels, and obtaining
pre-trained models without incorporating knowledge of the
content in 2D images. However, it can only achieve reason-
able performance in a tiny dataset (CIFAR10) with an ex-
tremely large model (1.4B). Recently, ViT [10] successfully
makes standard Transformer scalable for image classifica-
tion. It reshapes the images into a series of 16 x 16 patches
as input tokens. However, ViT can only get comparable per-
formance with state-of-the-art CNNs when trained on very
large datasets. DeiT [35] augment ViT by introducing a
mimic token and adopt knowledge distillation to mimic the
output of a CNN teacher, which can obtain satisfactory re-
sults without training on large scale dataset. Some work
also exploit efficient Transformers that can be trained in Im-
ageNet directly, including LambdaNetworks [2], T2T-ViT
[46] and PVT [39]. Besides, recent work also apply Trans-
formers to various vision tasks, including object detection
[5, 52], segmentation [4 1], image enhancement [6, 44] and
video processing [47, 51].

Hybrid Models of Convolution and Self-attention. To
utilize the advantages of self-attention in building long-
range dependencies, some work introduces attention mod-
ules into CNNs [49, 45, 40, 3, 8, 17, 42]. Among these
works, the Non-local network [40] insert non-local layers
into the last several blocks of ResNet [ 2] and improve the
performance on video recognition and instance segmenta-
tion. CCNet [18] attaches a criss-cross attention module
at the top of a segmentation network. SASA [29], SANet
[48] and Axial-SASA [38] propose to replace all convolu-
tional layers by self-attention module to form a stand-alone
self-attention network. Recent work also combines Trans-
formers with CNNs. DETR [5] uses Transformer blocks
outside the CNN backbone with the motivation to get rid of
region proposals and non-maximal suppression for simplic-
ity. VILBERT [24] and VideoBERT [32] construct cross-
modality models using CNN and BERT. Different from the
above methods, CeiT incorporates convolutional designs
into the basic building blocks of Transformer to inherit the
inductive bias in CNNs, which a more elaborate design.
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Figure 2: Comparisons of different tokenization methods.
The upper one extracts patches from raw input images. The
below one (I2T) uses the low-level features generated by a
convolutional stem.

3. Methodology

Our CeiT is designed based on the ViT. First, we give
a brief overview of the basic components of ViT in section
3.1. Next, we introduce three modifications that incorpo-
rate convolution designs and benefit visual Transformers,
including an Image-to-Tokens (I12T) module in section 3.2,
a Locally-enhanced FeedForwad (LeFF) module in section
3.3 and a Layer-wise Class token Attention (LCA) module in
section 3.4. Last, we analyze the computation complexity
of these proposed modules in section 3.5.

3.1. Revisiting Vision Transformer

We first revisit the basic components in ViT, includ-
ing tokenization, encoder blocks, multi-head self-attention
(MSA) layers, and feed-forward network (FFN) layers.

Tokenization. The standard Transformer [37] receives a
sequence of token embeddings as input. To handle 2D im-
ages, ViT reshapes the image x € RH*W>3 into a sequence
of flattened 2D patches x, € RNX(P*3) where (H,W)
is the resolution of the original image, 3 is the number of
channels of RGB images, (P, P) is the resolution of each
image patch, and N = HW/P? is the resulting number of
patches, which also serves as the effective input sequence
length for the Transformer. And these patches are flattened
and mapped to latent embeddings with a size of C'. Then
an extra class token is added to the sequence and serves as
the image representation, resulting in the input of sequence
with a size of x, € RIN+1XC,

In practice, ViT splits each image with a patch size of
16 x 16 or 32 x 32. But the straightforward tokenization
of input images with large patches may have two limita-
tions: 1) it is difficult to capture low-level information in
images (such as edges and corners); 2) large kernels are
over-parameterized and are often hard to optimize, thus re-
quires much more training samples or training iterations.

Encoder blocks. ViT is composed of a series of stacked
encoders. Each encoder has two sub-layers of MSA and
FFN. A residual connection [12] is employed around each
sub-layer, followed by layer normalization (LN) [1]. The
output for each encoder is:

y = LN(x’ + FFN(x)), and x" = LN(x + MSA(x)) (1)

Different from CNNs where feature maps are down-
sampled at the beginning of each stage, the length of tokens
is not reduced in different Encoder blocks. The effective
receptive field cannot be expanded efficiently, which may
affect the efficiency of optimization in visual Transformers.

MSA. For a self-attention (SA) module, the sequence of
input tokens x;, € R(WHD*C are linear transformed into
gkv spaces, i.e., queries Q € RNHFDXC keys K €
RWHDXC and values V. € RINtUXC | Then a weighted
sum over all values in the sequence is computed through:

T

Ve

And a linear transformation is performed to the weighted
values. MSA is an extension of SA. It splits queries, keys,
and values for h times and performs the attention function
in parallel, then projects their concatenated outputs.

Through computing dot-product, the similarity between
different tokens is calculated, resulting in long-range and
global attention. And a linear aggregation is performed for
corresponding values V.

Attention(Q, K, V) = softmax(

v (@)

FFN. FFN performs point-wise operations, which are ap-
plied to each token separately. It consists of two linear
transformations with a non-linear activation in between:

FFN(X) = O'(XW1 + bl)Wg + b2 (3)

where W, € RE*K ig the weight of the first layer, pro-
jecting each token into a higher dimension K. And W4 €
REXC is the weight of the second layer. b; € R¥X and
by € R are the biases. And o(-) is the non-linear activa-
tion of GELU [13] in ViT.

Complementary to the MSA module, the FFN module
performs dimensional expansion/reduction and non-linear
transformation on each token, thereby enhancing the repre-
sentation ability of tokens. However, the spatial relationship
among tokens, which is important in vision, is not consid-
ered. This leads that the original ViT needs a mass of train-
ing data to learn these inductive biases.

3.2. Image-to-Tokens with Low-level Features

To solve the above-mentioned problems in tokenization,
we propose a simple but effective module named as Image-
to-Tokens (I2T) that extracts patches from feature maps in-
stead of raw input images. As shown in Figure 2, the 12T
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Figure 3: Illustration of the Locally-enhanced Feed-Forward module. First, patch tokens are projected into a higher dimen-
sion. Second, they are restored to “images” in the spatial dimension based on the original positions. Third, a depth-wise
convolution is performed on the restored tokens as shown in the yellow region. Then the patch tokens are flattened and
projected to the initial dimension. Besides, the class token conducts an identical mapping.

module is an lightweight stem that consists of a convolu-
tional layer and a max-pooling layer. Ablation studies also
suggest that a BatchNorm layer following the convolution
layer benefits the training process. It can be denoted as:

x' = 12T(x) = MaxPool(BN(Conv(x))) )

where x/ € RS *&xD , S is the stride w.r.t the raw input
images, and D is the number of enriched channels. Then
the learned feature maps are extracted into a sequence of
patches in the spatial dimension. To keep the number of
generated tokens consistent with ViT, we shrink the resolu-
tion of patches into (£, £). In practice, we set S = 4.

12T fully utilizes the advantage of CNNs in extracting
low-level features and reduces the training difficulty of em-
bedding by shrinking the patch size. This is also different
from the hybrid type of Transformer proposed in ViT, where
a regular ResNet-50 is used to extract high-level features
from the last two stages. Our 12T is much lighter.

3.3. Locally-Enhanced Feed-Forward Network

To combine the advantage of CNNs to extract local in-
formation with the ability of Transformer to establish long-
range dependencies, we propose a Locally-enhanced Feed-
Forward Network (LeFF) layer. In each Encoder block, we
keep the MSA module unchanged, remaining the ability to
capture global similarities among tokens. Instead, the orig-
inal feed-forward network layer is replaced with the LeFF.
The structure is given in Figure 3.

A LeFF module performs following procedures. First,
given tokens x}* € ROWH1*C generated from the preceding
MSA module, we split them into patch tokens x/* € RV*¢
and a class token x" € R accordingly. A linear projec-
tion is conducted to expand the embeddings of patch to-
kens to a higher dimension of x! € RV x(exC) " \where

e is the expand ratio. Second, the patch tokens are re-
stored to “images” of x; € RVNXVNx(exC) on spatial
dimension based on the position relative to the original im-
age. Third, we perform a depth-wise convolution with ker-
nel size of k on these restored patch tokens, enhancing the
representation correlation with neighboring k2 — 1 tokens,
obtaining x¢ € RVNXVNx(exO) - Fourth, these patch to-

kens are flattened into sequence of xJ € RY x(exC) | Last,
the patch tokens are projected to the initial dimension with

xlz € RV*¢ and concatenated with the class token, result-

ing in x ! € RIN+DXC Following each linear projection

and depth-wise convolution, a BatchNorm and a GELU is
added. These procedures can be noted as:

x", xZ = Split(x") ®)
x! = GELU(BN(Linearl(x}))) (6)
X, = SpatialRestore(xi}) @)
x% = GELU(BN(DWConv(x5))) (®)
xg = Flatten(xz) )
x2 = GELU(BN(Linear2(x))) (10)

x; ™! = Concat(x!, x2) (11)

3.4. Layer-wise Class-Token Attention

In CNNs, as the network deepens, the receptive field of
the feature map increases. Similar observations are also
found in ViT, whose “attention distance” increases with
depth. Therefore, feature representations will be different
at different layers. To integrate information across different
layers, we design a Layer-wise Class-token Attention (LCA)
module. Unlike the standard ViT that takes the class token
x&L) at the last L-th layer as the final representation, LCA
makes attention over class tokens at different layers.
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Figure 4: The proposed Layer-wise Class-token Atten-
tion block. It integrates information across different layers
through receiving a sequence of class tokens as inputs.

As shown in Figure 4, LCA gets a sequence of class
tokens as the input, which can be denoted as X, =
[x((:l), e ,xgl), e ,xt(;L)], where [ denotes the layer depth.
LCA follows the standard Transformer block, which con-
tains a MSA and a FFN layer. Different from the original
MSA that computes the similarity between any two tokens
(O(n?)), LCA only calculates the correlation between the
class token in the last layer and the rest of the class tokens
(O(n)) in other layers, where n denotes the number of to-
kens. And the corresponding value of x((:L) is aggregated
with others through attention. Then the aggregated value is

sent into a FFN layer, resulting in the final representations.
3.5. Computational Complexity Analysis

We analyze the extra computational complexity (in terms
of FLOPs) brought by our modifications. Generally, with a
small increase in computational cost, our CeiT model can
efficiently combine the advantage of CNNs and Transform-
ers, resulting in higher performance and better convergence.

I2T vs Original. The type of tokenization affects the
computational cost of embedding. For the original one with
a patch size of 16 x 16, the FLOPs are 3C(HW)?. For 12T,
the FLOPs are consist of two parts, including feature gener-
ation and embedding. In this paper, the generated features
are 4x smaller than the input. And the detailed architecture
of I2T is given in section 4.1. The total FLOPs of 12T are
(47 + &)DHW + L DCHW. For a ViT-B/16 model, the
ratio between I2T and the original one is around 1.1. In this
way, the extra computational cost is negligible.

LeFF vs FFEN. In a FFN layer with e = 4, the FLOPs
are 8( N + 1)C?. The main extra computation cost of LeFF

is introduced by the depth-wise convolution, whose FLOPs
are 4k> N2C'. The increase of FLOPs is small since O((N +
1)C?) > O(N?C) in practice as given in Table 1.

LCA vs Encoder Block. Compared with the standard En-
coder block, the LCA only computes attention over the L-th
class token. Both the computation cost in MSA and FFN
has been reduced to % The cost can be ignored compared
with the other 12 encoder blocks.

4. Experiments

We perform extensive experiments to demonstrate the ef-
fectiveness of our proposed CeiT. In section 4.1, we give the
details of used visual datasets and training settings. In sec-
tion 4.2, we compare CeiT with other state-of-the-art archi-
tectures including CNNs and Transformers in ImageNet. In
section 4.3, we transfer CeiT models trained on ImageNet
to other benchmark datasets, showing the strong generaliza-
tion ability. In section 4.4, we conduct ablation studies on
our modifications. In section 4.5, we show the fast conver-
gence ability of our CeiT models.

4.1. Experimental Settings

Network Architectures. We build our CeiT architectures
by following the basic configurations of ViT and DeiT. The
details are given in Table 1. The I2T module consists of a
convolutional layer with a kernel size of 7 and a stride of
2, generating enriched channels of 32. And a BatchNorm
layer is added for stable training. Then a max-pooling layer
with a kernel size of 3 and a stride of 2 is followed, result-
ing in feature maps with 4x smaller than the input image.
Compared to the patch size of 16 x 16 in ViT, we use a patch
size of 4 x 4 in generating a sequence of tokens. We follow
the standard setting in the number of the depth of 12. For
the LeFF module, we set the expand ratio e to be 4. And
the kernel size for the depth-wise convolution is 3 x 3. For
the LCA module, the number of heads and the ratio of MLP
follow those of the standard Encoder blocks.

Implementation Details. All of our experiments are per-
formed on the NVIDIA Tesla V100 GPUs. We adopt the
same training strategy in DeiT. We list the detailed settings
for training, fine-tuning, and transfer learning in Table 2.

Datasets. Instead of using a large-scale training dataset
of JFT300M or ImageNet22K, we adopt the mid-sized
ImageNet [40] dataset. It consists of 1.2M training im-
ages belonging to 1000 classes, and 50K validation im-
ages. Besides, we also test on some downstream bench-
marks to evaluate the transfer ability of our trained CeiT
models. These datasets consist different scenes, including
fine-grained recognition (Standford Cars [20], Oxford-102
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Table 1: Variants of our CeiT architecture. The FLOPs are calculated for images at resolution 224 x 224. And 7ks2 means a

convolution/pooling with kernel size of 7 and stride of 2.

Model 2T encoder | embedding heads LeFF Params | FLOPs
conv | maxpool | channels | blocks dimension e | k| ™ (G)
CeiT-T kT7s2 k3s2 32 12 192 3 4 3 6.4 1.2
CeiT-S k7s2 k3s2 32 12 384 6 4 3 242 4.5
CeiT-B k7s2 k3s2 32 12 768 12 4 3 86.6 17.4

Table 2: The hyper-paramters that varies depends on tasks. The training and fine-tuning on ImageNet in our experienet adopt
the same setting in DeiT. We use the same settings for finetuning on different downstream datasets.

Task dataset input Epochs batch learning LR warmup weight repeated
” ) size POCh size rate scheduler epoch decay aug [15]
training ImageNet 224 300 1024 le-3 cosine 5 0.05 v
fine-tuning ImageNet 384 30 1024 Se-6 constant 0 le-8 v
transferring | downstream | 224&384 100 512 Se-4 cosine 2 le-8 X
Table 3: Details of used visual datasets. closed the gap between vision Transformers and CNNs.
dataset ‘ classes train data val data . . . . . ..
CeiT vs ViT/DeiT. CeiT-T achieves a similar result of
ImageNet 1000 1,281,167 50000 . . . ..
age™e | 76.4% with ViT-L/16 of 76.5%. This is a surprising result
iNaturalist2018 8142 437513 24426 : : : : :
Naturelist2019 ‘ 1010 265240 3003 since the size of the CelT T mgdel is only one ﬁfth the size
of ViT-L/16. But this result is produced by the improve-
Standford Cars 196 8133 8041 . . .
Oxford-102 Followers 102 2040 6149 ments of the training strategy and the modifications of the
Oxford-IIIT-Pets 3 3680 3669 model structure. To further demonstrate the improvements
CIFAR100 100 50000 10000 brought by the structure, we compare CeiT with DeiT. CeiT
CIFARI10 10 50000 10000

Followers [27] and Oxford-IIIT-Pets [28]), long-tailed clas-
sification (iNaturalist18 [16], iNaturalist19 [16]) and su-
perordinate level classification (CIFAR10 [21], CIFAR100
[21]). The details are given in Table 3.

4.2. Results on ImageNet

We report the results on ImageNet validation dataset and
ImageNet Real dataset [4] in Table 4. For comparison, we
select CNNs (ResNets [ 12], EfficieNets [34], RegNets [30])
and Transformers (ViTs, DeiTs) to evaluate the effective-
ness of our CeiT models.

CeiT vs CNNs. We first compare CeiT models with CNN
models. CeiT-T achieves a Top-1 accuracy of 76.4% in
ImageNet, which is close to the performance of ResNet-
50. But CeiT-T only requires 3x fewer FLOPs and 4x
fewer Params than ResNet-50. For the CeiT-S of a sim-
ilar size as ResNet-50, its performance is 82.0%, achiev-
ing a higher performance (+5.3%) than that of ResNet-50
(76.7%). This performance also outperforms larger CNN
models of ResNet-152 and RegNetY-8GF. When trained
on the resolution of 384 x 384, CeiT-ST 384 surpasses
EfficientNet-B4 by 0.4%. It shows that we have obtained
comparable results with EfficientNets, and have almost

models follow the same training strategy as given in section
4.1. Our modifications only increase the number of param-
eters by about 10%, and have almost no effect on FLOPs.
In this way, CeiT-T outperforms DeiT-T by a large margin
of 4.2% for the Top-1 accuracy. And CeiT-S obtains higher
results than that of DeiT-S and DeiT-B by 2.1% and 0.2%
respectively.

CeiT vs DeiT-Teacher. DeiT introduces a CNN teacher
model as the extra supervision to optimize the Transformer,
achieving higher performances. But it requires extra com-
putation cost to obtain the trained CNN model. While CeiT
does not need an additional CNN model to provide supervi-
sion information, except for the ground truth. Meanwhile,
CeiT-T surpasses DeiT-T-Teacher by 1.9% of the Top-1 ac-
curacy. And CeiT-S also outperforms DeiT-S-Teacher by
0.8%. These experimental results demonstrate the effec-
tiveness of our CeiT.

4.3. Transfer Learning

To demonstrate the generalization power of pre-trained
CeiT models, we conduct experiments of transfer learning
in 7 downstream benchmarks. And the results are given in
Table 6. Training details are given in the previous Table
2. It can be seen that CeiT-S outperforms DeiT-B in most
datasets with fewer parameters and FLOPs. CeiT-S1 384
achieves state-of-the-arts results in most datasets. Notably,
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Table 4: Accuracies on ImageNet and ImageNet Real of CeiT and of several SOTA CNNs and Transformers, for models
trained with no extra data. The notation 1 384 means the model is fine-tuned on the resolution of 384 x 384. Throughput of
different models is also reported. It is measured as the number of images that can be processed per second on a Nvidia 16GB
V100 GPU with a batch size of 256 (200 repeat runs). Larger throughput means that the model is faster.

FLOPs Params input Throughput ImageNet Real
Group Model (G) M) size image/s Top-1  Top-5 | Top-1
ResNet-18 [12] 1.8 11.7 224 3272 70.3 86.7 713
ResNet-50 [12] 4.1 25.6 224 1051 76.7 93.3 82.5
ResNet-101 [12] 7.8 44.5 224 673 78.3 94.1 83.7
ResNet-152 [12] 11.5 60.2 224 484 78.9 94.4 84.1
EfficientNet-B0 [34] 0.4 53 224 2262 77.1 93.3 83.5
CNNs EfficientNet-B1 [34] 0.7 7.8 240 1463 79.1 94.4 84.9
EfficientNet-B2 [34] 1.0 9.1 260 1034 80.1 94.9 85.9
EfficientNet-B3 [34] 1.8 12.2 300 640 81.6 95.7 86.8
EfficientNet-B4 [34] 44 19.3 380 387 82.9 96.4 88.0
RegNetY-4GF [30] 4.0 20.6 224 1010 80.0 94.9 86.4
RegNetY-8GF [30] 8.0 39.2 224 557 81.7 95.2 87.4
ViT-B/16 [10] 18.7 86.5 384 270 719 - 83.6
VIT-L/16 [10] 65.8 304.33 384 86 76.5 - 77.8
DeiT-T [35] 1.2 5.7 224 2079 72.2 91.1 80.6
DeiT-S [35] 45 22.1 224 879 79.9 95.0 85.7
DeiT-B [35] 17.3 86.6 224 270 81.8 95.6 86.7
DeiT-T + Teacher [35] 1.2 5.7 224 2051 74.5 91.9 82.1
DeiT-S + Teacher [35] 4.5 22.1 224 872 81.2 95.4 86.8
\ DeiT-B1384 [35] \ 52.8 86.6 384 82 \ 83.1 96.2 \ 87.7
T2T-ViT-14 [46] 52 21.5 224 - 81.5 - -
Transformers T2T-ViT-19 [46] 8.9 39.2 224 - 81.9 - -
T2T-ViT-24 [46] 14.1 64.1 224 - 823 - -
PVT-T [39] 1.9 13.2 224 - 75.1 - -
PVT-S [39] 3.8 24.5 224 - 79.8 - -
PVT-M [39] 6.7 442 224 - 81.2 - -
PVT-L [39] 9.8 61.4 224 - 81.7 - -
CeiT-T 1.4 6.4 224 1524 76.4 93.4 83.6
CeiT-S 4.8 24.2 224 636 82.0 95.9 87.3
CeiT-T1384 5.1 6.4 384 433 78.8 94.7 85.6
CeiT-S1384 15.9 24.2 384 197 83.3 96.5 88.1

CeiT-S1 384 get comparable results with EfficientNet-B7 Table 5: Ablation study results on the type of I2T. Top-1
with an input size of 600. It shows the strong potential of accuracy and changes are reported.
visual Transformers against CNNs.

12T Type Top-1
4.4. Ablation Studies conv maxpool BN channels
To further identify the effects of the proposed modules, X X X 3 722
we conduct ablation studies on the main components of 12T, k7s4 X X 64 71.4 (-0.8)
LeFF, and LCA. All of our ablation experiments are based k5s4 X X 64 TLLCLD
. k3s2 + k3s2 X X 64 70.4 (-1.8)
on the DeiT-T model on ImageNet. 5752 k352 X 1 72.9 (+0.7)
k7s2 k3s2 v 32 73.4 (+1.2)
Different types of I2T module. The influencing factors
in I2T include the kernel size of the convolution, the stride
of the convolution, the existence of Max-pooling and Batch- with two convolution layers with a kernel of £3s2 also suf-
Norm layers. The results are given in Table 5. Without the fers from a drop. Both the Max-pooling and BatchNorm
Max-pooling layer, one convolution layer with a kernel of layers benefit the training. Therefore, we adopt the best
k7s4 and k5s4 each decreases the performance. An I2T structure (in the last row) in all of our experiments.
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Table 6: Results on downstream tasks with ImageNet pre-training

results with the first two highest accuracies are bolded.

. CeiT models achieve state-of-the-arts performance. The

Model | FLOPs | ImageNet iNatl8 iNatl9 Cars Followers Pets CIFARIO0  CIFARI00

Grafit ResNet-50 [36] 4.1G 79.6 69.8 759 925 98.2 - -

Grafit RegNetY-8GF [36] | 8.0G - 76.8 800 940 99.0 - - -
EfficientNet-B5 [34] 10.3G 83.6 - - - 98.5 - 98.1 911
EfficientNet-B7 [34] 37.3G 84.3 - 94.7 98.8 - 98.9 91.7

ViT-B/16 [10] 18.7G 71.9 - 89.5 93.8 98.1 87.1
VIT-L/16 [10] 65.8G 76.5 - 89.7 93.6 97.9 86.4
Deit-B [35] 17.3G 81.8 73.2 717 921 98.4 - 99.1 90.8
Deit-B1384 [35] 52.8G 83.1 79.5 814 933 98.5 - 99.1 90.8

CeiT-T 1.4G 76.4 64.3 728 905 96.9 93.8 98.5 88.4
CeiT-T1384 4.8G 78.8 722 779 930 97.8 94.5 98.5 88.0

CeiT-S 5.1G 82.0 73.3 789 932 98.2 94.6 99.0 90.8
CeiT-S1384 15.9G 833 79.4 827 941 98.6 94.9 99.1 90.8

Table 7: Ablation study results on the type of LeFF. Top-1
accuracy and changes are reported.

LeFF Type Top-1
kernel size BN

X X 72.2
1x1 X 70.3 (-1.9)
3x3 X 72.7 (+0.5)
5x%x5 X 73.1 (+0.9)
3x3 v 74.3 (+2.1)
5X5 v 744 (+2.2

Different types of LeFF module. In a LeFF module, the
size of the kernel determines the region size in which patch
tokens establish local correlation. So we test using kernel
sizes of 1 x 1, 3 x 3 and 5 x 5 in Table 7. Compared
to the baseline without the middle depth-wise convolution,
the type of 1 x 1 shows poor performance with a drop of
1.9%. This shows that simply increasing the number of lay-
ers for the Transformer does not certainly bring improve-
ments. When increasing the kernel size to larger ones, each
token can accumulate with neighboring tokens through the
non-linear transformation. Both the types of 3 x 3 and
5 X 5 obtain gains. When adopting the BatchNorm layer,
the model can achieve further accuracy improvements up to
2.2% of Top-1 accuracy. Based on the trade-off between the
number of parameters and accuracy, we choose the kernel
size of 3 x 3. The same as I2T, the presence of Batch-
Norm layers following transformation layers significantly
improves the performance.

Effectiveness of LCA. We compare the performances
w/wo the LCA module. Through adopting LCA, the perfor-
mance improves from 72.2% to 72.8%, showing multi-level
information contributes to the final image representation.

4.5. Fast Convergence

The standard visual Transformers, such as ViT and DeiT,
usually require a large number of training epochs to con-

Table 8: Comparisons of the ability of convergence be-
tween DeiT and CeiT models. CeiT models trained with
100 epochs obtain comparable results with DeiT models
trained with 300 epochs. 1x means 100 epochs.

3% Top-1 | 1x Top-1 | 1x Top-1
DeiT-T 722 DeiT-T 65.3 CeiT-T 72.2 (+6.9)
DeiT-S 79.9 DeiT-S 74.5 CeiT-S 78.9 (+4.4)
DeiT-B 81.8 DeiT-B 76.8 CeiT-B 81.8 (+5.0)

verge. Using 3 fewer training epochs, the performances of
DeiT suffer significant declines. As shown in Table 8, CeiT
models demonstrate better convergence than DeiT models,
resulting in higher performances in a large margin. And
CeiT models trained in 100 epochs can obtain comparable
results with DeiT models trained in 300 epochs. It shows
that incorporating these inductive biases inherent in CNNs
benefits the optimization procedure of visual Transformers.

5. Conclusion

In this paper, we propose the CeiT that combines the ad-
vantages of CNNs in extracting low-level features, strength-
ening locality, and the advantages of Transformers in es-
tablishing long-range dependencies. CeiT obtains SOTA
performances on ImageNet and various downstream tasks,
without requiring a large amount of training data and extra
CNN teachers. Besides, CeiT models demonstrate better
convergence than pure Transformer with 3x fewer training
iterations, reducing the training cost significantly. Through
incorporating convolution designs, we provide a new per-
spective for more effective visual Transformers.

Acknowledgement

This study is supported by NTU NAP, and under the
RIE2020 Industry Alignment Fund — Industry Collabora-
tion Projects (IAF-ICP) Funding Initiative, as well as cash
and in-kind contribution from the industry partner(s).

586



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

(13]

[14]

[15]

[16]

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.
Layer normalization. CoRR, abs/1607.06450, 2016.

Irwan Bello. Lambdanetworks: Modeling long-range inter-
actions without attention. In International Conference on
Learning Representations, 2021.

Irwan Bello, Barret Zoph, Quoc Le, Ashish Vaswani, and
Jonathon Shlens. Attention augmented convolutional net-
works. In ICCV, pages 3285-3294. IEEE, 2019.

Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov, Xi-
aohua Zhai, and Aédron van den Oord. Are we done with
imagenet? CoRR, abs/2006.07159, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV (1), volume
12346 of Lecture Notes in Computer Science, pages 213—
229. Springer, 2020.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. CoRR,
abs/2012.00364, 2020.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, volume 119 of Proceedings
of Machine Learning Research, pages 1691-1703. PMLR,
2020.

Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng
Yan, and Jiashi Feng. A™2-nets: Double attention networks.
In NeurIPS, pages 350-359, 2018.

Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Re-
gion filling and object removal by exemplar-based image in-
painting. [EEE Trans. Image Process., 13(9):1200-1212,
2004.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-
tering. In ECCV (1), volume 6311 of Lecture Notes in Com-
puter Science, pages 1-14. Springer, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770-778. IEEE Computer Society, 2016.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities
and stochastic regularizers with gaussian error linear units.
CoRR, abs/1606.08415, 2016.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015.

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In CVPR, pages
8126-8135. IEEE, 2020.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Alexan-
der Shepard, Hartwig Adam, Pietro Perona, and Serge J.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

587

Belongie. The inaturalist challenge 2017 dataset. CoRR,

abs/1707.06642, 2017.

Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Lo-
cal relation networks for image recognition. In /ICCV, pages
3463-3472. IEEE, 2019.

Zilong Huang, Xinggang Wang, Lichao Huang, Chang
Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross
attention for semantic segmentation. In ICCV, pages 603—
612. IEEE, 2019.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning. In
ECCV (5), volume 12350 of Lecture Notes in Computer Sci-
ence, pages 491-507. Springer, 2020.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
ICCV Workshops, pages 554-561. IEEE Computer Society,
2013.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In NIPS, pages 1106-1114, 2012.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie
Henderson, Richard E. Howard, Wayne E. Hubbard, and
Lawrence D. Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural Comput., 1(4):541-551,
19809.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert:
Pretraining task-agnostic visiolinguistic representations for
vision-and-language tasks. In NeurIPS, pages 13-23, 2019.
Dhruv Mahajan, Ross B. Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In ECCV (2), volume 11206 of Lec-
ture Notes in Computer Science, pages 185-201. Springer,
2018.

Mehmet Kivan¢ Mihg¢ak, Igor Kozintsev, Kannan Ramchan-
dran, and Pierre Moulin. Low-complexity image denoising
based on statistical modeling of wavelet coefficients. IEEE
Signal Process. Lett., 6(12):300-303, 1999.

Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In
ICVGIP, pages 722—729. IEEE Computer Society, 2008.
Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and
C. V. Jawahar. Cats and dogs. In CVPR, pages 3498-3505.
IEEE Computer Society, 2012.

Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-
attention in vision models. In NeurIPS, pages 68-80, 2019.
Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dolldr. Designing network design
spaces, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In /CLR,
2015.



(32]

(33]

[34]

(35]

(36]

[37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[40]

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and
Cordelia Schmid. Videobert: A joint model for video and
language representation learning. In ICCV, pages 7463—
7472. IEEE, 2019.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-
nav Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In ICCV, pages 843-852. IEEE Computer
Society, 2017.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In ICML,
volume 97 of Proceedings of Machine Learning Research,
pages 6105-6114. PMLR, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. CoRR, abs/2012.12877, 2020.

Hugo Touvron, Alexandre Sablayrolles, Matthijs Douze,
Matthieu Cord, and Hervé Jégou. Grafit: Learning fine-
grained image representations with coarse labels, 2020.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, pages 5998—
6008, 2017.

Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,
Alan L. Yuille, and Liang-Chieh Chen. Axial-deeplab:
Stand-alone axial-attention for panoptic segmentation. In
ECCYV (4), volume 12349 of Lecture Notes in Computer Sci-
ence, pages 108—126. Springer, 2020.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. CoRR, abs/2102.12122, 2021.
Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, and
Kaiming He. Non-local neural networks. In CVPR, pages
7794-7803. IEEE Computer Society, 2018.

Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen,
Baoshan Cheng, Hao Shen, and Huaxia Xia. End-to-
end video instance segmentation with transformers. CoRR,
abs/2011.14503, 2020.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. CBAM: convolutional block attention module. In
ECCV (7), volume 11211 of Lecture Notes in Computer Sci-
ence, pages 3—19. Springer, 2018.

Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and
Quoc V. Le. Self-training with noisy student improves im-
agenet classification. In CVPR, pages 10684—10695. IEEE,
2020.

Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-
ing Guo. Learning texture transformer network for image
super-resolution. In CVPR, pages 5790-5799. IEEE, 2020.
Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and
Alexander J. Smola. Stacked attention networks for image
question answering. In CVPR, pages 21-29. IEEE Computer
Society, 2016.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Francis E. H. Tay, Jiashi Feng, and Shuicheng Yan. Tokens-
to-token vit: Training vision transformers from scratch on
imagenet. CoRR, abs/2101.11986, 2021.

[47]

(48]

[49]

(50]

[51]

(52]

588

Yanhong Zeng, Jianlong Fu, and Hongyang Chao. Learning
joint spatial-temporal transformations for video inpainting.
In ECCV (16), volume 12361 of Lecture Notes in Computer
Science, pages 528-543. Springer, 2020.

Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring
self-attention for image recognition. In CVPR, pages 10073—
10082. IEEE, 2020.

Hengshuang Zhao, Yi Zhang, Shu Liu, Jianping Shi,
Chen Change Loy, Dahua Lin, and Jiaya Jia. Psanet: Point-
wise spatial attention network for scene parsing. In ECCV
(9), volume 11213 of Lecture Notes in Computer Science,
pages 270-286. Springer, 2018.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip H. S. Torr, and Li Zhang. Rethinking semantic
segmentation from a sequence-to-sequence perspective with
transformers. CoRR, abs/2012.15840, 2020.

Luowei Zhou, Yingbo Zhou, Jason J. Corso, Richard Socher,
and Caiming Xiong. End-to-end dense video captioning
with masked transformer. In CVPR, pages 8739-8748. IEEE
Computer Society, 2018.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In /CLR, 2021.



