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Abstract

Deep AUC Maximization (DAM) is a new paradigm for

learning a deep neural network by maximizing the AUC

score of the model on a dataset. Most previous works of

AUC maximization focus on the perspective of optimiza-

tion by designing efficient stochastic algorithms, and stud-

ies on generalization performance of large-scale DAM on

difficult tasks are missing. In this work, we aim to make

DAM more practical for interesting real-world applications

(e.g., medical image classification). First, we propose a

new margin-based min-max surrogate loss function for

the AUC score (named as the AUC min-max-margin loss

or simply AUC margin loss for short). It is more robust
than the commonly used AUC square loss, while enjoy-

ing the same advantage in terms of large-scale stochas-

tic optimization. Second, we conduct extensive empirical

studies of our DAM method on four difficult medical im-

age classification tasks, namely (i) classification of chest

x-ray images for identifying many threatening diseases,

(ii) classification of images of skin lesions for identifying

melanoma, (iii) classification of mammogram for breast

cancer screening, and (iv) classification of microscopic im-

ages for identifying tumor tissue. Our studies demonstrate

that the proposed DAM method improves the performance

of optimizing cross-entropy loss by a large margin, and

also achieves better performance than optimizing the ex-

isting AUC square loss on these medical image classifica-

tion tasks. Specifically, our DAM method has achieved the
1st place on Stanford CheXpert competition on Aug. 31,

2020. To the best of our knowledge, this is the first work that

makes DAM succeed on large-scale medical image datasets.

We also conduct extensive ablation studies to demonstrate

the advantages of the new AUC margin loss over the

AUC square loss on benchmark datasets. The proposed

method is implemented in our open-sourced library LibAUC

(www.libauc.org) whose github address is https:

//github.com/Optimization-AI/LibAUC.

Figure 1. An illustrative example for optimizing different AUC
losses on a toy data for learning a two-layer neural network with
ELU activation. The top row is optimizing the AUC square loss
and the bottom row is optimizing the new AUC margin loss. The
first column depicts the initial decision boundary (dashed line) pre-
trained on a set of examples. In the middle column, we add some
easy examples to the training set and retrain the model by optimiz-
ing the AUC loss. In the last column, we add some noisily labeled
data (blue circled data) to the training set and retrain the model by
optimizing the AUC loss. The results demonstrate the new AUC
margin loss is more robust than the AUC square loss.

1. Introduction
In the last decade, we have seen great progress in

deep learning (DL) techniques for medical image classi-
fication driven by large-scale medical datasets. For ex-
ample, Stanford machine learning group led by Andrew
Ng has collected and released a high-quality large-scale
Chest X-Ray dataset for detecting chest and lung diseases,
which contains 224,316 high-quality X-rays images from
65,240 patients [22]. Various deep learning methods have
been designed and evaluated on this dataset by participat-
ing the CheXpert competition organized by Stanford ML
group [22], and many of them have achieved radiologist-
level performance on detecting certain related diseases. Es-
teva et al. [10] have trained a CNN using a dataset of
129,450 clinical images consisting of 2,032 different dis-
eases, and achieved dermatologist-level performance for
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classification of skin lesions. Wu et al. [39] have trained
a deep neural network for breast cancer screening on a
large-scale medical dataset, which includes 229,426 digital
screening mammography exams (1,001,093 images) from
141,473 patients. Their model is as accurate as an experi-
enced radiologist. Despite these great efforts, an important
question remains:
“Can we design a generic method that can further im-

prove the performance of DL on these medical datasets

without relying on domain knowledge”?

In this paper, we provide an affirmative answer to this
question. Our solution is to optimize a novel loss for DL
instead of optimizing the standard cross-entropy loss in the
previous works. In particular, we choose to maximize the
AUC score (a.k.a the area under the ROC curve) for DL.
There are several benefits of maximizing AUC score over
minimizing the cross-entropy loss. First, in medical classifi-
cation tasks the AUC score is the default metric for evaluat-
ing and comparing different methods. Directly maximizing
AUC score can potentially lead to the largest improvement
in the model’s performance. Second, the datasets in medical
image classification tasks are usually imbalanced (e.g., the
number of malignant cases is usually much less than benign
cases). AUC is more suitable for handling imbalanced data
distribution since maximizing AUC aims to rank the pred-
ication score of any positive data higher than any negative
data. However, AUC maximization is much more challeng-
ing than minimizing mis-classifcation error since AUC is
much more sensitive to model change. A simple example
in Appendix F shows that by changing the prediction scores
of a few examples, the mis-classification error rate keep un-
changed but the AUC score drops significantly.

AUC maximization has been studied in the community
of machine learning [12, 41, 27, 23, 11]. However, existing
methods for AUC maximization are still not satisfactory for
practical use. The foremost challenge for AUC maximiza-
tion is to determine a surrogate loss for the AUC score. A
naive way is to use a pairwise surrogate loss based on the
definition of the AUC score. However, optimizing a generic
pairwise loss on training data suffers from a severe scalabil-
ity issue, which makes it not practical for DL on large-scale
datasets. Several studies have made attempts to address the
scalability issue [23, 43, 41, 27]. One promising solution is
to maximize the pairwise square loss for AUC by utilizing
its special form [41, 27]. However, our study reveals that
the AUC square loss has adverse effect when trained with
easy data and is sensitive to the noisy data.

To address these issues, we propose a new margin-based
surrogate loss in the min-max form for AUC (referred to
as the AUC min-max-margin loss and the AUC margin loss
for short), which is inspired by addressing the two issues of
the AUC square loss. In particular, the AUC margin loss

has two features that can alleviate the two issues, making
it more robust to noisy data and not adversely affected by
easy data. We will explain it with more details in the tech-
nical section and use a toy example in Figure 1 to illustrate
the robustness of AUC margin loss over AUC square loss.
Moreover, the min-max form of the AUC margin loss make
it enjoy the same benefit as the AUC square loss in terms
of scalability, making it more attractive than conventional
pairwise margin-based surrogate loss for AUC maximiza-
tion. In particular, we are able to directly employ existing
large-scale optimization algorithms [15] designed for max-
imizing the AUC square loss to maximize our AUC margin
loss with one line change of the code.

To demonstrate the effectiveness of our deep AUC maxi-
mization method, we conduct empirical studies on four dif-
ficult medical image classification tasks, namely classifica-
tion of X-ray images for detecting chest diseases, classi-
fication of images of skin lesions, classification of mam-
mograms for breast cancer screening and classification of
microscopic images of tumor tissue. Our deep AUC maxi-
mization method has achieved great success on these diffi-
cult tasks. Specifically, we achieved the 1st place on Stan-
ford CheXpert competition on Aug. 31, 2020, and Top 1%
rank on Kaggle 2020 Melanoma classification competition.
In CheXpert competition, our method is ranked 1 out of
150+ submissions, with a 2%+ improvement over Stanford
baseline on a private testing data. In Kaggle competition,
our ensembled model is ranked 33 out of 3314 teams. How-
ever, our best single model is better than the winning team’s
best model by more than 2%. Besides these medical tasks,
we also conduct extensive ablation studies on benchmark
datasets to compare the proposed AUC margin loss with the
AUC square loss and traditional classification losses includ-
ing cross-entropy and focal loss. Before ending this section,
we summarize our contributions below:
• We proposed a new robust surrogate loss for AUC maxi-

mization, which is more robust than the AUC square loss
but enjoys the same benefit of large-scale optimization.

• We conducted extensive empirical studies of the DAM
method on a broad range of medical image classification
data, and demonstrated its superb performance compared
with standard DL methods.

To the best of our knowledge, this is the first comprehensive
study of DAM on large-scale medical image classification
datasets.

2. Related Work
Optimizing Pairwise Surrogate loss. Based on the defini-
tion of AUC, many studies consider to optimize a pairwise
surrogate loss for AUC [12, 41, 27]. Joachims et al [23]
proposed a SVM method for optimizing the AUC measure,
which has a complexity of O(n2) for a dataset with n ex-
amples. Many later studies tried to improve the efficiency
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of optimizing a pairwise surrogate loss of AUC. Herschtal
et al. [20] proposed an approximate objective for empiri-
cal pairwise loss of AUC by using partial pairs. In particu-
lar, for each negative data they only constructed a pairwise
loss with only one positive data. However, the quality of
such approximation highly depends on the properties of the
dataset. When the examples have large intra-variance, their
objective could yield poor performance. Zhao et al. [43]
proposed an online method for AUC maximization by main-
taining a data buffer for storing some historical positive and
negative data, and constructed an approximate AUC score
by pairing a newly received data with all data in the buffer.
However, analysis shows that such data buffer needs to be
very large in order to make the algorithm has a small regret.
Optimizing Pairwise Square loss. Pairwise square loss
is an exception, which has a unique property to enable
one to design efficient stochastic algorithms for large-scale
data [11, 41, 28, 30]. In particular, Ying et al. [41] for-
mulated the minimization of the pairwise square loss into
an equivalent min-max optimization problem, which al-
lows them to develop efficient stochastic algorithms with-
out explicitly constructing and handling pairs of positive
and negative data. Several papers tried to improve the con-
vergence rate for solving the min-max optimization prob-
lems [28, 30].
Deep AUC Maximization (DAM). Most of the studies
mentioned above are for learning a linear model. Recently,
there are some emerging studies on DAM. In [35], the
authors considered DAM for learning a deep neural net-
work based on an online buffered gradient method pro-
posed by [43], and applied it to classification of breast can-
cer based on imbalanced mammogram images. Neverthe-
less, the issue of this approach is that it cannot scale to
large datasets as it requires a large buffer to store positive
and negative samples at each iteration for computing an ap-
proximate AUC score. Hence, they only consider datasets
with few thousand medical images. Recently, [27, 15] pro-
posed efficient stochastic non-convex min-max optimiza-
tion algorithms for DAM by solving the corresponding min-
max objective of the AUC square loss. Their algorithms
can scale up to hundreds of thousands of training exam-
ples. [14, 42] proposed federated learning algorithms for
distributed DAM. However, all of these studies have ne-
glected the deficiencies of the square loss for AUC max-
imization. To the best of our knowledge, this is the first
work that analyzes the deficiencies of AUC square loss and
proposes a better solution.

3. Method
Notations. Let I(·) be an indicator function of a predicate,
[s]+ = max(s, 0). Let S = {(x1, y1), . . . , (xn, yn)} de-
note a set of training data, where xi represents an input
training example (e.g., an image), and yi 2 {1,�1} de-

notes its corresponding label (e.g., the indicator of a cer-
tain disease). For notational simplicity, we use z = (x, y).
Let w 2 Rd denote the parameters of the deep neural net-
work to be learned, and let hw(x) = h(w,x) denote the
prediction of the neural network on an input data x. The
standard approach of deep learning is to define a loss func-
tion on individual data by L(w;x, y) = `(hw(x), y), where
`(ŷ, y) is a surrogate loss function of the misclassification
error (e.g., cross-entropy loss), and to minimize the em-
pirical loss minw2Rd

1
n

Pn
i=1 L(w;xi, yi). However, this

standard approach is easily misled by the imbalanced dis-
tribution of training images in medical datasets. In medi-
cal applications, a more favorable metric for comparing and
evaluating different classifiers is AUC. It has been shown
that the algorithms designed to minimize the misclassifica-
tion error rate may not lead to maximization of AUC [7].

3.1. Background on Scalable AUC Maximization

Existing works of AUC maximization consider the fol-
lowing definition of AUC that is equivalent to the Wilcoxon-
Mann-Whitney statistic [17, 5]:
AUC(w) = Pr(hw(x) � hw(x0)|y = 1, y0 = �1) (1)

= E
⇥
I(hw(x)� hw(x0) � 0)

��y = 1, y0 = �1
⇤
.

It is interpreted that the AUC score is the probability of a
positive sample ranking higher than a negative sample. For
optimization purpose, the indicator function in the above
definition of AUC is usually replaced by a convex surrogate

loss ` : R ! R+ which satisfies I(hw(x) � hw(x0) <

0)  `(hw(x)� hw(x0)). As a result, many existing works
formulate the AUC maximization on a training data S as

min
w2Rd

1

N+N�

X

x2S+

X

x02S�

`(hw(x)� hw(x0)), (2)

where S+,S� denote the set of positive and negative exam-
ples, and N+, N� denote their size, respectively. Nonethe-
less, directly optimizing the above formulation is not scal-
able to large datasets as the complexity could be as worse
as O(n2) due to there are O(n2) pairs, where n is the total
number of examples.

To address the scalability issue, existing studies have
proposed some promising solutions. One solution that at-
tracts great attention is to optimize the square loss due to
its algorithmic simplicity. With a square loss `(hw(x) �
hw(x0)) = (1 � hw(x) + hw(x0))2 as the surrogate loss
of AUC, it was shown that the objective is equivalent to the
following min-max problem [41]:

min
w2Rd

(a,b)2R2

max
↵2R

f (w, a, b,↵) := Ez [F (w, a, b,↵; z)] , (3)

where z = (x, y) 2 S is a random sample, and
F (w, a, b,↵; z) = (1� p) (hw(x)� a)2 I[y=1] (4)

+ p(hw(x)� b)2I[y=�1] � p(1� p)↵2

+ 2↵
�
p(1� p) + phw(x)I[y=�1] � (1� p)hw(x)I[y=1]

�
,
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and p = Pr(y = 1). Since the objective function in the
above formulation is decomposable over individual exam-
ples, hence it enables one to develop efficient primal-dual
stochastic algorithms for updating the model parameter w
without explicitly constructing positive-negative pairs. Sev-
eral studies have developed efficient stochastic algorithms
for solving the above min-max formulation, which are able
to scale to hundreds of thousands of examples [41, 28, 27].

3.2. Drawbacks of the AUC Square Loss
Although the AUC square loss makes AUC maximiza-

tion scalable, it has two issues that have been ignored by
existing studies. In particular, it has adverse effect when
trained with well-classified data (i.e., easy data), and is
sensitive to noisily labeled data (i.e., noisy data). Below,
we will elaborate these two issues by considering a linear
model hw(x) = w>x for illustration and understand these
issues from the viewpoint of stochastic gradient update. We
give a one-dimensional data in Appendix E.2 to support our
arguments. When we use the min-max formulation (3) to
explain these issues, we will make some simplification. In
particular, we will use the optimal value of a, b,↵ given
w, i.e., a = a(w) := E[hw(x)|y = 1], b = b(w) :=
E[hw(x)|y = �1],↵ = 1 + b� a, where a, b can be in-
terpreted as the mean prediction score on positive data and
negative data, respectively (please refer to Appendix A for
a derivation). The same trick will be used to illustrate the
benefit of the AUC Margin loss.
Adverse Effect on Easy Data. To illustrate this, let us
consider a scenario: the current model parameter is given
by w and there comes a positive and negative data pair
(x, y = 1), (x0

, y
0 = �1). Suppose these data are easy

examples meaning that the prediction hw(x) is large and
hw(x0) is small such that hw(x) � hw(x0) > 1. By tak-
ing the stochastic gradient descent update of the square loss
`(hw(x) � hw(x0)) = (1 � hw(x) + hw(x0))2, we have
the updated model given by w+ = w � ⌘2(1 � hw(x) +
hw(x0))(�x + x0), where ⌘ > 0 is a step size. Since
1 � hw(x) + hw(x0) < 0, the model parameter w will
move towards the negative direction of the positive data x
and the positive direction of the negative data x0. As a re-
sult, the new model w+ tends to push the score hw+(x) on
the positive data smaller and the score hw+(x

0) on the neg-
ative data larger, which makes its classification capability
worse. A similar effect happens when we use the min-max
objective (3) to conduct the update. We include the analysis
in Appendix D.
Sensitivity to Noisy Data. Next, we elaborate the issue
of sensitivity to noisily labeled examples. To this end, we
consider a scenario: the current model parameter is given by
w and there comes a positive and negative data pair (x, y =
1, ŷ = �1), (x0

, y
0 = �1, ŷ0 = 1), where y, y

0 denote the
true labels of x,x0 that are not revealed, respectively, and

ŷ = �1, ŷ0 = 1 denote the noisy labels. Again, assume the
prediction hw(x) is large and hw(x0) is small. The SGD
update of the model parameter w based on the min-max
objective is given by
w+ = w�2⌘{(1�p)(hw(x0)�a�↵)x0+p(hw(x)�b+↵)x}.
By plugging the optimal values of a, b,↵ given w, i.e., ↵ =
1+b�a and a = E[hw(x)|y = 1], b = E[hw(x0)|y0 = �1],
we can see that the term in the update of w that involves x
is �2⌘p(hw(x)+1�E[hw(x)|y = 1])x, and that involves
x0 is �2⌘p(hw(x0) � 1 � E[hw(x0)|y0 = 1])x0. Then it
is clear to see that when hw(x) is large enough such that
hw(x) + 1 � E[hw(x)|y = 1] > 0, the update of w will
move to the negative direction of the truly positive data x,
and similarly it will move to the positive direction of the
truly negative data x0 when hw(x0) is small enough.

3.3. The Proposed AUC Margin Loss
To alleviate the two issues of the AUC square loss, we

propose a new margin-based surrogate loss. The new surro-
gate loss is a direct modification of the square loss to alle-
viate the two issues. To motivate the new AUC margin loss,
we reformulate the AUC square loss as following (please
refer to Appendix B for a derivation):
AS(w) = E[(1� hw(x) + hw(x0))2|y = 1, y0 = �1]

= E[(hw(x)� a(w))2|y = 1]| {z }
A1(w)

(5)

+ E[(hw(x0)� b(w))2|y0 = 1]| {z }
A2(w)

+(1� a(w) + b(w))2| {z }
A3(w)

= A1(w) +A2(w) + max
↵

{2↵(1� a(w) + b(w))� ↵
2},

where a(w) = E[hw(x)|y = 1], b(w) = E[hw(x0)|y0 =
1], and in the second equality we use the fact s

2 =
max↵ 2↵s � ↵

2. The three terms A1(w), A2(w), A3(w)
have meaningful interpretations. In particular, minimizing
A1(w), A2(w) aim to minimize the variance of prediction
scores on positive data and negative data, respectively; min-
imizing the A3(w) aims to push the mean prediction scores
of positive and negative examples to be far away. How-
ever, the square function in the last term makes it suffer
from the two aforementioned issues. Our solution is to use
a squared hinge function to replace A3(w), which is widely
used in margin-based SVM classifiers. In particular, we re-
place A3(w) by max↵�0{2↵(m� a(w) + b(w))�↵

2} =
(m � a(w) + b(w))2+, where m is a hyper-parameter that
specifies desired margin between a(w) and b(w). Hence,
our new AUC margin loss is defined by

AM(w) = A1(w) +A2(w) (6)

+max
↵�0

2↵(m� a(w) + b(w))� ↵
2
.

Without the non-negative constraint on ↵, the loss becomes
the square loss with a tunable margin parameter m.
Benefits of the AUC Margin Loss. We first show that the
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above objective is equivalent to a min-max objective.

Theorem 1. Minimizing the AUC margin loss (6) is equiv-

alent to the following min-max optimization:

min
w2Rd

(a,b)2R2

max
↵�0

Ez [FM (w, a, b,↵; z)] , where (7)

FM(w, a, b,↵; z) = (1� p) (hw(x)� a)2 I[y=1] (8)

+ p(hw(x)� b)2I[y=�1] � p(1� p)↵2

+ 2↵
�
p(1� p)m+ phw(x)I[y=�1] � (1� p)hw(x)I[y=1]

�
.

We highlight that mina,b max↵�0 Ez [FM (w, a, b,↵; z)] =
p(1� p)AM(w). Please see proof in Appendix C.
Robust to Easy Data. Based on the above min-max formu-
lation, let us first elaborate the benefits of the new loss that
alleviate the two issues of the AUC square loss. First, let us
consider how the non-negative constraint ↵ � 0 helps alle-
viate the adverse effect when trained with easy data. Fol-
lowing the same logic as before, we compute the gradient
of FM(w, a, b,↵) by
rwFM(w, a, b,↵; z) =2(1� p)xI[y=1] · (hw(x)� a� ↵)

+ 2pxI[y=�1] · (hw(x)� b+ ↵).
Different from the square loss, the optimal ↵ given w is
↵ = m + b(w) � a(w) if m + b(w) � a(w) � 0,
and ↵ = 0 if m + b(w) � a(w) < 0, where a(w) =
E[hw(x)|y = 1], b(w) = E[hw(x)|y = �1]. When the
model is good enough, i.e., m + b(w) � a(w) < 0 mean-
ing that the mean prediction scores of positive data is larger
than the mean prediction scores of negative data by a margin
m > 0, then the gradient becomes rwFM(w, a, b,↵; z) =
2(1� p)xI[y=1] · (hw(x)� a) + 2pxI[y=�1] · (hw(x)� b).
Taking a stochastic gradient decent update for w will only
push the prediction score of the sampled data to be close to
their mean score. When the model is poor, i.e., m+ b(w)�
a(w) > 0, the gradient becomes rwFM(w, a, b,↵; z) =
2(1 � p)xI[y=1] · (hw(x) � m � b(w)) + 2pxI[y=�1] ·
(hw(x) + m � a(w)). Since the model is poor in this
case, it is likely that hw(x) � m � b(w) < 0 for a posi-
tive data x, and hw(x)+m� a(w) > 0 for a negative data
x. As a result, taking a stochastic gradient decent update
for w+ = w � ⌘rwFM(w, a, b,↵; z) will likely move the
model in the right direction pushing the prediction score of
positive data larger, and that of negative data smaller.
Robust to Noisy Data. Next, let us elaborate how adding a
tunable margin parameter m can help alleviate the sensitiv-
ity to noisy data. Similar to the AUC square loss, the update
in the noisy data case is given by
w+ = w�2⌘{(1�p)(hw(x0)�a�↵)x0+p(hw(x)�b+↵)x},
where x0 is a true negative data but labeled as positive and
x is a true positive data but labeled as negative. Let us con-
sider the case that model is not good enough such that the
optimal value of ↵ = m + b(w) � a(w). Then the term
in the update of w that involves the true positive data x
is �2⌘p(hw(x) + m � E[hw(x)|y = 1])x, and that in-

Algorithm 1 PESG for optimizing the AUC margin loss
Require: ⌘, �,�, T

1: Initialize v1,↵1 � 0
2: for t = 1, . . . , T do
3: Compute rvFM(vt,↵t; zt) and r↵FM(vt,↵t; zt).
4: Update primal variables

vt+1 = vt�⌘(rvFM(vt,↵t; zt)+�(vt�vref))��⌘vt

5: Update ↵t+1 = [↵t + ⌘r↵FM(vt,↵t; zt)]+.
6: Decrease ⌘ by a factor and update vref periodically
7: end for

volves the true negative data x0 is 2⌘p(m+ E[hw(x0)|y0 =
1] � hw(x0))x0. Note that even when hw(x) is large and
hw(x0) is small such that the model w+ is moving in the
wrong direction, by tuning m to a smaller value, we can
ensure that the movement into the wrong direction is much
reduced. Hence, adding the tunable margin parameter m

can alleviate the sensitivity to the noisy data.

3.4. DAM with the AUC Margin Loss
As seen from Theorem 1, the AUC margin loss is equiv-

alent to a min-max optimization problem, that is similar to
that of the AUC square loss. Hence, any stochastic algo-
rithms proposed for solving the min-max objective of the
AUC square loss can be easily adapted to solving the min-
max objective of the AUC margin loss. In particular, for
any update on the dual variable ↵, we follow by a projection
step that projects ↵ into non-negative orthant. In this paper,
we employ the proximal epoch stochastic method (named
PESG) proposed in [15] to update variables w, a, b,↵. To
present the algorithm, we use a notation v = (w, a, b) to
denote all primal variables. The key steps are presented in
Algorithm 1. In the algorithm, � denotes the standard reg-
ularization parameter (i.e, weight decay parameter), � > 0
is an algorithmic regularization parameter that can help im-
prove the generalization, vref is a reference solution that is
updated periodically by using the accumulated average of
vt in the previous stage (before decaying learning rate). We
refer the readers to [27, 15] for more discussion and conver-
gence analysis of this algorithm.
A Two-stage Framework for DAM. From our preliminary
studies on deep AUC maximization, we observe that di-
rectly optimizing the AUC margin loss can easily handle the
recognition tasks on simple datasets, e.g., CIFAR. However,
it shows some difficulties on complex tasks, e.g., CheXpert,
Melanoma. We conjecture that the feature extraction layers
learned by directly optimizing AUC from scratch are not as
good as optimizing the standard cross-entropy loss on these
difficult data. Inspired by recent works on two-stage meth-
ods, e.g., [24], we also employ a two-stage framework on
difficult medical image classification tasks that includes a
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pre-training step that minimizes the standard cross-entropy
loss, and an AUC maximization step that maximizes an AUC
surrogate loss of the pre-trained CNN for learning all layers
with the last classifier layer randomly initialized.

4. Empirical Studies
In this section, we present extensive empirical studies

on the proposed robust DAM method with the AUC margin
loss. First, we present results on some benchmark datasets
and then we present the results on four medical image clas-
sification tasks. The code for reproducing the results of our
method in this paper can be found here [1].

4.1. Performance on Benchmark datasets

For benchmark datasets, we construct imbalanced
Cat&Dog (C2), CIFAR-10 (C10), CIFAR-100 (C100),
STL-10 (S10) [9, 25, 6] following instructions by [27].
Specifically, we first randomly split the training data by
class ID into two even portions as the positive and nega-
tive classes, and then we randomly remove some samples
from the positive class to make it imbalanced. We keep the
testing set untouched. We refer to imbalance ratio (imratio)
as the ratio of # of positive examples to # of all examples.
Statistics of these datasets are presented in Appendix G.

We experiment with two network structures, i.e.,
DenseNet121 (D) ([21]) and ResNet20 (R) ([18]) with ELU
activation functions. We explore the imbalance ratio = 1%,
10%, and use a 9:1 train/val split to conduct cross-valuation
for tuning parameters. We compare DAM using our AUC
margin loss (AUC-M) with three baselines, DAM using
AUC square loss (AUC-S), and DL with two other popular
loss functions i.e., cross-entropy loss (CE) and focal loss
(Focal) trained by SGD. We use the ↵̂-balanced Focal loss
�↵̂(1�pt)�̂ log(pt), and tune its parameter ↵̂, �̂ from [0.25,
0.5, 0.75] and [1,2,5] on the validation set, respectively. For
DAM, we tune � in [1/100, 1/300, 1/500, 1/700, 1/1000].
For AUC-M loss, we tune margin parameter m in [0.1, 0.3,
0.5, 0.7, 1.0]. For optimization, we run 100 epochs with a
stagewise learning rate: initial value of 0.1 and decaying at
50% and 75% of the total number of training epochs for all
experiments. We use a weight decay, i.e., �, as 1e-4 for all
methods. The batch size is set to 128 on all datasets except
for S10, which is set to 32 due to smaller data size. For each
method, we run the experiment with five different random
training sets (by randomly removing some positive exam-
ples with different random seeds), and evaluate on the same
testing set by comparing the averaged testing AUC scores.
We also found that using a L2 normalization of the predica-
tion scores in a mini-batch is helpful. We refer to this nor-
malization as Batch Score Normalization (BSN). Hence,
in the following experiments we use the BSN before com-
puting both the AUC-S and AUC-M losses. Please refer to

Table 1. Testing AUC on benchmark datasets with imratio=1%.
Dataset CE Focal AUC-S AUC-M
C2 (D) 0.718±0.018 0.713±0.009 0.803±0.018 0.809±0.016
C10 (D) 0.698±0.017 0.700±0.007 0.745±0.010 0.760±0.006
S10 (D) 0.641±0.032 0.660±0.027 0.669±0.070 0.703±0.030

C100 (D) 0.588±0.011 0.591±0.017 0.607±0.010 0.614±0.016
C2 (R) 0.730±0.028 0.724±0.020 0.748±0.007 0.756±0.017
C10 (R) 0.690±0.011 0.681±0.011 0.702±0.015 0.715±0.008
S10 (R) 0.641±0.021 0.634±0.024 0.645±0.029 0.659±0.020

C100 (R) 0.563±0.015 0.565±0.022 0.587±0.017 0.596±0.016

appendix M for an ablation study on comparing with and
without BSN.

The results for DenseNet121/ResNet20 with imratio=1%
are reported in Table 1. Due to the limited space, we de-
fer the results for imratio=10% to the Appendix H. Over-
all, we observe that the AUC-M and AUC-S perform much
better than non-AUC-based losses in most cases. Compar-
ing AUC-M with AUC-S, we can see that AUC-M performs
better in most cases, especially in the extremely imbalanced
setting with imratio=1%.

We also conduct some ablation studies on the bench-
mark datasets to demonstrate the robustness of the proposed
AUC-M loss in comparison with AUC-S loss for DAM with
added easy and noisy data, and the effectiveness of non-
negative constraint on ↵. The results are included in Ap-
pendix N due to limit of space.

4.2. Medical Image Classification Tasks
Below, we present results on four difficult medical im-

age classification tasks, namely classification of X-ray im-
ages for detecting chest diseases, classification of images of
skin lesions for detecting melanoma, classification of mam-
mograms for breast cancer screening, and classification of
microscopic images for identifying tumor tissue. A sum-
mary of these tasks and their data is reported in Table 2.

4.2.1 CheXpert Competition

CheXpert competition is a medical AI competition orga-
nized by Stanford ML group [22], which released a large-
scale Chest X-Ray dataset for detecting chest and lung dis-
eases [22]. The training data consists of 224,316 high-
quality X-ray images from 65,240 patients. The validation
dataset consists of 234 images from 200 patients. The test-
ing data has images for 500 patients, which is not released
to the public and is maintained by the organizer for final
evaluation. The training images were annotated by a labeler
to automatically detect the presence of 14 observations in
radiology reports, capturing uncertainties inherent in radio-
graphy interpretation. The validation images were manu-
ally annotated by 3 board-certified radiologists. The testing
images were annotated by a consensus of 5 board-certified
radiologists. The average resolution of CheXpert images is
2828x2320 pixels, which is about 6 times larger than Ima-
geNet. The competition requires participants to submit the
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Table 2. Summary of Medical Classification Tasks.
Dataset Image Domain Imratio # Training

CheXpert Chest X-ray 20.21% 224,316
Melanoma Skin Lesion 7.1% 46,131
DDSM+ Mammogram 13% 55,000

PatchCamelyon Microscopic 1% 148,960

trained models for evaluation of the AUC score on predict-
ing 5 selected diseases, i.e., Cardiomegaly, Edema, Con-
solidation, Atelectasis, Pleural Effusion. These tasks have
an average imratio of 20.21%. They also reported another
metric that compares the model’s performance with 3 radi-
ologists’ predictions for reference.

Model Pre-training. To tackle the uncertain data in
CheXpert, we adopt a label smoothing method similar to
that in works [31]. We choose five networks: DenseNet121,
DenseNet161, DensNet169, DensNet201 and Inception-
renset-v2[21, 36]. With limited resources, we scale the res-
olution of all raw images to 320x320. For data augmenta-
tion, we use random rotation, random translation and ran-
dom scaling. For pre-training step, we optimize CE loss by
Adam on the 5 classification tasks with weight decay pa-
rameter of 1e-5. The total training time is 2 epochs with a
batch size of 32 and initial learning rate of 1e-5. In the sec-
ond step of AUC maximization, we replace the last classi-
fier layer trained in the first step by random weights and use
our DAM method to optimize the last classifier layer and
all previous layers. We tune � in {1/300, 1/500, 1/800},
set weight decay � to 0, set the initial learning rate to 0.1
and decrease the learning rate at 2000, 8000 iterations by 3
times, run a total of 2 epochs for Algorithm 1.

Competition Results. Our final submission is the en-
semble of five models trained by DAM with the AUC-M
loss for each disease. On Aug 31, 2020, we submitted
our models to CheXpert and we achieved a mean testing
AUC score of 0.9305, which is currently ranked at 1st place
over all submissions. The leaderboard is shown in [13],
where our submission is named as DeepAUC-v1 (ensem-
ble). We also compare our results with other methods in
Table 3, where Hierarchical Learning [31] utilizes domain
knowledge to pre-define a disease hierarchy used for con-
ditional training, YWW [40] utilizes weakly-supervised le-
sion localization technique through a novel Probabilistic-
CAM (PCAM) pooling operator to improve the model train-
ing. All these solutions are trained by CE loss. Our AUC-
based solution surpasses these solutions and it is also better
than 2.8 out of 3 radiologists (NRBC) for 5 selected diseases
on average as in Table 3. Finally, we noticed that a recent
work that optimizes AUC square loss for DAM on CheX-
pert only achieves a mean testing AUC score of 0.922 [15].

4.2.2 Melanoma Classification

Melanoma is a skin cancer, which is the major cause for
skin cancer death [29]. We conduct empirical studies on the

Table 3. Averaged Testing AUC Scores on CheXpert. NBRC
means the # of radiologists out of 3 are beaten by AI algorithms.

Model AUC NRBC Rank
Stanford Baseline [22] 0.9065 1.8 85
YWW [40] 0.9289 2.8 5
Hierarchical Learning [31] 0.9299 2.6 2
DAM (Ours) 0.9305 2.8 1

Kaggle Melanoma dataset [32], which is released through
a Kaggle competition. The data is split into 33,126 train-
ing images with 584 malignant melanoma images (imbal-
ance ratio=1.76%) and 10,892 testing images with an un-
known number of melanoma images. Further, the testing
set is split into public testing set and private testing set at
30%/70% ratio by patient ID. The public testing set (not-
ing that their ground-truth labels are not revealed) is used
to rank participating teams at the early stage. The private
testing set is used to evaluate the participating teams for the
final ranking. The public AUC score is updated daily but
private AUC score is released after the end of competition.

Data preparations. The raw dataset has various sizes of
images, e.g., 6000x4000, 1920x1080. We resize all images
to lower resolutions due to limited computational resources.
To evaluate the model locally, we follow [8] to construct a
5-fold Stratified Leak-Free version cross-validation by 8:2
train/valid split. The data split follows two rules: 1) im-
ages from same patients are either put in train set or in val-
idation set. 2) train and validation set have same imbal-
ance ratio 1.76%. In addition, we also utilize two exter-
nal data sources to complement the provided data in train
set: 1) 12,859 images from previous competitions, e.g.,
ISIC2017 and ISIC2018, and 2) 580 malignant melanoma
images parsed from the website of The International Skin
Imaging Collaboration [2]. We merge all data sources and
finally obtain a training set of 46,131 images with an imbal-
ance ratio of 7.1%.

Comparison with Baselines. We first compare with
three baselines as above, i.e., optimizing CE, Focal and
AUC-S losses. We choose the family of EfficientNet [37] as
the main network. Data augmentation is very crucial in this
competition, and we use a set of augmentations, e.g., hor-
izontal flipping, rotating, scaling, shearing, coarse dropout
following a public notebook [8]. In addition, we use the
cyclical learning rate with a base learning rate [34] of 3e-5
and a maximum learning rate of 2.4e-4 and with 8 epochs
for a full cycle. We use a weight decay of 1e-5. For fo-
cal loss [26], we tune �̂={1,2,5}, ↵̂={0.25,0.5,0.75} and re-
port the best result. For non-AUC losses, we train a total
of 16 epochs with batch size of 256. For DAM, we start
optimization from the pretrained backbone trained by op-
timizing the CE loss. For AUC losses, we set � to 1/500
which is tuned by cross validation. For AUC Margin loss,
we also tune m = {0.3, 0.5, 0.7, 1.0}. For experiments,
we train 35 epochs in total with same batch size and initial
learning rate of 0.01 decreasing by 2 times every 10 epochs
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Table 4. Comparison of Testing AUC on Melanoma dataset for
Optimizing EfficientNetB5. TTA (30) means that predictions are
averaged over 30 augmented copies of each image in test set.

wo/ TTA w/ TTA(30)
Loss Public Private Public Private
CE 0.9391 0.9285 0.9447 0.9345

Focal 0.9412 0.9266 0.9424 0.9303
AUC-S 0.9482 0.9332 0.9502 0.9364
AUC-M 0.9497 0.9357 0.9503 0.9393

AUC-S (Meta) 0.9495 0.9358 0.9501 0.9409
AUC-M (Meta) 0.9522 0.9380 0.9520 0.9423
Our Submission - - 0.9685 0.9438

using Algorithm 1. In addition, we find patient-level in-
formation (metadata) useful, e.g., age, sex, and location of
imaged site. To utilize metadata, after training EfficientNet,
we merge it with a 2-layer neural network (256x128) with a
0.5:0.5 weighted ratio, which is trained independently. The
network structure is illustrated in Figure 6 in Appendix L.

The comparison between different methods for learning
EfficientNet-B5 on resized images with a fixed resolution of
384 ⇥ 384 is given in Table 4. For each method, we report
four numbers that represent performance on the public test-
ing data (in early stage of competition) and private testing
data (for final ranking) with/without test-time data augmen-
tation (TTA)[33]. We can see that DAM methods improve
over the standard DL methods for minimizing CE and Fo-
cal losses. In addition, the AUC Margin loss is better than
AUC Square loss. We also plot the histogram of predictions
on training data of our best DAM method (AUC-M+Meta)
compared with standard DL method with CE loss in Fig-
ure 4 in Appendix J. We can see that the predictions by the
DAM method have two well-separated patterns correspond-
ing to positive and negative data. In contrast, the predictions
by optimizing the CE loss is more mixed together.

Competition Results. For final submission towards this
competition, we use an ensemble method. We train differ-
ent nets including EfficientNet (B3, B5, B6) and different
resolutions , i.e., 256 ⇥ 256, 384 ⇥ 384, 512 ⇥ 512, 768 ⇥
768. Our final result is averaged over 10 models, which
is also reported in Table 4. Our method achieves AUC
scores of 0.9685/0.9438 on public/private sets, which rank
at 42nd/33rd out of 3314 teams. To our best knowledge,
this is also the first solution to optimize AUC in the com-
petition. The winning team has an AUC score of 0.9490
on the private testing set [16]. We would like to empha-
size that the winning team has used several useful tricks to
improve the final result. In particular, they used an ensem-
ble of 18 models and also used images at higher resolution
of 896 ⇤ 896. We expect these tricks can be also used for
improving our results. In terms of learning a single model,
our DAM method has a higher AUC score of 0.9423 than
their single model’s AUC score of 0.9167 (e.g., model 7 un-
der similar configurations, e.g., EfficientNetB5, 384x384,
metadata [16]). After the competition, we find the ensem-

Table 5. Testing AUC of two medical datasets on DenseNet121.
Data (imratio) CE Focal AUC-S AUC-M
DDSM+ (13%) 0.9392 0.9495 0.9469 0.9544

PatchCamelyon (1%) 0.8394 0.8556 0.8703 0.8896

ble of EffecientNetB5(384 ⇤ 384, AUC-M loss, metadata)
and EffecientNetB6(512 ⇤ 512, CE loss) achieves highest
private AUC of 0.9505.

4.3. Other Two Medical Classification Tasks
Finally, we present results on two more medical classi-

fication tasks, i.e., classification of mammogram for breast
cancer screening on DDSM+ data, and classification of mi-
croscopic images for identifying tumor tissue on PathCame-
lyon Data. The DDSM+ data is a combination of two
datasets namely DDSM and CBIS-DDSM [4, 19], which
consists of 55,000 mammographic images (224⇥224) taken
at lower doses than usual X-rays for training with imratio
of 13% and 13,900 images for testing with imratio of 4%.
The PathCamelyon dataset consists of 294,912 color images
(96⇥96) extracted from histopathologic scans of lymph
node section for training and 32,768 images for testing with
balanced class ratio [38, 3]. For second task, we manually
construct an imbalanced dataset with imratio of 1% follow-
ing section 4.1. For experiments, we train DenseNet121 and
use batch size of 32 for DDSM+ and 64 for PatchCamelyon.
For non-AUC losses, we train models using Adam with
weight decay of 1e-5 for 5 epochs. We tune learning rate
{1e-1 ⇠ 1e-5} on validation set sampled from 10% training
data. For focal loss, we tune �̂={1,2,5}, ↵̂={0.25,0.5,0.75}.
For AUC losses, we start from pretrained model of last it-
eration by CE loss and train a total of 1 epoch. We tune
learning rate {1e-1, 1e-2, 1e-3}, �={1/300, 1/500, 1/800}
and set � = 0. For AUC-M, we tune m={0.3, 0.5, 0.7,
1.0}. We report the best results for each method in table
5. The results indicate that AUC-M performs consistently
better than baseline methods on these two datasets.

5. Conclusion
In this paper, we have considered large-scale robust deep

AUC maximization. We have proposed a new margin-based
surrogate loss for AUC to address the two major issues of
square loss, and demonstrated its robustness to noisy and
easy data. We thoroughly evaluate our methods on four
benchmark datasets and four real-world medical datasets.
The results not only demonstrate the effectiveness of the
new margin loss and also the success of our deep AUC max-
imization methods on medical image classification tasks.
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