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Abstract

Group activity recognition aims to understand the ac-
tivity performed by a group of people. In order to solve
it, modeling complex spatio-temporal interactions is the
key. Previous methods are limited in reasoning on a prede-
fined graph, which ignores the inherent person-specific in-
teraction context. Moreover, they adopt inference schemes
that are computationally expensive and easily result in
the over-smoothing problem. In this paper, we manage
to achieve spatio-temporal person-specific inferences by
proposing Dynamic Inference Network (DIN), which com-
poses of Dynamic Relation (DR) module and Dynamic Walk
(DW) module. We firstly propose to initialize interaction
fields on a primary spatio-temporal graph. Within each
interaction field, we apply DR to predict the relation ma-
trix and DW to predict the dynamic walk offsets in a joint-
processing manner, thus forming a person-specific interac-
tion graph. By updating features on the specific graph, a
person can possess a global-level interaction field with a
local initialization. Experiments indicate both modules’ ef-
fectiveness. Moreover, DIN' achieves significant improve-
ment compared to previous state-of-the-art methods on two
popular datasets under the same setting, while costing much
less computation overhead of the reasoning module.

1. Introduction

Group activity recognition (GAR) aims to infer an over-
all activity performed by a group of people in the scene
[9, 22, 4, 45, 32, 43, 15, 48]. It has aroused research
interests due to various applications, including surveil-
lance/sports video analysis, social scene understanding, etc.
The critical problem that lies in GAR is to infer a group-
level activity representation given a video clip, which asks
for elaborately designed reasoning modules.

*Corresponding author.
ICodes are available at https://github.com/JacobYuan7/
DIN_GAR.

Set the ball from 8 to 9 Pass the ball from 10to 9
Figure 1. Examples of right set and right pass group activity.
The red bounding box annotated with a star is the person perform-
ing the key action for the activity. The grey arrow denotes the key
interaction linking the starred person and the semantically impor-
tant person, which is always not aligned in the spatial or temporal
domain. The person indices do not start from 1 because we only
illustrate part of the images.

Recently proposed reasoning modules mainly incorpo-
rate spatio-temporal interactive factors to get a refined ac-
tivity representation. Modeling of agents’ interactions has
been widely studied. The mostly adopted methods are re-
current neural networks [1, 49], the attention mechanism
[41, 19] and graph neural networks (GNNs) [38, 13, 44].
GNNs have been a frequently adopted method in GAR
[32, 43, 46, 31], which performs message passing on a con-
structed semantic graph and achieves competitive results on
publicly available benchmarks.

However, previous methods using GNNs stick to a
paradigm that models the interaction between individuals
on a predefined graph as shown in Figure 2. It is a feasi-
ble way but bears several drawbacks: i) Those who interact
with a given person should be person-specific but not pre-
defined. Like in Figure 1, a person will interact with people
depending on their own context: the 8th person in the left
video interacts with the 9th person who is about to spike
the ball; the 10th person in the right video interacts with the
9th person who is about to set the ball. A predefined graph
can not suit every person’s inference. ii) Previous prede-
fined graph models infer interactions on a fully-connected
[43] or criss-cross [46, 31] graph which is shown in Figure
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Figure 2. Visualizations of three inference schemes in spatio-
temporal domain with GNNs for GAR. The green node denotes the
feature to be updated. The purple nodes denote features involved
in updating the green node. (a) Fully-connected graph inference.
(b) Criss-cross graph inference. (c) Proposed person-specific dy-
namic graph inference, which is unique for every green node. The
dashed box is an example of an initialized interaction field.

2(a) and (b). It easily results in the over-smoothing [27]
that makes features indistinguishable and damages the per-
formance. Also, it costs overmuch computation overhead
if expanding to long video clips or expanding to a scenario
with too many people in the scene.

Aiming at solving the drawbacks mentioned above, in-
spired by [11, 50],we present Dynamic Inference Network
(DIN), which contains Dynamic Relation (DR) and Dy-
namic Walk (DW). These two modules combined can pre-
dict a person-specific interaction graph for better modeling
interactions as shown in Figure 2(c). For a given person fea-
ture on a spatio-temporal graph, we set a spatio-temporal in-
teraction field around it as an initialization, which is shared
between DR and DW. This interaction field determines the
people to be involved in inferring the interaction graph. The
initialized field size will not increase if the spatial or tem-
poral axis expands, which reduces the computation.

Within this initialized interaction field, we use DR to pre-
dict a person-specific relation matrix, denoting the interac-
tion relations between persons. The features in the interac-
tion field endow the relations with an interaction context.
Then, to facilitate the model to learn from complex spatio-
temporal interactions, we use DW to predict dynamic walk
offsets for every feature within the field. The dynamic walks
allow for the locally initialized interaction field to form a
graph that enables global-level interactions. The proposed
modules are easy for deployment onto any widely used
backbones to form a pipeline named DIN. Besides, previous
methods seldom make computational complexity analysis,
which is a significant evaluation for a designed module. In
this paper, we present computational complexity analysis
and show that our modules cost less computation overhead
while performing better.

To summarize, our contributions are listed as follows:

* We propose DIN to construct person-specific interac-
tion graphs in the spatio-temporal domain, which are
not predefined and can also serve as a general approach
for modeling interactions.

* We propose DR that predicts person-specific relation

matrices and DW that allows for the locally initialized
interaction field to update features globally. Both are
proved useful by experiments.

* We prove by experiments that a small size of initialized
interaction field is sufficient for existing datasets. We
use a case visualization to exemplify that interaction
graphs can capture the key person and key interactions,
and a locally initialized interaction field can cover a
global-level interaction field with proposed modules.

* DIN achieves state-of-the-art performances under the
setting of the same backbone and input modality on
two widely used benchmarks, while costing much less
computation overhead of the reasoning module.

2. Related Work

Group Activity Recognition Group activity recogni-
tion was firstly proposed in [9]. Following works [10, 25,

, 8, 2] were basically to extract hand-crafted features
(e.g., HOG [12]) and apply graphical models to infer group
activity representations. With the boom of deep learn-
ing, methods incorporating convolution neural networks
(CNNs) and recurrent neural networks (RNNs) have proved
effective. For example, the works of [22, 4] managed to
model the temporal dynamics in action level or group level
via RNNs on CNN features. The works of [42, 45, 32, 36]
applied RNNs to the modeling of person interactions. The
attention mechanism also proved its effectiveness in GAR.
The works of [45, 32, 39] combined RNNs with attention
mechanisms to capture the key features in the spatial or tem-
poral domain. Specifically, the self-attention mechanism
was introduced to learn the temporal evolution and spatial
interactions [15, 31].

GNNs, which inferred on graph-structured data, at-
tracted researchers’ attention in GAR. ARG [43] firstly
proposed to use graph convolution networks (GCNs) to
learn person interactions on a spatio-temporal graph. Later,
several works [40, 31, 47] improved the previous fully-
connected graph to a criss-cross one when modeling rela-
tions and aggregating features. However, they all ignored
the person-specific interaction context. Our work is partly
inspired by deformable convolution [11, 51], whose rela-
tions are not conditioning on the person features. Moreover,
related work like DGMN [50] which mentioned ’dynamic’
constrained in implicit pixel-level spatial feature enhance-
ment, while our pipeline suits video processing and agent-
level spatio-temporal reasoning.

Modeling of Interactions The modeling of interactions
is significant in understanding a complex system with multi-
ple objects/agents [5, 6]. Many research areas inherently in-
volve the modeling of interactions like trajectory prediction
[16, 38, 34], human object interaction [33, 29, 14] and scene
graph generation [44, 49, 7]. In GAR, modeling interactions
is crucial in understanding their overall activity [4]. Among
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Figure 3. The overall pipeline of Dynamic Inference Network. Generally, it consists of two stages: i) Spatio-temporal feature extraction,
ii) Reasoning module. Note that there will be 7" x N unique interaction graphs for updating. In our codebase, the first stage is shared with
previous methods. The main variations are in the Reasoning Module. We only illustrate 4 bounding boxes in the image for clarity.

their adopted methods, GNNs have been a frequently cho-
sen method. Some related works like EvolveGCN [30] ex-
plored a better representation learning strategy on evolving
graphs and EvolveGraph [26] explored a prediction method
to adjust the structure of one graph. However, we focus
on the exploration of constructing dynamic agent-specific
graphs based on their interaction field. The proposed mod-
ules are general approaches to tackle the modeling of inter-
actions in related problems.

3. Method

In this section, we firstly outline the pipeline of DIN.
Then, we give a brief review of previous GNN reasoning
modules for GAR. Finally we introduce the modules that we
propose to dynamically infer the group activity. To better
present the idea, we specifically present the feature updating
method for the ith person feature.

3.1. Dynamic Inference Network

The integrated framework, which we denote as Dynamic
Inference Network (DIN), is illustrated in Figure 3. The
DIN takes in a short clip of videos, which is fed into a
selected backbone network to extract visual features. For
the backbone network, we mainly experiment on ResNet-18
[18] and VGG-16 [37] to demonstrate the effectiveness of
our proposed module and to seek for a fair comparison with
previous methods. Then RolAlign [17] is applied to extract
the person features aligned with bounding boxes, which are
then embedded to a D-dimension space. We stack the per-
son features to form X € RT*NXP where T, N denotes
the temporal steps (i.e., temporal dimension) and number
of annotated people in each frame (i.e., spatial dimension)
respectively. Note that the spatial dimension is ordered by
people’s coordinates following [43, 15]. It is then arranged
into a Spatio-Temporal graph (ST graph). The proposed DR
and DW dynamically predict a specific interaction graph for
a selected feature (7" x NN interaction graphs in total). Thus,
we can operate feature updating accordingly.

After the above inference, we can perform a global pool-
ing to get the final group representation, which contains a
max-pooling layer along the spatial dimension and an aver-
age pooling layer along the temporal dimension. The train-
ing objective is the cross-entropy loss for group activities.
Although many previous methods like [32, 43, 3, 15] use ad-
ditional cross-entropy loss for individual actions, the action
labels are actually ill-defined [47] and expensive in label-
ing. We use cheap group activity labels while still achieving
competitive results.

Although computational complexity analysis in Section
4 already indicates that DR and DW bring in limited param-
eters and FLOPs apart from the backbone and the embed-
ding layer, we take a step further to seek for a lighter rea-
soning module. In practice, we apply pointwise convolution
[20] before the reasoning module to reduce the dimension
of X from D to D;. We name this model Lite DIN.

3.2. Recap of Previous GNN Reasoning

We start the recap by introducing Actor Relation Graph
(ARG) in [43]. The spatio-temporal feature extraction stage
for ARG is identical to the DIN as illustrated in Figure
3. It uses a fully-connected graph as illustrated in Figure
2(a). The spatial and temporal dimension of person fea-
tures X are collapsed to one, denoted as X = {z;}1}
with ; € RP. Their pairwise relations can be denoted as
R ={r;;li,j =1,..,TN} with r; ; € R, which can be
computed by

0(x;)T ,
Tij = (m\)/%i(mj) (1)
7. = softmax;(r; ;) = _exp(riy) @)
J Y ZqTiVl exp(ri,q)

where 6 and ¢ are linear transformations functions, i.e.,
0(x;) = Wyz; with Wy € RP*D and ¢(x;) is simi-
larly defined; D, is the dimension of the embedding space;
softmax; defines a softmax function along the index j to
get the normalized relations #; ;. We do not formulate dis-
tance mask here for clarity.
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Figure 4. Details of DR and DW on creating the person-specific interaction graph for ¢th person. For the given person, DR predicts a
relation matrix and DW predicts the dynamic walk offsets to endow the interaction graph with a global interaction field, both based on an

initialized interaction field (we set it to 3 X 3 as an example).

We perform one-layer ARG to update the person feature
as

(+1) _ N N W), (9) 0
2 Zg_lg@j_ln,jmj w®) 120 3

where Ny, g,l denote the number of graphs in one layer,
the graph index and the layer index respectively; o is an
activation function (ReLU in our implementation); wl) e
RP*P is the graph-specific trainable transformation matrix.
Note that w(9) and 7; ; are also layer-specific but for the
purpose of clarity, we omit this superscript /. Similar thing
is done for learnable parameters and relations in following
equations.

After the feature updating, we finally perform a global
pooling operation on the reshaped X (‘t1) ¢ RT*NXD to
get the final group representation z € RP”. The Cross
Inference Block proposed in [46] ameliorates the fully-
connected inference by criss-cross inference as shown in
Figure 2(b).

3.3. Dynamic Relation

Before we dive into the proposed modules, we present
the definition for the interaction field. The Interaction
Field is a region upon an ST graph that is involved in infer-
ring the interaction features. One example of the interaction
field is shown using a dashed box on the ST graph in Figure
4. Our proposed modules, i.e. DR and DW, jointly pro-
cess features within this field to infer person-specific inter-
action graphs. The initialized interaction field covers a se-
lected person’s spatio-temporal neighborhoods, which pro-
vides direct interaction cues. More complex initializations
are left for future exploration.

We propose Dynamic Relation (DR) to infer the relation
matrix for the person-specific interaction graph. An illustra-
tion of DR is shown in the upper branch of Figure 4. *Dy-
namic’ in DR refers to the fact that the relation matrix is

dependent on the features in the initialized interaction field,
rather than sticks to the same when updating every feature.
To infer the dynamic relations within this field, we adopt
convolution following [11, 50]. For a selected :th feature
on the original ST graph, we denote u; € R(K*P) ag the
stacking features within its interaction field and denote K
as the interaction field size, e.g., K = 9 if the interaction
field is 3 x 3. We rewrite the convolution in a matrix form

as
A; = Wou; +b, “

where W, € REX(KxD) is the linear projection matrix for
inferring relations; b, € R¥ is the bias parameters. A; =
{a; x|k =1,..., K} witha; ;, € R is the relation matrix for
ith feature, where k enumerates K features in ¢th feature’s
initialized field. Similar to Eq.2, a; ;, is the normalized a; j
along the index k, i.e., a; j, = softmaxy (a; k).

Instead of updating the features in a fully-connected
graph or criss-cross graph, we update the features within
the initialized field as

K
acz(H_l) =0 (Zk_l divk:l:,(f)w> + :cgl) ®))

Note that we do not incorporate multiple graphs due to its
excessive parameters and trivial improvement [43].

3.4. Dynamic Walk

Although DR has successfully inferred their relations
with all person features in the initialized interaction field,
it still follows a predefined message passing route, which
lacks the ability for person-specific interaction modeling.
Moreover, previous methods manage to model long-range
spatio-temporal dependency by a fixed graph in a fully-
connected or criss-cross scheme, which consumes exces-
sive computational resources. We propose a Dynamic Walk
(DW) module that enables features within the interaction

7479



field to execute dynamic walks on the primary ST graph.
An illustration of DW is shown in the lower branch of Fig-
ure 4. Through DW, we hope to model complex spatio-
temporal dependency using a size-limited interaction field.
’Dynamic’ in DW refers to the fact that the interaction graph
is dependent on the features in the initialized interaction
field, which is not predefined anymore.

To allow for dynamic walk, we need to predict their
spatio-temporal dynamic walk offsets. For a selected ith
person feature, we denote the dynamic walk offsets for all
features within the interaction field as AP; = {Ap; x|k =
1,..., K} with Ap; , € R?. We predict the dynamic walk
offsets as

AP; =W,u; + b, 6)

where W, € REx2)x(KxD) jg the linear projection ma-
trix for predicting dynamic walk offsets; b, € REX2) g
the bias term. Similar to DR, this predicts the dynamic walk
offsets for all features within the field and it is instantiated
by convolution. Using the predicted offsets, we can obtain
the dynamic-walked features by performing dynamic walk
on the ST graph. Note that the dynamic-walked features
are clamped to be within the range of the ST graph. As
the dynamic walk offsets are constantly fractional, a bilin-
ear sampler [23] is adopted to sample dynamic-walked fea-
tures. We denote the coordinate of the kth feature in the ith
interaction field as p; ;, € R2. Dynamic-walked features
Y, = {yirlk = 1,..., K} with y; ;. € R can be formu-
lated as
T N

Yik = D > Bn-1)N+n0 (1,1, ik, Apik)  (7)
m=1n=1

5(m, n, pik, Api k) = max(0,1 — [m — pi x — Apj ;|) @®

xmax(0,1 — |n — pivk — Aprk|)

where superscript *7” and N’ denotes the temporal and
spatial coordinate.

Based on the dynamic-walked features, we can update

the ith feature as

(+1) _ Ko 0
T, =0 (Zk_l al,kyiykw> +x; ©)]

Note that in the above formulation, we combine the DR and
DW to form the final dynamic updating function.

4. Experiments

In this section, we first present datasets and implementa-
tion details for GAR. Next, we perform quantitative analysis
to explore the contributions of our modules and variances
of different interaction field initializations, and to prove the
superiority in terms of computational complexity. Then, we
compare our methods with previous state-of-the-art meth-
ods. Finally, we provide visualizations to understand DIN
better.

4.1. Experiment Settings

Datasets So far, there are two widely used datasets in
group activity recognition, namely Volleyball dataset (VD)
[22] and Collective Activity dataset (CAD) [9].

The Volleyball dataset comprises of 3,493 training clips
and 1,337 testing clips, which are trimmed from 55 videos
of volleyball matches. For each short clip, it provides three
kinds of annotations: i) coordinates of players’ bounding
boxes in the center frame of a given clip; ii) individual
action labels for the annotated person: blocking, digging,
falling, jumping, moving, setting, spiking, standing and
waiting, which are not used in our experiments; iii) group
activity labels for the given clip: right set, right spike, right
pass, right winpoint, left set, left spike, left pass and left
winpoint. To perform feature extraction on the whole clip,
we use the tracklets provided by [4]. Two metrics are used
for evaluating the performance of a model, i.e., MCA (%)
which is short for Multi-class Classification Accuracy and
MPCA (%) which is short for Mean Per Class Accuracy.

The Collective Activity dataset comprises of 44 videos
containing varying number of frames from 194 to 1,814
frames. Similar to VD, it is labelled with three levels of
annotations: i) coordinates of people’s bounding boxes on
the center frame of every ten frames; ii) individual action la-
bels for the annotated person: NA, crossing, waiting, queue-
ing, walking and talking, which are not used in our experi-
ments; iii) group activity labels for every ten frames: cross-
ing, waiting, queueing, walking and ralking. We follow
[42, 45, 46] to merge the class crossing and walking into
moving. Similarly, we use the tracklets from [4]. Train-
test split follows [32]. MPCA is used for evaluation on this
dataset due to class imbalance.

Implementation Details For VD, we use video images
with resolution H x W = 720 x 1280. For CAD, we use
video images with resolution H x W = 480 x 720. For
both datasets, we use video clips which contain 7' = 10
frames each following [43, 46, 32, 21]. The maximum num-
ber of people in the scene is NV = 12 for VD and N = 13
for CAD. We use person feature with embedding dimension
D = 1024. For Lite DIN, we use the embedding dimension
D; = 128. The convolution operations for DR and DW are
initialized by zero vectors [| 1]. When applying convolution
on the graph, we use zero paddings to maintain a fixed inter-
action field size. We follow [43] to initialize the backbone
of DIN model with parameters from the base model. We do
not use any action label supervision. For the training of VD,
we employ Adam optimizer whose learning rate starts with
1 x 10~* and decay rate is % every 10 epochs. For the train-
ing of CAD, we employ the same optimizer whose learning
rate starts and stays with 5 x 10~°. We run 30 epochs in to-
tal. The hyper-parameter for Adam is 51 = 0.9, 52 = 0.999
and e = 1078,
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Model [ MCA MPCA
Base model 87.8 88.4
DIN w/ DR 92.1 92.3
DIN w/ DW 92.0 92.5

DIN w/ DR+DW 93.1 93.3
DIN w/ DR+DW™ | 92.9 93.1

Table 1. Ablation study on the usage of DR and DW. Experiments
are conducted on VD. The backbone is set to ResNet-18.

4.2. Quantitative Analysis

In this subsection, we conduct experiments on VD. We

set the backbone for quantitative analysis to ResNet-18.

DR and DW We first conduct ablation study to demon-

strate the efficacy of proposed modules. We use a fixed ini-
tialized interaction field of 3 x 3 and following models:

* Base model: It consists of a backbone network,
RolAlign, the global pooling layer and a final classi-
fication layer.

¢ DIN w/ DR: It contains a backbone, RolAlign, DR
module, a global pooling layer and a classification
layer. It allows for a relation matrix prediction within
the interaction field.

* DIN w/ DW: It contains a backbone, RolAlign, DW
module, a global pooling layer and a classification
layer. It allows for a dynamic walk prediction to ex-
pand its interaction field.

* DIN w/ DR+DW: It is defined analogously with above
models. It allows for a dynamic relation prediction
based on the original features in the field as illustrated
in Figure 4.

» DIN w/ DR+DW": It is defined analogously with DIN
w/ DR+DW, except that it allows for a dynamic rela-
tion prediction based on dynamic-walked features, i.e.,
Y.

The results for the above models are shown in Table 1.
The table indicates that incorporating any proposed mod-
ules can significantly improve the performance. Compared
to ARG [43], the result for DIN w/ DR indicates the supe-
riority of joint processing and a small interaction field. The
result for DIN w/ DW indicates the superiority of person-
specific interaction graphs. We find that DIN w/ DR and
DIN w/ DW show similar improvements compared to the
base model. We consider it is because that after we perform
the dynamic walk on a graph, the bilinear sampler defines
the feature interpolation by bilinear weights, which is, to
some extent, one kind of dynamic relations. These weights
are determined by the dynamic walk offsets, which are not
as straightforward as DR. The partial ability of dynamic re-
lations and a global interaction graph enable DIN w/ DW to
perform similarly with DIN w/ DR.

Combining DR and DW, the DIN model is endowed with

more dynamicity and larger interaction fields, thus perform-

Reasoning Module [ #Params FLOPs MCA MPCA

PCTDM [45] 26.235M 6.298G 90.3 90.5
ARG [43] 25.182M 5.436G 91.1 91.4
AT [15] 5.245M 1.260G 90.0 90.2
HiGCIN[46] 1.051IM  184.992G 914 92.0
SACRF [31] 29.422M  76.757G 90.7 91.0
EDP 3.146M 0.755G 91.6 91.6

DR 1.140M 0.272G 92.1 92.3

DwW 1.222M 0.291G 92.0 92.5
DR+DW 1.305M 0.311G 93.1 93.3
Lite DR+DW 0.180M 0.042G 92.6 92.8

Table 2. Computational complexity analysis. Their backbones
are set to ResNet-18. #Params and FLOPs for the backbone and
the embedding layer are not included.

ing even better. Specifically, DIN w/ DR+DW performs
slightly better than DIN w/ DR+DW", which indicates the
initialized interaction field provides sufficient information
for predicting relations.

Computational Complexity Analysis In this subsec-
tion, we present the parameters and FLOPs that the reason-
ing module contains. Note that the reasoning module that
we define does not include the backbone and the person fea-
ture embedding layer, as we mainly focus on an efficient
reasoning module in this paper. Since previous methods’
reported results vary in the input modality, backbones and
implementation details, we re-implement them to fit into
our framework and codebase while ensuring consistency to
the original paper and their publicly available codes. We
use an initialized interaction field of 3 x 3 for all our pro-
posed modules. For a fair comparison, we set all their back-
bones to ResNet-18. The results are listed in Table 2. Be-
sides, we present the statistics for the backbone and person
feature embedding as a reference: 24.8M #Params, 674.6
GFLOPs for 720 x 1280 resolution and 24.8M #Params,
254.9 GFLOPs for 480 x 720 resolution. The result has
shown that the model with DR or DW alone achieves higher
performances than previous methods, at the same time, re-
duces the computational complexity of the reasoning mod-
ule. By combining DR and DW, our model benefits from
the dynamicity of person-specific relation matrices and the
dynamic walk offsets, thus achieving better performance.
Note that the model with DR+DW adds very little compu-
tation cost compared to the model with DR or DW alone.
The lite model with DR+DW achieves impressive results
while adding very little computational overhead compared
to the base model.

Besides the proposed model variants, we further provide
another reasoning module:

* EDP: The corresponding model is DIN w/ EDP. It is
similar to DIN w/ DR, except that it uses the Embed-
ded Dot-Product (EDP, formulated in Eq.1) within the
interaction field rather than DR for inferring the rela-
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Module [ Field [#Params Complexity FLOPs  Complexiy MCA MPCA

3x3 [ 1.305M 0311G 931 933
x5 |2976M g 1y 4p2 07126 gepyp 927 9311

DRDW | 7x7 [8.432M " 2.021G g, )0 924 927
9x9 |21.212M 5.089G 925 93.0
1x3, 31| 2.160M 0.516G 926 93.0

ST factorised| 15> 3%1| 2258M g op 35 0540G ooy 923 928
DR+DW |17, 7x1[2406M /0" 0.575G (3¢ 4 pyy 928 93.0

1x9, 9x1] 2.602M 0.622G 92.1 925
3x3 | 0.180M 0.042G 926 9238

O©(TND.
Lite x5 | 0387M g py (32 0:092G 3;{2 % 926 93
DRyDW | 7XT [ 1069M " 0.256G (3K 4D 923 927
9x9 | 2.667M 0.639G _+D)) 923 925

Table 3. Results for increasing initialized interaction fields using
three models. Backbone: ResNet-18. Computational cost for the

backbone and embedding layer is not included. K = 9, 25,49, 81

for 4 interaction fields and D; = %.

tion matrix A;. We set D,, = D.

We can observe that i) the previous pairwise interaction
model EDP which predicts relations using only two persons,
performs slightly worse than DR and cost higher computa-
tion overhead; ii) If comparing EDP to ARG, it shows a
small initialized field ameliorates the over-smoothing that
ARG has due to fully-connected inference, and achieves
better performances.

Initialized Interaction Field for DIN and its Variants
To model the spatio-temporal interactions among people, an
interaction field with appropriate size should be selected.
We mainly provide with experiments on DIN and its two
variants to choose an appropriate size: i) single interaction
field that is initialized to cover a certain spatio-temporal do-
main, e.g., 3 x 3; ii) stacking layers that separately cover
spatial and temporal domain (ST factorised model), e.g.,
1 x 3 and 3 x 1; iii) lite model that covers a certain spatio-
temporal domain. The results for increasing interaction
field sizes are shown in Table 3. It indicates that i) Larger
interaction field sizes will not result in a good performance.
ii) Similarly, stacking layers to separately model spatial and
temporal interactions also result in slightly worse results.
We consider they are due to the over-smoothing problem
[27] caused by stacking layers or too dense connections,
which brings about excessive similarity between person fea-
tures. iii) ST factorised and lite model both distinctly reduce
the cost by reducing the exponent of K and the value of D
to D, while both maintaining better results than previous
methods.

4.3. Comparisons with the State-of-the-Art

In this subsection, we compare our models with previ-
ous state-of-the-art models. For a fair comparison, we only
adopt RGB images as our model input and adopt a single
backbone.

Performance on Volleyball dataset The result is shown
in Table 4. Generally, our methods can achieve impres-
sive results on this dataset. For methods using ResNet-18,
our method can surpass them by 1.7%. For methods us-

Method | Backbone [ MCA MPCA
SBGAR [28] Inception-v3 66.9 67.6
SSU [4] Inception-v3 89.9 -
CERN-2 [35] VGG-16 83.3 83.6
SPA+KD [40] VGG-16 89.3 89.0

PCTDM [45] ResNet-18 90.3 90.5
stagNet [32] VGG-16 89.3 -
CRM [3] 13D 92.1 -

ARG [43] ResNet-18 | 91.1 91.4
PRL [21] VGG-16 914  91.8
AT [15] ResNet-18 | 90.0  90.2
SACRF [31] ResNet-18 | 90.7  91.0
STBiP" [48] | Inception-v3 | 91.3 -

HiGCIN [46] | ResNet-18 | 914  92.0

VGG-16 936 938

Ours-DIN

ResNet-18 93.1 93.3
VGG-16 93.2 93.4
ResNet-18 92.6 92.8

Ours-Lite DIN

Table 4. Comparisons with previous state-of-the-art methods on
Volleyball dataset. We mark with ’-" if results are not provided.
denotes results without visual context for fair comparison.

Method | Backbone MPCA
HDTM[22] AlexNet 89.7
CERN-2[35] VGG-16 88.3
Recurrent Modeling[42] VGG-16 89.4
PCTDM[45] AlexNet 92.2

stagNet[32] VGG-16 89.1

SPA+KD[40] VGG-16 92.5
ARG[43] ResNet-18 92.3
PRL[21] VGG-16 93.8

HiGCIN[46] ResNet-18 93.0

VGG-16 95.9
Ours-DIN

ResNet-18 95.3
VGG-16 94.0
ResNet-18 93.8

Ours-Lite DIN

Table 5. Comparisons with previous state-of-the-art methods on
Collective Activity datatset.

ing VGG-16, our methods can surpass them by 2.2%. If
considering the computational overhead of DR and DW,
our models show more superiority. Our models generally
cost less computational overhead and perform better than
RNN-based models like [45, 32, 4, 28, 35], due to a bet-
ter representation from jointly modeling of spatial-temporal
interaction. Our models outperform GNN-based methods
like [43, 46, 15], which ascribes to the dynamicity of the
proposed modules. Method [43] even uses 16 graphs for
reasoning but still trails our model.

Performance on Collective Activity dataset The re-
sult is shown in Table 5. With our proposed modules, the
model with a VGG-16 backbone outperforms other meth-
ods by 2.1% and a ResNet-18 backbone by 2.3%. Note that
Lite DIN which costs little extra computation can already
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Figure 5. (a) The confusion matrix for Volleyball dataset using VGG-16 as a backbone. (b) The confusion matrix for Collective
Activity dataset using VGG-16 as a backbone. (c) Visualizations of a left set activity example. The upper left image is the starting image
of the video clip. The upper right is the corresponding group interaction graph. The lower right is the interaction graph of the 5th person
(key person, the red box in the group interaction graph). The lower left illustrates two of the Sth person’s key interactions (yellow boxes in

the 5th person’s interaction graph).

achieve results on par with previous best methods, thus re-
vealing the merits of introducing dynamicity.

Confusion Matrices The confusion matrices of VGG-
16 models on VD and CAD are respectively shown in Fig-
ure 5(a) and (b). For VD, the modeling of dynamic spa-
tial long-range interactions enables the model to distinguish
left activities from right activities. Compared with confu-
sion matrices from methods [32, 46], our methods performs
well for pass and set activities. We ascribe it to the dynamic
interaction modeling between spatio-temporal persons, be-
cause pass and set activities involve a person passing the
ball and a person catching the ball. For CAD, compared
with confusion matrices of methods [22, 42, 46], our meth-
ods distinguish the waiting well. Previous methods mistake
waiting for moving a lot because they fail to distinguish the
temporal variations of people, which we tackle well.

4.4. Qualitative Analysis

Group interaction graph First, we visualize the group
interaction graph for one example in the upper right image
of Figure 5(c), which sums all person-specific interaction
graphs. It shows the people whom others interact more with
to form the activity. If we sum along the temporal axis,
we can find a key person (5th person, the red box in the
group interaction graph) with the highest weight. In this
example, it is the person performing setting action, which is
significant in the left set group activity.

Person interaction graph We take a step further by vi-
sualizing the key person’s interaction graph in the lower
right image of Figure 5(c), which sums his interaction
graphs in different temporal steps (7' graphs in total). It
indicates that our modules enable global-level interactions
though we initialize the interaction field locally. As shown
in the person interaction graph, the yellow boxes are two of
key interactions with the key person. In this example, they
might spike the ball set from the key person.

5. Conclusion and Future Works

In this paper, we propose the Dynamic Inference Net-
work to address the problems of inference on a predefined
graph and inference in a computationally expensive way.
With limited computation overhead, our model can achieve
competitive results on publicly available datasets. Experi-
ments have shown that person-specific interaction context
is effective in inferring group activities. More challenging
tasks and efficient inference models are left for future ex-
ploration. Moreover, this paper focus on the reasoning of
person features, while a decent dynamic model incorporat-
ing visual context [48] are left for future exploration.

Acknowledgement: We would like to thank Jiayang Ren,
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back. This work was supported by the National Science
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