
InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on
Point Clouds through Instance Multi-level Contextual Referring

Zhihao Yuan1,†, Xu Yan1,†, Yinghong Liao1, Ruimao Zhang1, Sheng Wang2, Zhen Li1,*, Shuguang Cui1

1The Chinese University of Hong Kong (Shenzhen), Shenzhen Research Institute of Big Data
2CryoEM Center, Southern University of Science and Technology

{zhihaoyuan@link., xuyan1@link., lizhen@}cuhk.edu.cn

Abstract

Compared with the visual grounding on 2D images, the
natural-language-guided 3D object localization on point
clouds is more challenging. In this paper, we propose a
new model, named InstanceRefer1, to achieve a superior
3D visual grounding through the grounding-by-matching
strategy. In practice, our model first predicts the target
category from the language descriptions using a simple
language classification model. Then, based on the cate-
gory, our model sifts out a small number of instance candi-
dates (usually less than 20) from the panoptic segmentation
on point clouds. Thus, the non-trivial 3D visual ground-
ing task has been effectively re-formulated as a simpli-
fied instance-matching problem, considering that instance-
level candidates are more rational than the redundant 3D
object proposals. Subsequently, for each candidate, we
perform the multi-level contextual inference, i.e., referring
from instance attribute perception, instance-to-instance re-
lation perception, and instance-to-background global local-
ization perception, respectively. Eventually, the most rele-
vant candidate is selected and localized by ranking confi-
dence scores, which are obtained by the cooperative holis-
tic visual-language feature matching. Experiments confirm
that our method outperforms previous state-of-the-arts on
ScanRefer online benchmark and Nr3D/Sr3D datasets.

1. Introduction
Visual grounding (VG), which aims at localizing the de-

sired objects or areas in an image or a video based on an
object-related linguistic query, has achieved great progress
in the 2D computer vision community [12, 18, 29, 17, 19].
With the rapid development of 3D sensor and 3D represen-
tation, the VG task has gradually merged more informative
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Figure 1. Multi-level contextual referring. For each instance-
level candidate, we match it with linguistic query from attribute,
local relation and global localization. The attribute, relation and
localization descriptions are in orange, blue and green boxes.

3D data. Unlike 2D images with regular and well-organized
pixels, 3D data mostly comes in the form of point clouds,
which is sparse, irregular, and unordered. Therefore, pre-
vious 2D-based schemes are usually deficient for real 3D
scenarios.

Chen et al. [2] is the pioneer for visual grounding on
point clouds. They propose the first dataset ScanRefer
and solve the problem by extending the 2D grounding-by-
detection pipeline to 3D. Specifically, it first uses a 3D ob-
ject detector [24] to generate hundreds of proposals. Then
the feature of each proposal is merged with a global repre-
sentation of the linguistic query to predict a matching score.
The proposal with the maximal score is considered as the
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object we are looking for. However, it suffers from sev-
eral issues when transferring the 2D method to 3D VG as
follows: 1) The object proposals in the large 3D scene are
usually redundant. Compared with the actual instances, the
number of proposals is large and the inter-proposal relation-
ship is complex, which inevitably introduces noise and am-
biguity. 2) The appearance and attribute information is not
sufficiently captured. Due to the noise and occlusion, the
obtained point clouds are usually sparse and incomplete,
leading to missing geometric details in object-aware pro-
posals. Conventional point cloud-based methods fail to ef-
fectively extract the attribute information, e.g., red, gray,
and wooden, which might ignore some vital linguistic cues
for referring. 3) The relations among proposals and the ones
between proposals and background are not fully studied.

To address the above issues, this paper investigates a
novel framework, namely InstanceRefer, to achieve a su-
perior visual grounding on point clouds with grounding-
by-matching strategy. Specifically, via the global panop-
tic segmentation, our proposed model extracts several in-
stance point clouds from the original scene. These in-
stances are subsequently filtered by the predicted category
from the natural language descriptions, obtaining the candi-
dates set. Compared with the object-proposal based candi-
dates [2], these filtered instance point clouds contain more
original geometric and attribute details (i.e., color, texture,
etc.) while maintaining a smaller number. We notice that
the recent work TGNN [10] also employs instance segmen-
tation to reduce the difficulty of referring. However, they
directly exploit the learned semantic scores from the seg-
mentation backbone as the instance features, which suffer
from the lossy geometric and attribute information. By
comparison, our InstanceRefer applied filtered candidates
and their original information for further referring. Thus,
it can not only reduce the number of the candidates, but
also maintain each candidate’s original information. Be-
sides, to fully comprehend the whole scene, multi-level con-
textual learning modules are further proposed, i.e., explic-
itly capturing the context of each candidate from instance
attributes, instance-to-instance relationships, and instance-
to-background global localization, respectively. Eventually,
with the well-designed matching module and contrastive
strategy, InstanceRefer can efficiently and effectively select
and localize the target. In consequence, our model outper-
forms previous methods by a large margin regardless of any
settings, i.e., exploiting any segmentation backbone.

In summary, the key contributions of this paper are as
follows: 1) We propose a new framework InstanceRefer for
visual grounding on point clouds, which exploits panop-
tic segmentation and language cues to select the instance
point clouds as candidates and re-formulates the task in
a grounding-by-matching manner. 2) Three novel compo-
nents are proposed to select the most relevant instance can-

didate from attributes, local relations, and global localiza-
tion aspects jointly. 3) Experimental results on ScanRe-
fer and Sr3D/Nr3D datasets confirm the superiority of In-
stanceRefer, which achieves state-of-the-arts on ScanRefer
benchmark and Nr3D/Sr3D dataset.

2. Related Work
Visual Grounding on 2D Images. The task of visual
grounding on images is to localize a specific area of the
image described by a natural language query. Depending
on the type of language query, it can be further divided
into phrase localization [12, 23, 29] and referring expres-
sion comprehension [20, 16, 30]. Most approaches conduct
localization in the bounding box level and a two-stage man-
ner. The first stage is to generate candidate proposals with
either unsupervised methods or a pre-trained object detec-
tion network. In the second stage, the best matching pro-
posal is selected according to the language query. Such
methods mainly focus on improving the ranking accuracy
of the second stage. MAttNet [36] proposes a modular at-
tention network to decompose the language query to dif-
ferent components (i.e., subject appearance, location, and
relationship to other objects) and process them in different
modular networks separately. Inspired but different from
MAttNet, our work delves specifically into the characteris-
tics of 3D point clouds, and each proposed module differs
greatly from those in MAttNet.
Visual Grounding on 3D Point Clouds. Chen et al. [2]
releases the first 3D VG dataset ScanRefer, in which the
object bounding boxes are referred by their correspond-
ing language queries in an indoor scene. ReferIt3D [1]
also proposes two datasets for 3D VG, Sr3D (labeled by
machine) and Nr3D (labeled by human). Different from
ScanRefer, ReferIt3D assumes that all objects are well-
segmented, thus localization is not required. Very recently,
TGNN [10] proposes a similar task called referring 3D in-
stance segmentation, which aims to segment out the target
instance. It first extracts per-point features and predicts off-
sets for object clustering. Then a Text-Guided Graph Neu-
ral Network is applied to achieve more accurate referring.
However, TGNN fails to capture the attribute of instances
and instance-to-background relations. Goyal et al. [6] also
presents a dataset named Rel3D for only grounding object
spatial relations. In this paper, we focus on the task of vi-
sual grounding on raw point clouds, which is extended from
ScanRefer and ReferIt3D.
3D Representation Learning on Point Clouds. Unlike 2D
images with regular grids, point clouds are irregular and of-
ten sparsely-scattered. Recently, point-based models lever-
age the permutation invariant nature of raw point cloud for
enhanced 3D processing [25, 26]. Specifically, most point-
based models first sample sub-points from the initial point
clouds, then apply a feature aggregation function on each
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Figure 2. The pipeline of InstanceRefer. It firstly uses the panoptic segmentation model to extract all the instance point clouds in the large
3D scene. Under the guidance of target prediction from language description, the instances belonging to the target category are filtered out
to form the initial candidates P̂ I . In parallel, the summarized language encoding Ê is achieved through attention pooling. Subsequently, a
visual-language matching module outputs the similarity score Q through comparing multi-level visual perceptions (i.e., F̂A, F̂R, and F̂G)
against Ê. Eventually, 3D bonding-box of the instance with the highest score is regarded as the final grounding result.

sub-point in a local point cloud cluster after the grouping.
The representatives of the point-based methods are graph-
based learning [31, 39, 15, 14] and convolution-like opera-
tions [38, 28, 32, 8, 34]. With the development of the rep-
resentation learning on point clouds, various downstream
tasks related to visual grounding on point clouds have been
explored rapidly, e.g., 3D object detection [24], instance
segmentation [11] and semantic scene completion [33].

3. Method

InstanceRefer is a novel framework for point cloud VG,
which conducts the multi-level contextual referring to se-
lect the most relevant instance-level object. As shown in
Figure 2, by exploiting point cloud panoptic segmentation,
InstanceRefer first extracts instances with their semantic la-
bels from the whole scene (Sec. 3.1). Following that, the
sentences are embedded into a high-dimensional feature
space, and a text classification is conducted as the linguistic
guidance (Sec. 3.2). Finally, after filtering out the candi-
dates from all instances, the three-level progressive refer-
ring modules, i.e., attribute perception (AP) module, rela-
tion perception (RP) module, and global localization per-
ception (GLP) module (Sec. 3.3), are employed to select
the optimal candidate.

3.1. Instance Set Generation

Unlike ScanRefer [2] that selects the candidates from all
object proposals, our framework first extracts all foreground
instances from the input point cloud to generate a set of
instances. Then, we re-formulate the 3D visual grounding
problem as an instance-matching problem.

For this purpose, panoptic segmentation [13] is adopted
in our model, which aims to tackle the semantic segmenta-

tion and the instance segmentation jointly. Taking a point
cloud P ∈ RN×3 and its features F ∈ RN×D as in-
put, InstanceRefer returns two prediction sets, semantics
S ∈ RN×1 and instance masks I ∈ RN×1, recording the
semantic class and the instance index of each point, respec-
tively. Through the instance masks, InstanceRefer extracts
instance point clouds from the original scene point clouds.
All instance point clouds in the foreground are represented
as P I = {P I

i }Mi=0, where P I
i means the points of the i-th

instance within the total M instances. Similarly, features
and semantics of all instances are denoted as F I and SI ,
respectively.

3.2. Description Encoding

Each token of the language description is first mapped
into the 300d-vector via the pre-trained GloVE word em-
bedding [22]. Then the whole sequence is fed into Bidirec-
tional GRU layers [3] to extract the contextual word features
E = {ei} ∈ RNw×D, where Nw is the query length and D
is the feature dimension. The final language encoding is
achieved through attention pooling. In practice, the atten-
tion pooling updates each word feature and aggregate them
to a global representation by

êi = AvgPool({Rel(ei, ej)� ej , ∀ ej ∈ E}), (1)

Ê = MaxPool({êi}Nw
i=1), (2)

where the aggregation function AvgPool(·) and
MaxPool(·) are set as average pooling and max pooling
and a pairwise relationship function Rel(·) is the normal-
ized dot-product similarity between features of two tokens,
and the sign � represents the element-wise multiplication.
The feature of each token ei ∈ E is first updated to êi via
the aggregation of all token features weighted by relation.
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Then, the global representation of the query is obtained,
i.e., Ê ∈ R1×D. Furthermore, by appending an additional
GRU layer and linear layer, InstanceRefer predicts the
target category of the query by language features. This
output aids the model in subsequently filtering out the
candidates from all instances.

3.3. Multi-Level Visual Context

Before feeding the instances into the following modules,
InstanceRefer first uses the predicted target category from
the language encoder to filter candidates. For example, as
shown in Figure 2, regarding all instances extracted from
the original point cloud, we only keep the remaining in-
stances belonging to the target category ‘chair’. Subse-
quently, the corresponding point clouds and features of can-
didates P̂

I
and F̂

I
are attained. Note that the target clas-

sification accuracy of language query is over 97%. Hence,
the exploited filtering operation will not introduce obvious
noise for further referring, while it can greatly boost the
grounding performance for the unique instance candidate
scenario. Then, the filtered instances are compared with the
following multi-level visual context modules.
AP Module. Considering there are many adjectives in
a sentence (e.g., “a long bookshelf ” for scale, “a brown
chair” for color, “a square table” for shape, etc.), the at-
tribute perception (AP) module is designed to explicitly
capture such information from attribute phrases. Con-
cretely, the AP module takes the information of the i-th can-
didate, i.e., point cloud P̂ I

i and its attribute features F̂ I
i as

input and generates a global representation vector FA
i of the

candidate. As shown in Figure 3 (a), our model constructs a
four-layer Sparse Convolution (SparseConv) [7] as the fea-
ture extractor. The extractor firstly voxelizes the point cloud
into 3D voxels and then conducts the convolution operation
only on non-empty voxels in a more efficient way. Subse-
quently, through an average pooling, the feature representa-
tion F̂A ∈ R1×D is obtained.

RP Module. Since there are many descriptions about the
relations between different instances, e.g., “The desk is be-
tween a black chair and bed”, using only the attribute-
related manner fails to capture such information. Therefore,
a relation perception (RP) module is proposed for the rela-
tion encoding between the candidate and its surrounding in-
stances. Figure 3 (b) illustrates the design of the RP module.
Given the i-th candidate point cloud P̂ I

i , the RP module first
searchesK instance-level neighborhoods that have the clos-
est Euclidean distance to the center of instance P̂ I

i . Follow-
ing that, a graph-based aggregation is employed to fuse the
features of local neighborhoods. To define the edge-relation
rij between the i-th candidate and the k-th neighboring in-
stance, the RP module adopts the DGCNN [31]:

rik = MLP([C(P̂ I
i )− C(P I

k );SI
i ;SI

k ]), (3)

(a) AP module (b) RP module

AFî
RFî
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Construction
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Pooling

k-NN 
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Voxelize

SparseConv
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Average
Pooling

IPî ),ˆ( i KPN I
IPî

IFî,

Figure 3. The inner structure of AP and RP modules. Part (a)
illustrates the attribute perception (AP) module, which uses a four-
layer SparseConv to extract the global features of each candidate.
In part (b), the relation perception (RP) module aggregates the in-
formation of the candidate with its neighboring instances.

where C(·) is to choose center coordinates of instances, SI
i

and SI
k represent the semantic instance masks for the i-th

and k-th instances, respectively. MLP(·) denotes the multi-
layer perceptrons. The sign [·; ·] means the channel-wise
concatenation. Through Eq. (3), the RP module considers
not only the relative positions but also the semantic relation-
ships between the candidate and its neighbors. Eventually,
the enhanced feature F̂R

i ∈ R1×D for the i-th candidate can
be obtained by

hik = MLP([P I
k ;SI

k ]), ∀ P I
k ∈ N (P̂ I

i ,K), (4)

F̂R
i = MaxPool({rik � hik}Kk=1), (5)

where N (P̂ I
i ,K) denotes the K nearest neighboring in-

stances for P̂ I
i , and hik is the unified representation of the

coordinate and the semantic instance mask for the k-th in-
stance. Note that the above MLP(·) have the same output
dimensions with that in Eq. (3).

GLP Module. The global localization perception (GLP)
module aims to supplement the background information
neglected by the two aforementioned modules. There are
other descriptions about global localization information,
e.g., “in the corner” and “next to the wall”, but such infor-
mation cannot be included in the AP and RP modules. As
shown in Figure 4, the GLP module takes the entire point
cloud as the input. By employing another SparseConv en-
coder, the module first extracts the point-wise features of
the entire scene. An average pooling in the height axis is
then performed to generate the bird-eyes-view (BEV) fea-
tures. Note that each input point cloud is divided into 3× 3
areas in the BEV plane. By repeatedly concatenating the
language features Ê and then flowing through the MLPs,
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Figure 4. Illustration of GLP module. GLP module firstly pre-
dicts the localization of the target in a 3×3 bird-eyes-view (BEV)
plane. It then uses the interpolated features and candidate features
to generate the aggregated feature F̂G

i .

the GLP module predicts the object candidate’s location in
one of the nine areas. Moreover, the probability of each area
is interpolated into point clouds of the i-th candidate P̂ I

i by

f̂i,k =

n∑
j=1

||p̂Ii,k − ac
j ||−1

2 · a
p
j , (6)

where p̂Ii,k ∈ P̂ I
i and f̂i,k are the coordinates and interpo-

lated features of the k-th point in the i-th candidate. n = 9
represents the total number of areas, ap

j and ac
j are the prob-

abilities of localization and center coordinates of j-th area
in the total nine areas, respectively. Finally, after concate-
nating interpolated features with candidate features, another
MLPs with max-pooling aggregates the features of the i-th
candidate to a global representation F̂G

i .

3.4. Visual-Language Matching

With multi-level visual features of the candidates (i.e.,
F̂

A
, F̂

R
, F̂

G
) and language features Ê, we perform a

matching operation to obtain the confidence score for each
instance. Considering the obtained multiple features, a sim-
ple scheme of pinpointing the referred target is to find the
most relevant visual features to the linguistic ones through
their similarities. However, this approach ignores the vary-
ing proportions for three perception modules. To tackle this
issue, we utilize the modular co-attention from MCAN [37]
to perform adaptive visual-language matching. For the i-th
instance, we concatenate three visual features to the merged
features F̂i ∈ R1×(D×3). Then, we further employ three co-
attention layers to aggregate the language features to update
the instance feature. Finally, the sigmoid activation function
is exploited to output the instance score.

3.5. Contrastive Objective

For the objective function, we adopt a contrastive man-
ner to train our network. Here, we define an instance as a
positive example for a query if its IoU with the GT object
bounding box exceeds the threshold Γ, otherwise a negative
example. If there is no positive example for a query, we
do not compute its loss. Intuitively, the matching score of
positive pairs should be higher than negative pairs. Thus we
derive our matching loss from [27] with the consideration
of multiple positive examples as follows:

Lmat = −log
∑L

i=1 exp(Q+
i )∑L

i=1 exp(Q+
i ) +

∑M
i=L+1 exp(Q−

i )
, (7)

where Q+ and Q− denote the scores of positive and nega-
tive pairs, L and M are the numbers of positive candidates
and total candidates in a scene, respectively. All candidates
are introduced to the optimization process.

The language classification loss Lcls and the BEV local-
ization loss Lbev are also included for the joint target cat-
egorization and localization prediction. The final loss is a
weighted sum of matching loss, including the object clas-
sification loss on the linguistic queries and the localization
loss, L = Lmat + λ1Lcls + λ2Lbev, where λ1 = λ2 = 0.1
are the weights to adjust the ratios of each loss, respectively.
The IoU threshold Γ is set as 0.3.

4. Experiments
In this section, we present the experimental procedures

and analysis in detail to demonstrate the effectiveness of our
InstanceRefer in 3D visual grounding.

4.1. Implementation

In our experiment, we adopt the official pre-trained
PointGroup [11] as the backbone to perform the panop-
tic segmentation. For language encoding, we employ the
same GloVE and BiGRU used in ScanRefer [2] to gener-
ate the word features in channel D = 256. The output
of self-attention preserves the identical 256 channels. The
AP module consists of four 3D sparse convolution blocks,
each of which has two 3D sparse convolutions inside. Going
deeper, we gradually increase the number of channels (i.e.,
32, 64, 128, 256). The GLP module applies the same struc-
ture of the sparse convolution block but with fewer blocks
(i.e., 3 blocks with channel 32, 128, 256). In the RP module,
the kNN instance number K is 8, and the channel numbers
of two MLPs are (256, 256) and (256), respectively.

We train the network for 30 epochs by using the Adam
optimizer with a batch size of 32. The learning rate of the
network is initialized as 0.0005 with the decay as 0.9 for
every 10 epochs. All experiments are implemented on Py-
Torch and a single NVIDIA 1080Ti GPU. We will release
our code and pre-trained model for future research.
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Table 1. Comparison of localization results. TGNN replaces the original GRU layers with pre-trained BERT to extract language features.
Our method follows TGNN’s strategy of only taking coordinates (Geo) and color information (RGB) as input, while results of ScanRefer
on benchmark are obtained by using additional normals (Nor) and multi-view features from a pre-trained 2D feature extractor. Scores for
the test set are obtained from the online evaluation. Only the published methods are compared. Accessed on March 18, 2021.

Unique Multiple Overall
Method Input Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Validation results

SCRC [9] RGB image 24.03 9.22 17.77 5.97 18.70 6.45
One-stage [35] RGB image 29.32 22.82 18.72 6.49 20.38 9.04

ScanRefer [2] Geo + RGB 65.00 43.31 30.63 19.75 37.30 24.32
TGNN [10] Geo + RGB 64.50 53.01 27.01 21.88 34.29 27.92
TGNN[10]+BERT [5] Geo + RGB 68.61 56.80 29.84 23.18 37.37 29.70
IntanceRefer (Ours) Geo + RGB 77.45 66.83 31.27 24.77 40.23 32.93

Test results (ScanRefer benchmark)

ScanRefer [2] Geo+Nor+Multiview 68.59 43.53 34.88 20.97 42.44 26.03

TGNN [10] Geo + RGB 62.40 53.30 28.20 21.30 35.90 28.50
TGNN [10]+BERT [5] Geo + RGB 68.34 58.94 33.12 25.26 41.02 32.81
IntanceRefer (Ours) Geo + RGB 77.82 66.69 34.57 26.88 44.27 35.80

4.2. Dataset and Metrics

ScanRefer. The ScanRefer dataset is a newly proposed 3D
scene visual grounding dataset, to the best of our knowl-
edge, which consists of 51,538 descriptions for ScanNet
scenes [4]. The dataset is split into 36,655 samples for
training, 9,508 samples for validation, and 5,410 samples
for testing, respectively.

For the evaluation metrics, it calculates the 3D intersec-
tion over union (IoU) between the predicted bounding box
and ground truth. The Acc@mIoU is adopted as the evalu-
ation metric, where m ∈ {0.25, 0.5}. Accuracy is reported
in “unique” and “multiple” categories, respectively. If only
a single object of its class exists in the scene, we regard it
as “unique”, otherwise “multiple”. Moreover, to fully eval-
uate our model, we conduct a fair comparison on both the
validation set and test set. ScanRefer benchmark2 conducts
online testing and every method is allowed to submit results
for only twice.
Nr3D and Sr3D. ReferIt3D [1] dataset uses the same
train/valid split with ScanRefer on ScanNet but exploits
manually extracted instances as input, i.e., object masks for
each scene are provided, and aims to choose the solely re-
ferred object. Specifically, it contains two datasets, where
Sr3D (Spatial Reference in 3D) has 83.5K synthetic expres-
sions generated by templates and Nr3D (Natural Reference
in 3D) consists of 41.5K human expressions collected in a
similar manner as ReferItGame [12]. Since ReferIt3D di-
rectly uses point clouds of instances as input, it can be seen
as the instance-matching stage of our InstanceRefer with-
out interaction with the environment, i.e., wall and floor.

2http://kaldir.vc.in.tum.de/scanrefer_benchmark

We empirically validate AP and RP modules on ReferIt3D
to verify the effectiveness of our proposed modules. We use
the same evaluation strategies and metrics with their paper.

4.3. Quantitative Comparisons

We first compare IntanceRefer with the state-of-the-art
methods on the ScanRefer dataset, where the results are dis-
played in Table 1. Among these methods, SCRC [9] and
One-stage [35] are image-based methods with the RGB im-
ages as input. Specifically, they select the 2D bounding box
with the highest confidence score and project it to the 3D
space using the depth map of that frame. ScanRefer [2] and
TGNN [10] are point cloud based methods that take coor-
dinates and other features of point clouds as input. In this
paper, we follow the input modality of TGNN [10], which
only exploits geometric coordinates (XYZ) and color infor-
mation (RGB) as input.

As shown in Table 1, our model gains the highest scores
on both validation set and online benchmark. Note that
the image-based methods (i.e., SCRC and One-stage) fail
to achieve satisfactory results since they are limited by the
view of a single frame. Though TGNN also applies Point-
Group to perform instance segmentation, our method out-
performs it by large margins, especially in the “unique”
case, which mainly benefits from the rational strategy of
filtering candidates. Furthermore, the improvements of our
model are apparent, reporting 11.8% in “unique” and 6.7%
“multiple” in Acc@0.5 when employing both the GloVE
and GRU as the language encoder. Our improvements
originate from the well-designed pipeline and three novel
models, whereas the improvements of TGNN are largely
based on the pre-trained BERT embeddings. More impor-
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Table 2. Comparison of referring object identification on Nr3D and Sr3D datasets. Here ‘easy’ and ‘hard’ determined by whether there
are more than two instances of the same object class in the scene. ‘view-dependent’ and ‘view-independent’ determined by whether the
referring expression depending on camera view.

Dataset Method Easy Hard View-dep. View-indep. Overall

Nr3D
ReferIt3DNet [1] 43.6%± 0.8% 27.9%± 0.7% 32.5%± 0.7% 37.1%± 0.8% 35.6%± 0.7%
TGNN [10] 44.2%± 0.4% 30.6%± 0.2% 35.8% ± 0.2% 38.0%± 0.3% 37.3%± 0.3%
IntanceRefer (Ours) 46.0% ± 0.5% 31.8% ± 0.4% 34.5%± 0.6% 41.9% ± 0.4% 38.8% ± 0.4%

Sr3D
ReferIt3DNet [1] 44.7%± 0.1% 31.5%± 0.4% 39.2%± 1.0% 40.8%± 0.1% 40.8%± 0.2%
TGNN [10] 48.5%± 0.2% 36.9%± 0.5% 45.8% ± 1.1% 45.0%± 0.2% 45.0%± 0.2%
IntanceRefer (Ours) 51.1% ± 0.2% 40.5% ± 0.3% 45.4%± 0.9% 48.1% ± 0.3% 48.0% ± 0.3%

Figure 5. Qualitative results from ScanRefer and our InstanceRefer. Predicted boxes are marked green if they have an IoU score higher
than 0.5, otherwise they are marked red. The ground truth boxes are displayed in yellow.

tantly, even if ScanRefer utilizes additional multiview fea-
tures from the pre-trained ENet [21] on the benchmark, the
overall result of ours still achieves ∼10% improvement on
Acc@0.5. Also, since we employ a pre-trained panoptic
segmentation model and stores the segmentation results of-
fline, our method has a much shorter training time and lower
memory consumption than others.

The results in Table 2 illustrate the instance-matching ac-
curacy on the Nr3D and Sr3D datasets. Our proposed In-
stanceRefer achieves top-ranked results on both the Nr3D
and Sr3D datasets. The experiments prove that our pro-
posed perception modules are effective components for ac-
curate grounding on the scenes of point clouds and boost the

pure instance-matching performances significantly. As a re-
sult, our InstanceRefer manifests a stronger capacity than
ScanRefer and TGNN on the 3D point cloud VG task.

Visualization results produced by ScanRefer and by our
method are displayed in Figure 5. Predicted boxes are
marked green if they have an IoU score higher than 0.5,
otherwise, they are marked red. Failure cases of ScanRefer
illustrate that its architecture cannot distinguish ambiguous
objects according to their spatial relations. On the contrary,
InstanceRefer can accurately localize the described objects
even in the complex scenarios with the long textual descrip-
tions, e.g., the results in the first and second columns show
our accurate instance selection and the fifth columns illus-
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Table 3. The ablated results for different network architecture on
ScanRefer validation set, where Acc@0.5 is used as metrics. Here
MAT. means matching module.

AP RP GLP MAT. Unique Multiple Overall
3 66.43 20.32 29.46

3 62.66 19.67 28.01
3 62.85 16.21 25.29

3 3 66.59 21.56 30.49
3 3 3 66.80 22.18 31.04
3 3 3 3 66.83 24.77 32.93

trates our method can generate bounding box more finely.

4.4. Comprehensive Analysis

Ablation Studies. Table 3 presents the effectiveness of dif-
ferent modules. On the one hand, if only a single percep-
tion module is employed, the AP module can achieve the
best results. On the other hand, when the additional RP and
GLP modules are utilized, a remarkable improvement can
be seen over the AP module’s result. Specifically, the gain
of the RP module is slightly larger than that of the GLP
module. The reason is that the descriptions of the corre-
lation among instances in the scene are more commonly
compared with the localization. Furthermore, the visual-
language matching method we apply is better than simple
ranking by cosine similarity.

Instance-matching with Same Backbone. To further il-
lustrate the effectiveness of the proposed modules, we com-
pare instance-matching results when using instances ex-
tracted by the same panoptic segmentation backbone or
ground truth instances. For the ScanRefer [2], we use Point-
Net++ [26] to extract features of each instance and replace
its proposal features. Also, we evaluate ScanRefer using
points in ground truths bounding boxes as input. For the
ReferIt3DNet [1], since its original framework is applied on
manually segmented instances, we use its original model di-
rectly. Both of them are trained using the same strategies of
our model for the fair comparison. Since TGNN [10] orig-
inally used PointGroup to conduct instance segmentation,
we will not discuss it in this section.

The experimental results are summarized in Table 4.
From the upper part of Table 4, we can find that panop-
tic segmentation by PointGroup [11] can boost the per-
formances of ScanRefer, especially on the “unique” case.
Besides, ReferIt3DNet achieves similar performances with
ScanRefer when using the extracted instances by Point-
Group. Note that InstanceRefer still surpasses them by a
significant improvement on Acc@0.5, achieving 6.6% in
for “unique” and 3.1% for “multiple”. It confirms that
our gains not only come from the filtering strategy based
on panoptic segmentation but also the well-designed multi-
level perception modules. Besides, the improvement using

Table 4. The instance-matching results with same panoptic seg-
mentation backbone on ScanRefer validation set, where Acc@0.5
is used as metrics. ? denotes using GT language classification.

Backbone & Method Unique Multiple Overall
ScanRefer 43.31 19.75 24.32
PG [11] + ScanRefer 60.05 21.61 29.07
PG [11] + ReferIt3DNet 60.22 21.41 28.94
InstanceRefer 66.83 24.77 32.93
InstanceRefer? 68.78 24.82 33.35
GT Box + ScanRefer 73.55 32.00 40.06
GT Inst + ScanRefer 79.35 36.08 44.48
GT Inst + ReferIt3DNet 79.04 37.19 45.38
GT Inst + InstanceRefer 90.24 39.32 49.20

ground-truth target is limited since the language classifi-
cation is high enough (over 97%). From the bottom part
of Table 4, we compare different methods using ground
truth instances as input. Experimental results reveal that
using GT instance point clouds is better than using points in
GT bounding boxes, which partly owes to the interference
of occlusion in 3D bounding boxes. Also, InstanceRefer
achieves state-of-the-art performances over ReferIt3DNet
and ScanRefer, which credits to the instance-matching strat-
egy. In summary, our proposed framework can effectively
boost the performances.

5. Conclusion
In this paper, we proposed a novel framework, named

InstanceRefer, for 3D visual grounding. Our model per-
forms more accurate localization via unifying instance at-
tribute, relation, and localization perceptions. Specifically,
InstanceRefer innovatively predicts the target category from
linguistic queries and filters out a small number of candi-
dates by panoptic segmentation. Moreover, we propose the
concept of cooperative holistic scene-language understand-
ing for each candidate, i.e., multi-level contextual refer-
ring to instance attribute, instance-to-instance relation, and
instance-to-background global localization. Experimental
results demonstrate that InstanceRefer outperforms the pre-
vious methods by a large margin. We believe our work for-
mulates a new strategy for 3D visual grounding.
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