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Abstract

Current face image retrieval solutions are limited, since
they treat different facial attributes the same and cannot in-
corporate user’s preference for a subset of attributes in their
search criteria. This paper introduces a new face image re-
trieval framework, where the input face query is augmented
by both an adjustment vector that specifies the desired mod-
ifications to the facial attributes, and a preference vector
that assigns different levels of importance to different at-
tributes. For example, a user can ask for retrieving images
similar to a query image, but with a different hair color, and
no preference for absence/presence of eyeglasses in the re-
sults. To achieve this, we propose to disentangle the seman-
tics, corresponding to various attributes, by learning a set
of sparse and orthogonal basis vectors in the latent space
of StyleGAN. Such basis vectors are then employed to de-
compose the dissimilarity between face images in terms of
dissimilarity between their attributes, assign preference to
the attributes, and adjust the attributes in the query. Enforc-
ing sparsity on the basis vectors helps us to disentangle the
latent space and adjust each attribute independently from
other attributes, while enforcing orthogonality facilitates
preference assignment and the dissimilarity decomposition.
The effectiveness of our approach is illustrated by achieving
state-of-the-art results for the face image retrieval task.

1. Introduction
The problem of image retrieval has been studied in many

different applications, such as product search [31, 32] and
face recognition [23]. The standard problem formulation
for image to image retrieval task is, given a query image,
find the most similar images to the query image among all
the images in the gallery. However, in many scenarios, it is
necessary to improve and/or adjust the retrieval results by
incorporating either the user’s feedback or by augmenting
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Query

Default result (no attribute manipulation):

Emphasizing Eyeglasses (increased preference):

Emphasizing Eyeglasses (increased preference)
and adjusting Beard (no beard):

Figure 1. Example of face image retrieval by considering both the
attribute adjustment and attribute preference specified by the user.

the query. This is due to the fact, in many cases, a perfect
query image may not be readily available. Thus, it is desir-
able to give the user more control over the results. For ex-
ample, in the context of fashion products, authors in [32, 13]
exploit the user’s feedback to refine the search results itera-
tively. For instance, the method in [32] asks the user a series
of visual multiple-choice questions to refine the search re-
sults and to eliminate the semantic gap between the user
and the retrieval system. Another parallel approach is to
augment the query with additional information, e.g., adjust-
ment text, to modify the search results [29]. This is most
often done by mapping the multi-modal query onto a joint
embedding space [8, 33, 29]. These approaches treat dif-
ferent semantics the same and cannot prioritize a subset of
attributes. Thus, the user is not able to define a customized
distance metric and to assign importance to the attributes.

In this work, we introduce a new formulation for the im-
age search task in the context of face image retrieval; and
augment the query with both an adjustment vector and a
preference vector. The adjustment vector is used to change
the presence of certain attributes in the retrieved images,
and the preference vector is used to assign the importance
of the attribute in the results. To the best of our knowledge,
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this is the first work that can simultaneously adjust the at-
tributes and assign preference values to them. Employing a
preference vector gives the user the ability to customize the
similarity criteria. For instance, having eyeglasses might
be more important to the user than having the same hair
color. This criteria cannot be specified using only the ad-
justment vector, which is a limitation of existing retrieval
methods. On the other hand, adjustment vector enables the
user to use an imperfect query image for the search and ad-
just the attributes to achieve the ideal results. Furthermore,
employing an adjustment vector, as opposed to an adjust-
ment text, provides us with more flexibility, as many facial
attributes cannot be easily described in text, for example
different shades of brown hair. In the example provided in
Figure 1, the impact of assigning a larger preference value
and adjusting attributes are illustrated. In the middle row,
the user has emphasized the attribute Eyeglasses, by as-
signing a larger preference value to it, which leads to all the
top-5 retrieved images containing eyeglasses. The user can
further fine-tune the results by adjusting any subset of the
attributes. The bottom row shows the retrieved images after
both emphasizing the attribute Eyeglasses and adjusting
the attribute Beard, as a result the beard has been removed
and the eyeglasses are still present.

To achieve this, we employ the recent advancements in
generative adversarial networks (GANs). It is shown that
different semantic attributes are fairly disentangled in the
latent space of StyleGAN [12, 11], even if the generator is
trained in an unsupervised manner. This has been studied
and experimentally verified in [12, 25]. This property pro-
vides us with an array of desirable features for face image
retrieval. First, since the generator can be trained in an un-
supervised manner, we do not need to have access to a lot
of labeled data. A fairly small set of labelled data can be
utilized to interpret the latent semantics learned by the gen-
erator. Second, the latent space provided by a well-trained
StyleGAN provides us with an opportunity to both adjust
the attributes and to assign preference to them. In that con-
text, we propose to obtain a set of disentangled attribute
vectors in the latent space of StyleGAN. To disentangle the
obtained attribute vectors, we enforce both orthogonality
and sparsity constraints on them. We argue that, by making
the attribute vectors sparse, we can decouple the entangled
attributes even further. This is due to the fact that such at-
tribute vectors can manipulate their corresponding semantic
by affecting only a small subset of entries of the latent vec-
tor. This promotes selectivity among both the entries of the
latent vector and the layers of the generator of the Style-
GAN. On the other hand, by enforcing orthogonality, we
can translate the dissimilarity between each image pair into
dissimilarity between the attributes, assign preference to at-
tributes, and define an attribute-weighted distance metric.
In short, our contributions can be summarized as follows:

• We introduce a new face image retrieval framework that
can simultaneously adjust the facial attributes and assign
preference to different attributes in the retrieval task, em-
ploying the latent space of GANs (Section 3);

• We propose a new method to extract the directions of
different attributes in the latent space, by learning all the
attribute directions simultaneously and enforcing orthogo-
nality and sparsity constraints (Section 3.1);

• We utilize the learned attribute directions to define a
weighted distance metric, to manipulate semantic attributes
of the query, and to assign preference to different attributes
for retrieval (Section 3.2); and

• The proposed method for image retrieval outperforms
the recent state-of-the-art methods that use compositional
learning or GANs for search (Section 4).

2. Related Work
Attribute-guided face image retrieval: There are many

different approaches for image retrieval task based on met-
ric learning such as [30, 4, 21, 3, 16], however they do
not consider the task of retrieval with attribute manipula-
tion. More similar to our attribute-guided retrieval setup,
several methods utilize a query image and augment it with
either an attribute adjustment text [29, 31, 8, 33, 9] or vec-
tor [32, 1]. Some of the prior work focuses on dialog-based
interaction between the user and the retrieval agent, and
improving the results in an iterative manner through user’s
feedback [8, 32, 13]. Most of the attribute-aware retrieval
methods need huge amounts of labelled data to generate
a semantically meaningful latent space and distance metric
[1, 33, 9, 31, 29, 10]. The method in [29] employs a new
operation, referred to as residual gating, to create the joint
embedding space between the image and text queries, which
leads to state-of-the-are results among compositional learn-
ing methods such as [16, 28, 17, 18, 22, 19]. In contrast, we
propose to leverage the recent advancements in GAN archi-
tectures [6, 11, 12] and use the latent space generated by
a GAN trained in an unsupervised manner, which signifi-
cantly relaxes the requirements of access to labelled data.
Furthermore, to the best of our knowledge, there has been
no image retrieval method that can simultaneously adjust
the attributes and assign preference to them.

Learning semantics in the latent space of GANs: Re-
cent work have shown that the real image data can be repre-
sented in the latent space of GANs, and specifically Style-
GAN, with manifolds that have little curvature [24, 25, 12].
Such smooth behaviour can be enhanced by using loss func-
tions [14, 12] or by modifying the generator architecture
[11, 27]. A major benefit of the StyleGAN architecture [11]
is the introduction of an intermediate latent space that does
not need to follow any fixed sampling distribution, and the
linear behaviour in this space is further enforced in [12] us-
ing path length regularization. It has been shown that this
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Figure 2. The overall architecture of the proposed face image retrieval framework. The intermediate latent space, W+, is generated by
employing StyleGAN encoder proposed in [20]. Then, the orthogonal and sparse basis vectors {fm}Mm=1 are extracted using a fairly small
set of face images with attribute annotations. Utilizing the basis vectors, we adjust the query, decompose the dissimilarity vectors, and
assign preference to different attributes.

regularization leads to better Perceptual Path Length (PPL)
score, which measures the perceptual score of the generated
images after linear interpolation in the intermediate latent
space. The authors in [25] employ this property and learn
linear latent subspaces corresponding to different attributes.
The authors in [25] proposed to orthogonalize the directions
only during editing and in a sequential manner. This means
that if the user wants to adjust multiple attributes, each new
attribute direction is projected onto the null space of pre-
vious attributes. This approach has two main drawbacks.
First, the final result depends on the order of applying the at-
tribute adjustments. Second, the sequential orthogonal pro-
jection makes it more difficult to define an attribute-guided
distance metric and make the image retrieval very compu-
tationally expensive. In contrast, we propose to learn the
latent subspaces simultaneously, and enforce orthogonality
on the subspaces during the learning process. Furthermore,
we study the impact of enforcing sparsity on disentangling
the attributes.

3. Our Approach
Assume we have a set of M predefined facial at-

tributes. In this setting, the query can be defined as a triplet
(xq,aq,pq), where xq is the query image, aq ∈ [0, 1]M

is the vector specifying the intensity of each attribute (at-
tribute adjustment vector), and pq ∈ R+M is a vector con-
taining positive real numbers indicating the preference for
each attribute. The attribute adjustment vector (aq) can be
used to adjust the search query. For instance, if the user
assigns an intensity of 0 to attribute smiling, the search
results should not contain smiling faces, even though the
query face is smiling. Also, the preference vector pq is in-
dependent of the adjustment vector aq , meaning that the
value we assign as the preference value for each attribute
does not depend on whether we are adjusting the attribute
or not. The larger the preference value, the more similar the
attribute should be to the query attribute. A preference value
of 0 for a particular attribute means the user does not care
about the presence/absence of that attribute. In this extreme

case, the assigned attribute intensity will be ignored by the
retrieval agent. The goal of our proposed framework is to
rank the images in a gallery dataset based on the similarity
with the query image, while considering both the adjust-
ments and attribute preferences specified by the user.

To this end, we propose to perform the retrieval in the
latent space of a StyleGAN [12]. This provides us with
two desirable properties. First, as discussed in Section 2, it
has been shown that different attributes can be manipulated
fairly linearly in such a space [25, 12]. Second, using an
unconditional StyleGAN gives us the opportunity to train it
and its corresponding encoder using a large number of unla-
beled data. We show how we can exploit a smaller number
of labeled data to interpret the latent semantics learned by
the StyleGAN.

The defining feature of StyleGAN architecture is the in-
troduction of an intermediate latent vector, w ∈ W . In
short, the generator of the StyleGAN consists of two main
components: a mapping network and a synthesis network.
The mapping network transforms the input latent vector to
the intermediate latent space W . Then the intermediate la-
tent vector w is used to modulate the convolution weights
of the synthesis network, which generates the image. It
has also been shown that this intermediate latent space is
consistently more disentangled than the input latent space,
meaning that the attributes can be classified using a linear
classifier more accurately in W [11, 12]. Therefore, given
a binary attribute, there exists a hyperplane in W that can
separate the attribute classes. In other words, there exists
a direction f , i.e., the direction orthogonal to the hyper-
plane, such that if we move the latent vector w along f ,
w+αf , the class boundary can be crossed and the attribute
can be turned to the opposite. Here α is a scalar which de-
termines the displacement magnitude Such directions can
be obtained by training a linear classifier in W , using la-
belled data. We argue that if we obtain an orthogonal and
sparse basis set in W , where each basis vector corresponds
to a single attribute, we can easily adjust the attributes and
define a weighted distance metric to retrieve images.
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The proposed retrieval framework can be summarized
as follows. First, given a well-trained StyleGAN encoder
trained on unlabeled data, a small set of labeled data (face
images annotated with M attributes) are used to obtain an
orthogonal basis set F = {fm}Mm=1,fm ∈ W,∀m, such
that moving the latent vector along fm only affects the mth

attribute (Section 3.1). Second, the obtained basis set F is
used to adjust the attributes, to define a weighted distance
metric in W , and to retrieve images (Section 3.2). The over-
all framework is shown Figure 2. Below, we discuss each
of these two steps in more details.

3.1. Extracting Orthogonal Basis Set for Disentan-
gled Semantics

As mentioned earlier, it has been empirically verified that
different facial attributes can be manipulated fairly linearly
in the latent space of StyleGAN [24, 25, 11, 12]. However,
when there is more than one attribute, the obtained direc-
tions may be correlated with each other, meaning that ad-
justing one attribute using its corresponding direction might
affect other attributes as well. To tackle this issue, let us ex-
amine how the intermediate latent vector is utilized to gen-
erate images. The latent vector is transformed to generate
styles for each convolution layer in the synthesis network,
using an affine transform, i.e., sl = Al(w). Here, sl stands
for the style vector of lth layer and Al(.) is the learned affine
transform of the pretrained StyleGAN. Each entry in sl is
used to modulate the weights of a single convolution op-
erator in the lth layer. It has also been shown that instead
of using a common latent vector w for all the layers, we
can extend the latent space and improve the encoding per-
formance by finding a separate latent vector for each layer
wl and producing the styles as sl = Al(wl). We refer to
this space as the extended latent space W+ and represent
the latent vector as the concatenation of layer-wise codes,
w+ = [wT

1 ,w
T
2 , . . . ,w

T
L]

T ∈ Rd+

, and the attribute direc-
tions as f+ ∈ Rd+

.
We argue that enforcing sparsity on the learned direc-

tions in W+ can effectively lead to disentangling the seman-
tics and improved performance both for conditional image
editing and the attribute-guided image retrieval. In other
words, we look for attribute direction f+ ∈ W+ with min-
imum number of non-zero entries, while being able to clas-
sify the attributes accurately. This provides us with several
advantages. First, it reduces the space of possible solutions
and makes the learning problem more data-efficient. Thus,
we are able to use a smaller set of labeled data to find the
directions. Second, to manipulate the attribute in the latent
space, w+ + αf+, only a few entries of w+ are modified.
Therefore, the learned direction f+ represents the mini-
mum change necessary to manipulate the attribute. This
leads to disentanglement of different attributes, as differ-
ent attribute directions only modify a very small, probably

Algorithm 1 Finding Nearest Orthogonal Set to a Set of Vectors.

Input: A set of vectors {fm}Mm=1

1: cm = ∥fm∥2,∀m
2: Create a matrix F whose columns are

f1/c1,f2/c2, . . . ,f1/cM
3: Compute F̂ = F (F TF )−

1
2

4: return {cmf̂m}Mm=1, where f̂m is the mth column of
F̂

non-overlapping, subset of the entries. Finally, enforcing
sparsity on the filters learned in extended latent space W+

also encourages non-uniform modification of the latent vec-
tors across layers, as most of the entries are zeros. This is
significant because the first few layers generate coarse de-
tails and later layers generate the finer details. Modifying
a subset of layers means that the method is able to manip-
ulate only the detail levels that are relevant to the attribute,
leading to better disentanglement and accuracy.

Motivated by this, we propose to find an orthogonal and
sparse basis set in the extended latent space, such that each
basis vector corresponds to one of the attributes. More
specifically, given a set of N latent vectors {w+

n }Nn=1 and
their corresponding attribute labels {yn}Nn=1, we look for
F = {f+

m}Mm=1,f
+
m ∈ W+, such that f+

m

T
f+
m′ = 0,m ̸=

m′ and ∥f+
m∥0 ≤ δ, ∀m, where ∥.∥0 is the ℓ0 norm of a vec-

tor and indicates its number of nonzero entries. The spar-
sity condition can be enforced by regularizing the ℓ1 norm
of the attribute directions, which is the convex relaxation of
the ℓ0 norm. For our experiments, we employ 20, 000 latent
vectors (N = 20, 000). Compared to many existing meth-
ods that use labelled data to create a semantically mean-
ingful embedding, this is a large reduction in supervision
requirements. For example, for quantitative comparisons
with methods based on compositional learning in Section 4,
their proposed models are trained with the full CelebA [15]
training set, which contains about 160, 000 faces.

To enforce the orthogonality constraint, at each itera-
tion of learning the attribute vectors, we replace the learned
set of attribute directions with its nearest orthogonal set.
This problem is closely related to Procrustes problems, in
which the goal is to find the closest orthonormal matrix
to a given matrix [7]. Algorithm 1 summarizes the oper-
ations performed at each iteration on the learned attribute
directions to find their nearest orthogonal set. In short, a
matrix F is created whose columns are the ℓ2-normalized
version of learned directions. Then, the nearest orthonor-
mal matrix to F is computed by finding the matrix F̂ that
minimizes ∥F − F̂ ∥2F , such that F̂

T
F̂ = I , where ∥.∥F

denotes the Frobenius norm and I is identity matrix. It
can be shown that the solution to this problem is given by
F̂ = F (F TF )−

1
2 . Then, the columns of the orthonormal

matrix F̂ are rescaled to have the same norms as F .
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Algorithm 2 Extracting Orthogonal Basis Set for Disentangled
Semantics
Input: Latent vectors {w+

n }Nn=1 and their attribute labels
{yn}Nn=1,yn ∈ {0, 1}M , classification loss function
Lc, regularization parameter λ, and a learning rate β

Output: A set of M orthogonal and sparse vectors, each
corresponding to an attribute direction

1: Initialize the attribute directions {f+
m}Mm=1 and biases

bm randomly
2: repeat
3: for each attribute m = 1, . . . ,M do
4: Calculate ŷm,n = f+

m

T
w+

n + bm
5: Compute Loss Lm =

∑
n Lc(ym,n, ŷm,n) +

λ∥f+
m∥1

6: f+
m = f+

m − β∇fLm

7: bm = bm − β∇bLm

8: end for
9: Replace {f+

m}Mm=1 with its nearest orthogonal set us-
ing Alg 1

10: until convergence
11: Normalize f+

m = f+
m/∥f+

m∥2,∀m
12: return {f+

m}Mm=1

Algorithm 2 provides the steps to extract the orthogo-
nal sparse basis set, in more details. At each iteration, af-
ter updating all the attribute directions using the gradient
of the loss function, Algorithm 1 is used to enforce the or-
thogonality condition, by projecting the current iterate onto
the feasible set (set of orthonormal matrices). In optimiza-
tion literature, this feasible set is referred to as Stiefel man-
ifold and the act of projection is referred to as retraction. It
is shown that gradient descent with retraction onto Stiefel
manifold converges to a critical point, under very mild con-
ditions (see Theorem 2.5 in [2]). Thus, Algorithm 2 is able
to find the orthogonal basis set in a convergent manner. For
our experiments, similar to prior research [25], we use hinge
loss as the classification loss function Lc.

3.2. Retrieval Using Orthogonal Decomposition

Dissimilarity decomposition and preference assign-
ment: Given the obtained set of orthonormal directions,
the query image w+

q , and any other latent vector w+, we
decompose the dissimilarity vector w+

q −w+ into its com-
ponents. This can be done by projecting the dissimilarity
vector onto each of the M attribute directions as:

dF = F T (w+
q −w+) = F Tw+

q − F Tw+, (1)

where columns of F ∈ Rd+×M contains the M orthonor-
mal vectors obtained by Algorithm 2. mth entry of dF ∈
RM represents the inner product of w+

q − w+ with f+
m.

dF is the component of the dissimilarity vector that lies in-
side the subspace spanned by our M attribute directions.
We can also compute the residual displacement that is not

represented in this subspace as:

dI = (w+
q −w+)−PF (w

+
q −w+)

= (I −PF )(w
+
q −w+),

(2)

where PF = FF T ∈ Rd+×d+

is the orthogonal projection
matrix onto the subspace spanned by these vectors. This
residual subspace contains information about the identity as
well as other visual and semantic attributes not included in
our M predefined facial attributes. Therefore, for a given
query latent vector w+

q and the attribute preference vector
pq , we propose the following weighted distance metric from
any other latent vector w+ as:

d(w+
q ,w

+,pq) = dT
FPdF + ∥dI∥22, (3)

where P is an M×M diagonal matrix, whose diagonal en-
tries contain the preference vector pq . The first term is the
weighted Euclidean distance across different attribute direc-
tions (weighted attribute-aware distance), while the second
term is the distance in the subspace not spanned by these
directions (attribute-independent distance). This gives the
user the ability to fine-tune the contribution of each compo-
nent to achieve the desired result. In the special case, where
P is set to identity matrix, this distance metric reduces to
simple Euclidean distance in the latent space, ∥w+

q −w+∥22.
Adjusting attributes: As mentioned earlier, we can ad-

just the mth attribute in the query by moving its latent vec-
tor, w+

q , along the direction corresponding to the mth at-
tribute, f+

m, i.e., w+
q + αf+

m. Due to the definition of dI

and dF , this operation will not affect dI , as it represents the
displacement in the subspace not spanned by the attribute
direction. Furthermore, such adjustment will only affect the
mth entry of dF . We can write dF for the adjusted latent
vector as:

dF = F T (w+
q + αf+

m)− F Tw+, (4)

which, due to orthonormality, simply translates into adding
α to the mth entry of F Tw+

q . Multiple attributes can be
adjusted at the same time by modifying their corresponding
entries independently. Thus, we can manipulate the search
results by updating dF as:

dF = T (aq,w
+
q ,F )− F Tw+,

where aq ∈ [0, 1]M is the attribute intensities provided by
the user and T (.) is an affine transform that maps the range
[0, 1] to range of possible values for each entry of F Tw+

q .
The range of possible values, and therefore T (.), can be
obtained using the training set. Specifically, the output of
T (aq,w

+
q ,F ) is an M -dimensional vector, whose mth en-

try is set as aq,m(ammax − ammin) + ammin, where ammax and ammin

are the maximum and minimum value of f+
m

T
wn over all

the training feature vectors wn, respectively.
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Figure 3. Qualitative evaluation of the learned attribute directions. In each pair of images, the image on the right is synthesized after
moving the latent vector corresponding to the image on the left along an attribute direction. For attributes Black Hair and Baldness,
the baseline is affecting the smile and the eyes as well, an artifact that is not present in the image manipulated by our method. For attribute
Mustache, our method is able to add mustache to the face while not affecting the beard as much as the baseline.

Implementation Details: We encode the face images
in the training, query, and gallery sets using the StyleGAN
encoder proposed in [20], trained in an unsupervised man-
ner on FFHQ [11] dataset. This encoder is trained using the
StyleGAN generator in order to be able to map real images
onto the latent space, W+. The latent vectors, {w+

n }Nn=1,
extracted from the training set are fed to Algorithm 2 to
obtain the attribute directions {f+

m}Mm=1. For latent vec-
tor of each query image, w+

q , the dissimilarity vector is
computed by subtracting the query latent vector from each
gallery latent vector. Using Equations (1) and (2), the dis-
similarity vector is decomposed into dF and dI , which are
then used to compute the weighted distance (Equation (3)).
This weighted distance metric is used to sort all the faces in
gallery and retrieve the most similar images. The attributes
can be adjusted either by moving the original latent vector,
w+

q along the corresponding attribute direct or, as shown in
Equation (4), by modifying the projected latent vector.

4. Experiments
In this section, we evaluate our proposed face image re-

trieval framework. We employ the StyleGAN architecture
and the training details as discussed in [12]. For obtaining
the attribute directions, generating queries, and creating the
gallery set, CelebA dataset [15] is used. 20, 000 samples,
out of 160, 000 from the training set are used for training
the attribute directions, while the full test set, containing
19, 962 faces, is used for creating queries and as the gallery
data set. To the best of our knowledge, no other large-scale
face dataset provides the ground truth for a large number of
facial attributes. However, for qualitative results, we gener-
ate a much larger gallery set, containing 100, 000 faces, by
sampling from the latent space.

The search performance is quantified using two evalu-
ation metrics. Normalized discounted cumulative gain
(nDCG), which measures the similarity of the query at-
tributes, after making the adjustments specified by the user,

with the search results, while giving more weight to the top
results. nDCG is closely related to top-k accuracy for binary
attributes, while giving the top results larger weight in a
logarithmic manner (which makes it more suitable for rank-
ing problems). Furthermore, in contrast to top-k accuracy,
nDCG can be used for real-valued attributes as well. Iden-
tity Similarity is calculated by embedding all the images
onto the feature space generated by the Inception Resnet V1
architecture, as described in [26] and trained on VGGFace2
[5]. Then, the average cosine similarity between the embed-
ded feature vector of the query face and the search results is
used as a measure of identity similarity. Unless otherwise
stated, the regularization parameter λ and the learning rate
β are set to 5 × 10−3 and 10−2, respectively in Algorithm
2. λ is selected from the set {0, 10−3, 5 × 10−3, 10−2} by
validating the obtained directions on the validation set of
CelebA dataset. Best results for both the validation and test
sets is achieved for λ = 5 × 10−3. The default value for
attributes’ preference is set to 1.

Qualitative Results: Figure 3 evaluates the obtained di-
rections qualitatively for three attributes. In each pair of im-
ages, the left image is the starting point (image synthesized
using a latent vector), and the image on the right shows the
same image after adjusting a certain attribute (the image
synthesized after moving the latent vector along the direc-
tion corresponding to the attribute). The top row illustrates
the results obtained using the directions employing our pro-
posed method and the middle row shows the results ob-
tained by method in [25]. We argue that our proposed sparse
attribute directions is able to preserve the identity better and
also able to disentangle the attributes more accurately. For
example, for attributes Black Hair and Baldness, the
direction obtained by [25] is affecting the smile and shape
of the eyes as well, an artifact that is not present in the image
manipulated by our method. For attribute Mustache, our
method is able to add mustache to the face while not affect-
ing the beard as much as the baseline. This is due to the fact
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Table 1. nDCG and identity similarity for different attribute-guided image retrieval methods, averaged over 1000 queries.
Number of retrieved images 5 10 20

Method Preference nDCG Identity nDCG Identity nDCG Identity
Assignment Similarity Similarity Similarity

Attributes as Operators[17]

Not Applicable

0.730 0.824 0.720 0.823 0.711 0.824
TIRG [29] 0.794 0.847 0.781 0.844 0.776 0.840
Concat 0.804 0.841 0.806 0.838 0.805 0.822
Concat++ 0.812 0.829 0.814 0.827 0.795 0.835
TIRG++ [29] 0.822 0.830 0.813 0.827 0.814 0.824

InterFaceGAN [25]
No Preference 0.568 0.838 0.570 0.835 0.571 0.832

Identity Constrained 0.822 0.859 0.813 0.849 0.801 0.841
Best nDCG 0.905 0.824 0.893 0.820 0.881 0.817

Ours
No Preference 0.595 0.849 0.586 0.845 0.583 0.841

Identity Constrained 0.858 0.864 0.847 0.855 0.835 0.846
Best nDCG 0.923 0.848 0.917 0.827 0.909 0.833

that, by enforcing sparsity, only the most relevant entries,
and therefore layers, of the latent vector are modified.

Figure 4 shows a few examples of retrieval results us-
ing the synthetic gallery set. It is clear that our retrieval
approach performs well on different attributes for both ad-
justing and emphasizing the attributes. It also shows that,
our approach is able to adjust and emphasize multiple at-
tributes at the same time, without affecting the other at-
tributes much. For example, the last row in Figure 4(a)
shows the results after adjusting three attributes, namely
Bangs, Black hair, and Eyeglasses. Similarly, in
the last row of Figure 4(b), the results are retrieved af-
ter adjusting attribute Smile and emphasizing attribute
Baldness, by assigning it a larger value.

Quantitative Results: Table 1 shows the nDCG and
identity similarity for adjusting a single attribute using dif-
ferent attribute-guided image retrieval methods, averaged
over 1000 queries. TIRG stands for Text Image Residual
Gating, which uses text input to adjust the attributes [29].
We use the implementation provided by authors of [29, 17]
to train the baseline models, using the full CelebA dataset.
Similar to TIRG, Concat uses text queries and concate-
nates the feature vector extracted from the text input with
feature extracted from the query image to perform the re-
trieval. TIRG++ and Concat++ stand for their improved
versions, which does not use triplet loss, as discussed in
detail in [29]. Unlike our proposed method, text inputs are
not able to adjust the attributes in a continuous fashion and
can only remove or add the attributes. Thus, for a fair com-
parison, we limit the attribute intensity vector provided to
our framework to a binary vector, i.e., aq ∈ {0, 1}M . How-
ever, our framework can also be used for continuous ad-
justment of attributes aq ∈ [0, 1]M . Furthermore, the com-
positional learning methods cannot assign different prefer-
ence values to different attributes. Thus, we evaluate the
GAN-based methods under four different settings: (i) Best
nDCG: This setting represents the case where the attribute
preference for the changed attribute (not all the attributes)
is set such that the best nDCG is achieved for each query.
In this scenario, the nDCG of our method is significantly

Query

Default result (no manipulation):

Adding Bangs (adjustment):

+ Adding Black hair (adjustment):

+ Adding Eyeglasses (adjustment):

(a)

Query

Default result (no manipulation):

Emphasizing Baldness (attribute preference):

+ Removing Smile (adjustment):

(b)

Figure 4. Qualitative evaluation of face image retrieval by consid-
ering both the adjustment and attribute preference. The user is able
to both adjust multiple attributes in the query face and to customize
the similarity metric by assigning preference to the attributes.

larger than the methods based on compositional learning,
while the achieving the same identity similarity. (ii) Iden-
tity constrained: The attribute preference is set such that
the identity similarity is at least as good as the best com-
positional learning method for each query. In this sce-
nario, our proposed framework outperforms other competi-
tors both in nDCG and identity similarity. As expected, the
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Figure 5. Impact of attribute preference on nDCG and identity sim-
ilarity of the search results obtained by our method.
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Figure 6. The energy concentrated in the top, most relevant, en-
tries of the attribute vectors, averaged over all the attributes, for
different values of the sparsity regularization parameter λ.

nDCG improvement is not as large as the previous scenario.
This shows that our method is able to preserve identities,
while improving the attribute similarities. (iii) No prefer-
ence: This setting corresponds to the scenario where user
has no preference and all the attributes are treated the same.
In this setting GAN-based methods underperform compo-
sitional learning methods in terms of nDCG. This shows
the importance of assigning preference in the GAN-based
methods. It is also worthwhile to mention that the composi-
tional learning methods implicitly assign preference to the
attribute being adjusted, as these models are trained using
losses to adjust attributes. (iv) Fixed attribute preference
value: In this setting, the preference value is the same for
all the queries and does not depend on nDCG or identity
similarity. Figure 5 illustrates the average top-5 nDCG and
identity similarity for each value of attribute preference, av-
eraged over all the queries. As expected, as we increase
the preference for the target attribute, the attribute nDCG
increases while the identity similarity decreases. However,
even for the largest average nDCG, i.e., maximum attribute
preference, the identity similarity is still comparable to the
baselines in Table 1. This shows how the user can utilize
the attribute preference to achieve the desired trade-off be-
tween identity and attribute retrieval. We want to stress the
fact the preference value is application-specific and cannot
be optimized using the validation set.

Finally, to show the impact of sparsity on the selectivity
of the attribute directions, Figure 6 illustrates the amount of

Table 2. Top-5 nDCG and identity similarity for different levels
of sparsity, i.e., different values of the regularization parameter λ,
averaged over 1000 queries.

Regularization parameter nDCG Identity Similarity
λ = 0 (no sparsity constraint) 0.826 0.863
λ = 10−3 0.847 0.863
λ = 5× 10−3 0.858 0.864
λ = 10−2 0.849 0.866

energy in the most relevant entries of the attribute vectors
for different values of sparsity regularization parameter λ,
averaged over all the attributes. For instance, for the vectors
trained using our method with λ = 5 × 10−3, about 1000
entries contain 95% the energy of the vector. This means
that, in most cases, only 10% of the entries of a latent vec-
tor are modified to adjust the corresponding attribute. On
the other hand, for vectors obtained using [25], the same
amount energy is distributed over more than 5, 000 entries.
Table 2 shows the impact of sparsity on the image retrieval
performance. It is clear that increasing λ up to 10−2 on the
attribute direction can increase the attribute retrieval accu-
racy, in terms of nDCG, while keeping the identity similar-
ity about the same. This shows that the sparse directions
can successfully adjust the attribute, while preserving the
identity. The first row of the table, i.e., λ = 0 can also
serve as an ablation study on the impact of enforcing only
the orthogonality during the training. Comparing the results
with the result of InterFaceGAN from Table 1, we can no-
tice that, by only enforcing orthogonality, the same nDCG
can be achieved with better identity similarity. It is worth-
while to mention that since our retrieval method depends
on orthogonal decomposition of distances, we cannot report
results without enforcing orthogonality. Additional imple-
mentation details and experiments, including more retrieval
results on both CelebA and synthetic images, editing mul-
tiple attributes, and ablation study on number of training
samples are provided in the supplementary materials.

5. Conclusion
In this paper, a new formulation for face image retrieval

is proposed. The new formulation considers a query face
image, attribute modifiers, and attribute preference as in-
put constraints to retrieve the most compatible face from a
gallery set. While the attribute modifiers define which at-
tributes to manipulate in the query image, the attribute pref-
erence sets the importance assigned to each attribute when
compared to a gallery image. We propose a model that
leverages the StyleGAN latent space characteristics to learn
sparse and orthogonal attribute directions to increase con-
trol over each attribute and to allow adjusting multiple at-
tributes at the same time, while reducing unwanted changes
in the rest of the attributes. The proposed setup is evaluated
on CelebA and compared to a set of state-of-the-art base-
lines showing improved retrieval performance.
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