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Figure 1: Automatic 3d pose and shape reconstruction results with THUNDR. (Left) Input image. (Middle) Reconstructed 3d
meshes projected on the camera plane and overlayed on the image. (Right) Different viewpoint showing our intermediate
predicted marker representation (in green) and the reconstructed surface geometry. THUNDR provides automatic 3D scene
placement of the reconstructed humans under a perspective camera model.

Abstract

We present THUNDR, a transformer-based deep neu-
ral network methodology to reconstruct the 3d pose and
shape of people, given monocular RGB images. Key to
our methodology is an intermediate 3d marker represen-
tation, where we aim to combine the predictive power
of model-free-output architectures and the regularizing,
anthropometrically-preserving properties of a statistical hu-
man surface model like GHUM—a recently introduced, ex-
pressive full body statistical 3d human model, trained end-
to-end. Our novel transformer-based prediction pipeline can
focus on image regions relevant to the task, supports self-
supervised regimes, and ensures that solutions are consistent
with human anthropometry. We show state-of-the-art results
on Human3.6M and 3DPW, for both the fully-supervised
and the self-supervised models, for the task of inferring 3d
human shape, joint positions, and global translation. More-
over, we observe very solid 3d reconstruction performance
for difficult human poses collected in the wild.

1. Introduction
The significant recent progress in 3d human sensing is

supported by the development of statistical human surface
models and the emergence of different forms of supervised

and self-supervised visual inference methods. The use of
statistical human pose and shape models offers advantages
in the use of an anatomical and semantically meaningful
human body representation, during both learning and infer-
ence. Human anthropometry could be used to regularize
a learning and inference process, which, in the absence of
such constraints, and given the ambiguity of 3d lifting from
monocular images, could easily run haywire. This is espe-
cially true for unfamiliar and complex poses not previously
seen in a ‘training set’—as they never all are. Semantic
models offer not only correspondences with image detector
responses (specific body keypoints or semantic segmenta-
tion maps) which can give essential alignment signals for
3d self-supervision, but can also help rule out 3d solutions
that may otherwise entirely break the symmetry of the body,
the relative proportions of limbs, the consistency of the sur-
face in terms of non self-intersection, or the anatomical joint
angle limits.

The choice of evaluation metrics has an important role,
too. For now, by far the most used representation—perceived
as ‘model-independent’—are the ‘body joints’, a popular
concept, neither by virtue of its anatomical clarity (as that
point idealization could be bio-mechanically argued against),
nor—for computer vision, and more practically—given its
lack of ground-truth observability. In practice, human ‘body
joints’ are obtained either by fitting proprietary articulated
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3d body models to marker data (internal models of the Mo-
cap system, where the assumptions and error models are
not always available) or by human annotators eye-balling
joint positions in images, followed by multi-view triangu-
lation to obtain pseudo-ground truth. While the latter have
proven extremely useful in bootstraping initial 3d predictors,
the joint-click positioning cannot be considered an accurate
anatomical reality, in any single image, and even less so,
consistently, over a large corpora, especially as for many
non-frontal-parallel poses ‘joint locations’ are difficult to
correctly identify, visually. While some form of 3d body
joint prediction error seems unavoidable under the current
ground-truth and state of the art metrics, a safeguard could
be to operate primarily with visually grounded structures and
obtain joint estimates using statistical body models, based
on their surface estimates, as just a final step.

In this paper, we rely on the visual reality of 3d body
surface markers (in some conceptualization, a ‘model-free’
representation) and that of a 3d statistical body (a ‘model-
based’ concept) as pillars in designing a hybrid 3d visual
learning and reconstruction pipeline. Markers have the ad-
ditional advantages of being useful for registration between
different parametric models, can be conveniently relied-upon
for fitting, and can be used as a reduced representation of
body shape and pose, as we will here show. Our model
combines multiple novel transformer refinement stages for
efficiency and localization of key predictive features, and re-
lies on combining ‘model-free’ and ‘model-based’ losses for
both accuracy and for results consistent with human anthro-
pometry. Quantitative results in major benchmarks indicate
state of the art performance. Extensive qualitative testing
in the wild supports the overall feasibility, and the quality
of 3d reconstructions produced by THUNDR, under both
supervised and self-supervised regimes.

Related Work: There is considerable prior work in 3d hu-
man sensing which we only briefly mention here without
aiming at a full literature review [30, 4, 23, 35, 28, 39, 29, 15,
16, 24, 6, 5, 42, 38]. Methods sometimes referred as ‘model-
based’ [39, 16, 10, 27, 14, 3, 36, 41, 2, 40, 9] rely on statisti-
cal human body models like SMPL or GHUM, whereas oth-
ers sometimes referred to as ‘model-free’ [32, 31, 13, 40, 20]
rely on predicting a set of markers or mesh positions, with-
out forms of statistical surface or kinematic regularization
based on human anthropometry. While the second class
of techniques tend to perform better in benchmarks (which
are mostly emphasizing the prediction of 3d joint locations
and occasionally joint angles), the former tend to be more
semantically and anatomically intuitive, easier to deploy in
the context of self-supervised learning, and more robust in
environments, or for poses, not encountered during train-
ing. In this work we aim to leverage the advantages of both
methods: predicting visually observable sets of markers, and
yet regularize estimates using statistical kinematic pose and

shape models. Moreover, additional innovations in the use
of multiple layers of refining visual transformers, produce
significant computational efficiency and accuracy gains in
benchmarks, for self-supervised learning, and in the wild.

2. Methodology
In this section we review our methodology including

the 3d statistical body models, the marker based-modeling,
as well as the proposed THUNDR learning and inference
architecture.

2.1. Statistical 3D Human Body Models

We use a recently introduced statistical 3d human body
model called GHUM [35], to represent the pose and the
shape of the human body. The model has been trained end-
to-end, in a deep learning framework, using a large corpus
of human shapes and motions. The model has generative
body shape and facial expressions β = (βb, βf ) represented
using deep variational auto-encoders and generative pose
θ = (θb, θlh, θrh) for the body, left and right hands respec-
tively represented as normalizing flows [37]. The pelvis
translation and rotation are controlled separately, and rep-
resented by a 6d rotation representation [43] r ∈ R6×1 and
a translation vector t ∈ R3×1 w.r.t the origin (0, 0, 0). The
mesh consists of of Nv = 10, 168 vertices and Nt = 20, 332
triangles. To pose the mesh, we apply the GHUM network
V(θb, βb, r, t) ∈ RNv×3 to obtain the posed vertices. We
omit the facial expressions and left and right hand poses, as
we here focus on main body pose and shape. We also drop
the b subscript for convenience.
Camera Model We adopt a pinhole camera model, with
approximated intrinsics C = [fx, fy, cx, cy]

⊤ [38] and as-
sociated perspective projection operation x2d = Π(x3d,C),
where x3d ∈ R3×1. Because we work with cropped images,
we also adapt our intrinsics, such that projecting the same
3d points – either in the cropped image or the original, full
image – would give the same alignment. The transformation
of image intrinsics C into corresponding crop intrinsics Cc

is given by

[C⊤
c 1]

⊤ = K[C⊤1]⊤, (1)

where K ∈ R5×5 is the scale and translation matrix, adapt-
ing the image intrinsics C.

By using a perspective camera model, we ensure that re-
constructions are obtained in camera space. Hence, we have
meaningful translation and relative positioning of one sub-
ject in the scene (or relative positioning of multiple subjects)
when reconstructing from monocular images. A perspective
model is a much more accurate and general representation
of the imaging transformation compared to an orthographic
one. It is in our view desirable in all cases, in order to go
beyond showing just model projections or reconstructions in
a human-centred coordinate system.
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2.2. Marker-based Modelling

Current model-based architectures directly predict spe-
cific shape or pose parameters from a raw image. Inspired
by model-free methods where weaker constraints are applied
on outputs, we adopt an intermediate representation given
by 3d surface markers. These can capture human shape and
pose and we can predict them directly in a 3d camera space.

However, training purely model-free methods based on
surface markers (as opposed to joint locations), faces ad-
ditional challenges for both supervised and unsupervised
learning. First as such markers are different from joint posi-
tions, very few datasets have labels for them. Markers may
be available for motion capture datasets in both 2d and 3d,
but training a reliable detector is not necessarily easy espe-
cially if one seeks generalization outside the lab, where most
marker-based systems operate. For self-supervised learning,
where additional forms of semantic (body part segmena-
tion) analysis are often necessary, the lack of a statistical
body model would render such potentially useful signals un-
available. Finally—and especially when learning with small
supervised training sets or for exploratory self-supervised
learning—, the lack of regularization given by a body model
could lead to 3d predictions with inconsistent anthropometry,
further derailing a convergent learning process.

Our approach is to use a 3d surface marker set as an
intermediate representation proxy, controlled by both sur-
face (mesh) properties and the parameters of a statistical
3d human pose and shape model (GHUM). For practical
considerations, and without loss of generality, we adopt the
Human3.6M marker set that consists of Nm = 53 units,
see fig. 2 for details. We next describe two network heads,
which given any 3d markers M ∈ RNm×3 achieve the fol-
lowing: (i) reconstruct the GHUM mesh through a simple
architecture Vd(M) ∈ RNv×3, and (ii) recover the cor-
responding GHUM parameters (θ, β, r, t) from M, so we
can also recover an anthropometric mesh equivalent to Vd,
Vp(θ, β, r, t).

Training the Marker-based Poser (MP) The markers are
essentially free 3 dof variables, but they follow the given sur-
face placement description, in our case, the VICON protocol.
To train a network that maps markers to vertices, we need a
dataset of corresponding markers and vertices.

We take a synthetic sampling approach based on our
GHUM model. Given generative codes for pose and shape
θ, β ∈ N (0; I), r drawn from the Haar distribution on
SO(3), and t uniformly sampled from a (−20 . . . 20) ×
(−20 . . . 20)× (−20 . . . 20) meters box, we produce a posed
GHUM sample mesh V(θ, β, r, t). The associated markers
can be retrieved by a simple (fixed) linear regression matrix
W ∈ RNv×Nm , such that M = WV(θ, β, r, t). In our
experiments, we noticed that injecting noise at this point, i.e.
M+N (0; ϵI), supports the more accurate retrieval of the

full mesh given real, imprecise markers that one could find in
motion capture datasets such as CMU or Human3.6M, or as
produced by an image-based marker regressor. An overview
of the poser function, denoted MP is given in fig. 2. We
denote Vd the mesh that is directly predicted from mark-
ers. We denote Vp the mesh that is parametrically obtained
by posing the GHUM model given parameters (θ̃, β̃, r̃, t̃)
regressed from markers. For training, we use the loss

L = Lp(V,Vp) + Ld(V,Vd), (2)

where LP and LV are the mean-per-vertex errors, computed
using a L2 metric, between the input mesh, and the paramet-
ric and direct meshes, respectively. We also experimented
with supervising (θ̃, β̃, r̃, t̃) directly, but learning was not
successful. To make the training process easier, we subtract
the mean marker position (computed as the 3d centroid of
each M) before regressing θ, β and r and we obtained lower
reconstruction errors using this modification.

2.3. THUNDR

In fig. 3 we show an overview of our proposed hybrid
learning architecture for monocular 3d body pose and shape
estimation. Our architecture is different from existing pose
and shape estimation methods, that directly regress the pa-
rameters of a human model (i.e. SMPL or GHUM) from a
single feature representation of an image. We instead regress
an intermediate 3d representation in the form of surface land-
marks (markers) and regularize it in training using a statisti-
cal body model. Moreover, we preserve the spatial structure
of high-level image features by avoiding pooling operations,
and relying instead on self-attention to enrich our representa-
tion [33]. We draw inspiration from vision transformers [8],
as we also use a hybrid convolutional-transformer architec-
ture, and from [38], as we explore the idea of iteratively
refining estimates by relying on cascaded, input-sensitive
processing blocks, with homogeneous parameters.

Our network receives as input a cropped image I ∈
RW×H×3 of a person, together with the pseudo ground-
truth camera intrinsics Cc ∈ R1×4 of the crop (see § 2.1).
We apply a convolutional neural network (CNN) on the input
image and extract a downsampled feature map representation
F ∈ RW

32×
H
32×D. We flatten the feature map along the spatial

dimensions to get a sequence of N = W
32 × H

32 tokens. We
append to each token the camera intrinsics and get our input
feature sequence Fs ∈ RN×(D+4). This sequence is linearly
embedded by means of matrix E ∈ R(D+4)×D′

, where D′

is the embedding dimensionality, and concatenate it with
an extra learnable [markers] token, Fm ∈ R1×D′

. Next,
learnable positional embeddings Epos ∈ R(N+1)×D′

are
added to the sequence. Different from standard transformer
architectures, we use a single transformer encoder layer [33],
TL, to iteratively refine our input representation for a num-
ber of L steps. We collect at each stage l ∈ {1 . . . L}, a
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Figure 2: Our marker poser is based on a constrained marker-prediction pipeline which auto-encodes an initially generated, body mesh that
is consistent with the human anthropometry V into a set of markers M via a linear layer characterized by a matrix W. The markers are then
used to predict both the GHUM parameters, resulting in a mesh Vp (we center the markers before regressing θ, β and r) and a free-form
mesh Vd. Training losses ensure the consistency between V, Vp and Vd. We also show a detail of the cannonical marker placement, as
attached on the GHUM model. Notice slight left/right and more pronounced front/back placement asymmetries that help disambiguate the
model side and facing direction.

refinement update ∆Ml ∈ RNm×3, with Nm the number of
markers, from each transformed representation Zl using a
shared MLP applied on the representation of the [markers]
token,

Z0 =

[
Fm
FsE

]
+Epos (3)

Zl = TL(Zl−1) (4)

∆Ml = MLP(Z0
l ). (5)

The refinement updates ∆Ml are added to the default marker
coordinates, M0, as

ML = M0 + λΣL
l=1∆Ml, (6)

where λ is a parameter controlling the step size. M0

are computed based on the default GHUM parameters,
(θ0, β0, r0, t0), and camera intrinsics. That is, we find the
optimal translation t∗0 such that the corresponding posed
mesh projects in the center of the image [38]. Finally, M0 is
computed as

M0 = WV(θ0, β0, r0, t
∗
0). (7)

We apply the pre-trained marker-based poser MP (see
§ 2.2) on ML in order to recover the GHUM mesh and
parameters, {Vd, θ̃, β̃, r̃, t̃}. We also compute the mesh ge-
ometry using the standard GHUM poser from the regressed
model parameters, Vp(θ̃, β̃, r̃, t̃). During training, we use a
mixed regime based on both weak 2d supervision losses and
full 3d supervision losses, where data is available.

We include regularization losses for pose and shape, as

Lps = ∥β̃∥22 + ∥θ̃∥22. (8)

For this constraint to also affect the predicted markers
ML in a direct manner, we must formulate a consistency loss
between the two representations. We set a novel loss that
measures the mean per-marker position error (i.e. MPMPE)
between the predicted markers and the markers on the sur-
face of Vp, i.e. Mp = WVp, as

Lm =
1

Nm

Nm∑
i=1

∥Mi
L −Mi

p∥2. (9)

We use a standard 2d reprojection loss measured with
respect to either annotated or predicted keypoints, j ∈ RK×2,
weighted by a per-keypoint confidence score s ∈ RK×1,
with K the number of keypoints. From our directly regressed
mesh Vd we extract 3d joints J via the standard GHUM
regressor and project them using camera intrinsics Cc to
predict 2d keypoints

Lk =
1

K

K∑
i=1

si∥ji −Π(Ji(Vd),Cc)∥2. (10)

Similarly to [38], we use a soft differentiable rasterizer
[22] to compute a body part alignment loss with respect
to either ground-truth or predicted body part maps B ∈
RW×H×15, with 15 different body part labels

Lb =
1

W ∗H

W∗H∑
i=1

∥Bi −R(Vd,Cc)i∥1, (11)
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where R is the rasterized image of the 3d body parts of Vd,
projected using camera intrinsics Cc.

Given access to 3d supervision with ground-truth vertices
Vgt and joints Jgt, we use standard vertex and 3d keypoints
losses:

Lf = λvLv(Vd,Vgt) + λjLj(J,Jgt),

with Lv the MPVE (mean per vertex error) metric and Lj the
MPJPE (mean per joint position error) metric. Parameters
λv and λj control the importance of each loss.

Finally, we can write our full loss function, as follows

L = λpsLps + λmLm + λkLk + λbLb + Lf (12)

where λ are used to weigh the different loss components.
The fully supervised loss Lf is only used if there exists 3d
ground truth information.

3. Experiments
Datasets We use two datasets containing images in-the-
wild, COCO2017 [21] (30,000 images) and OpenImages
[18] (24,000 images) for our weakly-supervised training
(WS). We use the 2d keypoint annotations where available,
otherwise we rely on a 2d pose detector to supplement miss-
ing annotations and use an additional confidence score per
keypoint.

For the fully-supervised (FS) experiments, we use two
standard datasets Human3.6M [12] and 3DPW [34]. Be-
cause the ground-truth of 3DPW is provided as SMPL [23]
3d meshes, we use GHUM fits to these meshes to report the
vertex-to-vertex errors. The MPJPE metrics are reported on
the 3d joints regressed from the ground-truth SMPL meshes,
as standard in the literature. Differently from existing meth-
ods, we use less 3d supervision, with superior results. We did
not include additional datasets such as MuCo-3DHP [25],
MPI-INF-3DHP [26] or UP3D [19], but we believe they
could be helpful in further increasing our reconstruction
performance.

Implementation details In all our experiments we use a
ResNet50 [11] backbone pretrained for the ImageNet [7]
image classification task. Our complete architecture has
25M parameters, 23.5M for the backbone and 1.5M for the
transformer layer and the MLP regressor. We use L = 4
stages, step size λ = 0.1, an embedding size 256 and 8 heads
for the MultiHeadAttention layer. We train the network for
50 epochs, with batch size of 32, base learning rate of 1e− 4
and exponential decay 0.99. Our marker poser MP has 8.5M
parameters and consists of MLPs with a hidden layer size
of 256. The network is trained for 1M steps with a batch
size of 128. All our networks were trained on a single V100
GPU with 16GB of memory. Our code is implemented in
TensorFlow.

3.1. 3D Pose and Shape Reconstruction

For this task, we report several common error metrics that
are used for evaluating the error of 3d reconstruction. Most
commonly used for 3d joint errors are mean per joint position
error (MPJPE) and MJPE-PA, which is MPJPE after rigid
alignment of the prediction with ground truth via Procrustes
Analysis. The latter metric, removes global misalignment
(i.e. scale and rotation) and mainly evaluates the quality of
the reconstructed 3d pose. For evaluating 3d shape we use
the MPVPE metric between the vertices of the predicted and
ground-truth meshes, respectively.

We evaluate our networks on the two datasets that pro-
vide 3d ground-truth information, Human3.6M and 3DPW.
For the Human3.6M dataset, there are three commonly used
evaluation protocols in the literature. Protocols P1 and P2
consider splitting the official training set into new training
and testing subsets, with subjects S1, S5-S8 for training and
S9 and S11 for evaluation. P1 evaluates on all available cam-
era views in testing, while P2 only on a single predefined
camera view (we consider this to be a highly inconclusive
protocol due to its small size and design but report on it in
order to compare to other methods). The third and most
representative protocol we consider is the official one, where
we evaluate on the hold-out test dataset of 900K samples.
We also submit predictions on the official website for other
methods (where code and models are available) to get com-
parable results. To be fair in our comparison with other
methods, we do not retrain on the whole official training
dataset. We show results for all protocols in tables 1, 3 and
5. For P1, we report results for both the weakly supervised
regime (WS) and for the mixed regime (WS+FS) in order to
compare with prior work. For the official protocol, we report
only the MPJPE rounded to the nearest integer, as this is the
format the results are returned by the official site. On all pro-
tocols and in all training regimes, we obtain state-of-the-art
results. In table 4 we report errors on the testing split of the
3DPW dataset. We obtain state-of-the-art results, in both the
WS+FS regime and the WS regime.

In fig. 4 we show qualitative reconstructions from
THUNDR in-the-wild where one can observe that direct
mesh reconstructions Vd have better image alignment in
general. We also show the image attention map for the
[markers] token, aggregated over all transformer layers. No-
tice how the network learns to focus on faces, hands and feet.

Ablation Studies In table 2, we ablate different method-
ological choices in our proposed architecture in the weakly
supervised regime and report results on protocol P2 of Hu-
man3.6M dataset. First, we change THUNDR to directly
regress GHUM parameters (i.e. β̃, θ̃, r̃, t̃) from the input im-
age, skipping our intermediate marker representation and re-
moving the marker poser MP. The convolutional-transformer
architecture stays mostly the same, with some minor mod-
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Figure 3: Overview of our proposed THUNDR architecture, to estimate the parameters of a generative human model (GHUM). (Top) Given
an input image, we first use a CNN to extract a feature map F ∈ RW×H×D , where W and H represent the spatial extent, and D the number
of channels per feature. In this example W = H = 4. We serialize the feature map and concatenate to each feature the camera intrinsics of
the image, C. Next, we take our sequence, linearly embed it and add positional encoding. We also add an extra learnable [markers] token to
the input. This representation is iteratively transformed L times through the same transformer encoder layer with learnable weights Θ. At
each transformation stage l, we gather the representation of the [markers] token, feed it through an MLP and regress the marker coordinates
refinement ∆Ml. (Bottom) We compute the default marker coordinates M0 as a function of the image camera intrinsics and default GHUM
model parameters. The regressed marker coordinates displacements are added to it and the result represents the final estimated marker
coordinates ML. We use the pre-trained marker-based poser MP to get our predicted GHUM model vertices and parameters.

Method MPJPE-PA MPJPE Translation Error
HMR (WS) [15] 67.45 106.84 NR
HUND (SS) [38] 66.0 102 175.0

THUNDR (WS) 62.2 87.0 161.6

HMR [15] 58.1 88.0 NR
HUND [38] 53.0 72.0 160.0

THUNDR 39.8 55.0 143.9

Table 1: Performance of different pose and shape estimation methods on the Human3.6M dataset, with training/testing under protocol P1.

ifications to accommodate more output variables (i.e. we
use 4 extra input tokens, one for each GHUM parameter,
instead of 1). This performs worse than our proposed ar-
chitecture THUNDR and this shows that our intermediate

marker representation is easier to learn from image features.
Next, as in our full method we only use the direct mesh
Vd, we also show the errors if we instead evaluate on the
parameteric mesh Vp (we denote this by THUNDR-Vp).
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Figure 4: Results of THUNDR on images in the wild. From top to bottom: (i) input image (ii) direct mesh reconstructions Vd (iii)
parameteric mesh reconstructions Vp. Notice that direct mesh reconstruction aligns better, particularly the feet and the limbs. (iv)
reconstructions seen from a different viewpoint with regressed marker representations shown in green. (v) the image attention map for the
[markers] token, aggregated over all transformer layers.

These results are also better than THUNDR-GHUM, but
worse than THUNDR. This again suggests the utility of our
intermediate representation and the importance of working
with two separate mesh reconstructions.

Marker Poser We present more details on the training
of the marker poser and its additional benefits, outside of
the transformer-based 3d pose reconstruction architecture.
During training, we experiment with 4 levels of Gaussian
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Method MPJPE-PA MPJPE
THUNDR-GHUM (WS) 63.5 95.4

THUNDR-Vp (WS) 61.8 88.3

THUNDR (WS) 59.7 83.4
Table 2: Ablation study on different variations of THUNDR:
THUNDR-GHUM directly regresses GHUM parameters from the
image and THUNDR-Vp is our standard version were we instead
evaluate on the predicted parameteric mesh Vp. This evaluation is
done in a weakly supervised regime and we report error metrics on
Human3.6M protocol P2.

noise added to the markers, as ϵ ∈ {0, 20, 50, 100} mm. We
ablate each one of the trained marker poser models on the Hu-
man3.6M ground-truth marker data. The best performance in
reconstruction is achieved for the network with ϵ = 50 mm.
This model is used in all of our other experiments. During
training, the error on the direct mesh reconstruction reaches
25 mm MPVPE, while the parameteric mesh reconstruction
reaches 37 mm MPVPE.

Mesh Fitting We test our marker-based poser on the Hu-
man3.6M dataset, for which the authors shared 3D marker
positions for the training data. We fit an associated GHUM
mesh in two ways: (i) by minimizing an energy that takes
into account 3d marker ground truth, 2d reprojection errors
for all GHUM 3d body joints (including hands and face) and
a semantic alignment cost, and ( ii) by simply running our
trained marker poser on the ground-truth 3d marker posi-
tions to produce a mesh Vd. For a sequence fitting example,
see our Sup. Mat. First, we compute the mean per-marker
error for the models Vgt obtained from energy optimization
to ground-truth makers Mgt (i.e. those recovered from mo-
cap data). This gives an error of 38.4 mm, with an average
processing rate of 0.15 frames/second. Second, we com-
pute the errors of markers placed on the predicted mesh Vd

given ground-truth marker positions. This achieves a slightly
higher error of 44.3 mm, but with an average processing rate
of 1000 frames/second, when ran sequentially. Note that
our marker poser has never seen the marker sequences of
Human3.6M during training, as the marker poser was trained
with samples drawn from a normalizing flow prior based on
the CMU motion capture dataset [1].

Method MPJPE-PA MPJPE
HMR [15] 56.8 88.0

GraphCMR [17] 50.1 NR
Pose2Mesh [5] 47.0 64.9

I2L-MeshNet [27] 41.1 55.7

SPIN [16] 41.1 NR
METRO [20] 36.7 54.0

THUNDR 34.9 48.0

Table 3: Performance of different pose and shape estimation meth-
ods on the Human3.6M dataset, protocol P2.

Method MPJPE-PA MPJPE MPVPE
HUND [38] (SS) 70.3 98.1 NR
THUNDR (WS) 59.9 86.8 NR
HMR [15] 81.3 NR NR
GraphCMR [17] 70.2 NR NR
SPIN [16] 59.2 NR 116.4

Pose2Mesh [5] 58.9 89.2 NR
I2L-MeshNet [27] 57.7 93.2 NR
HUND [38] 56.5 87.7 NR
METRO [20] 47.9 77.1 88.2

THUNDR 51.5 74.8 *88.0

Table 4: Performance of different pose and shape estimation meth-
ods on the 3DPW dataset.*Shape evaluation is done on GHUM.

Method MPJPE
HMR [15] 89

SPIN [16] 68

HUND [38] 66

THUNDR 53

Table 5: Performance of different methods on the Human3.6M
official, representative held-out test set, containing 900K samples.

Ethical Considerations Our methodology aims to de-
crease bias by introducing flexible forms of self-supervision
which would allow, in principle, for system bootstrapping
and adaptation to new domains and fair, diverse subject distri-
butions, for which labeled data may be difficult or impossible
to collect upfront. Applications like visual surveillance and
person identification would not be effectively supported cur-
rently, given that model’s output does not provide sufficient
detail for these purposes. This is equally true of the creation
of potentially adversely-impacting deepfakes, as we do not
include an appearance model or a joint audio-visual model.

4. Conclusions
We have presented THUNDR, a transformer-based deep

neural network methodology to reconstruct the 3d pose and
shape of people, given monocular RGB images. Faced with
the difficult issue of handling not directly observable human
body joints, on which nevertheless many error metrics are
based, and aiming at both reconstruction accuracy and good
self-supervised learning and generalization under anthropo-
metric human body constraints, we propose a novel model
that combines a surface-marker representation with 3d statis-
tical body regularization. The model is designed around a
learnable pipeline that refines multiple transformer layers for
computational efficiency and for precise, task-sensitive, im-
age feature localization. We demonstrate state-of-the-art re-
sults on Human3.6M and 3DPW, in both the fully-supervised
and the self-supervised regimes.
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