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Abstract

We propose IntraTomo, a powerful framework that com-
bines the benefits of learning-based and model-based ap-
proaches for solving highly ill-posed inverse problems in the
Computed Tomography (CT) context. IntraTomo is composed
of two core modules: a novel sinogram prediction module,
and a geometry refinement module, which are applied it-
eratively. In the first module, the unknown density field
is represented as a continuous and differentiable function,
parameterized by a deep neural network. This network is
learned, in a self-supervised fashion, from the incomplete
or/and degraded input sinogram. After getting estimated
through the sinogram prediction module, the density field is
consistently refined in the second module using local and
non-local geometrical priors. With these two core modules,
we show that IntraTomo significantly outperforms existing
approaches on several ill-posed inverse problems, such as
limited angle tomography with a range of 45 degrees, sparse
view tomographic reconstruction with as few as eight views,
or super-resolution tomography with eight times increased
resolution. The experiments on simulated and real data
show that our approach can achieve results of unprecedented
quality.

1. Introduction
Computed tomography (CT) is a powerful imaging tool

that enables the examination of internal structures of the
scanned object in a non-destructive and non-invasive manner.
The computed tomography technique is often associated
with medical X-ray tomography. However, it has numerous
other applications at different scales and involving various
techniques to produce the projections such as: industrial
X-ray CT [17, 69], synchrotron X-ray tomographic mi-
croscopy [19, 56], electron tomography microscopy [46] and
visible light tomography [31, 70]. Tomography techniques
operate on a set of projections of the scanned object from
different angles. Reconstruction algorithms are applied to
retrieve a density field representing the object from these
projections. Mathematically, the reconstruction process is an

Figure 1. (a) Taking a limited angles CT measurements as input,
(b) our proposed method successfully restores the 3D density
field with both high-frequency details and geometric structures
for a Covid19 patient (covid19-A-0070) [30]. (c) A comparison
with other SOTA approaches using PSNR and SSIM metrics. A
stochastic model-based approach [13] (Stochastic) fails to retrieve
the field’s boundary (red box). Deep shape image prior [23, 62]
(Deep prior) struggles to reconstruct fine details (black box).

inverse problem with Nv unknowns (number of pixels/voxels
representing the object) calculated using the Nθ×Np known
parameters (number of projections times the number of pix-
els for each projection). Ideally, the acquisition process
provides a large number of projections that are uniformly
sampled over the angular space.

However, in several applications, the data is captured for a
limited number of projections or using a non-uniform angular
sampling. For example, in medical CT, reducing the number
of projections is employed as means to reduce the dosage of
the X-ray radiation. On the other hand, in tilt-series electron
tomography microscopy, the scanned sample can only be
rotated for a limited range of angles, which results in a non-
uniform angular sampling and a corresponding loss of resolu-
tion in the axial direction, also known as the “missing wedge
problem”. The former acquisition scenario is known as
sparse-view tomography, while the latter is known as limited-
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angle tomography. These two scenarios illustrate examples
where the tomography problem becomes highly ill-posed
and underdetermined. In such scenarios, the commonly used
analytical reconstruction Filtered Back-Projection (FBP) and
its 3D variant FDK [21] become obsolete. Two families of
approaches have been proposed in the literature to deal with
the ill-posedness in those scenarios. The first one is the
model-based optimization approaches that introduce non-
linear regularizers (priors) [42, 73, 67, 20] to compensate for
the missing information. These methods typically employ
iterative solvers like the Algebraic Reconstruction Technique
(ART) and its variants. They are flexible and achieve good
results. However, they are memory-hungry and require
substantial computational time. More recently, a second
family of approaches emerged with the rise of deep learning
techniques. For specific applications and scenarios, these
approaches achieve outstanding performance [4, 45, 35].
Nevertheless, for supervised learning methods [2], the time
for training and the difficulty in collecting enough labeled
training data are issues in most applications.

In conventional deep learning applications to image analy-
sis, the neural networks (NNs) are trained and tuned using ar-
rays of pixels to represent the images. However, recent stud-
ies [54, 50] show that NN based approaches fail to recover
the high frequency details of the targets [48, 50, 53, 60],
since a rapid decay can be observed for the eigenvalue
spectrum of these networks, which is called “spectral bias”
[60, 54, 6]. To overcome the limitation of these biases,
some coordinate-based neural approaches were proposed
[50, 18, 7, 58]. By such powerful representations, a natural
continuous version of an unknown target can be provided.

We incorporate recent coordinate-based neural ap-
proaches [50, 60], which act as a sinogram prediction
prior, into our forward-backward optimization framework [8]
called IntraTomo. By combining the sinogram prediction
prior and geometric refinement priors, we successfully com-
bine the benefits of model-based and data-driven techniques
for tackling various tomographic imaging tasks.

In summary, the main contributions of our proposed ap-
proach are:

• We propose a novel self-supervised tomographic recon-
struction framework that only uses the object’s own
projections as training data. We are the first to suc-
cessfully combine the benefits of learning-based and
model-based approaches in a self-supervised fashion.

• We show state-of-the-art results on several challenging
ill-posed tomography problems: limited angle tomog-
raphy, sparse view tomography, and super-resolution
tomography. We validate our improvements compar-
ing to multiple state-of-the-art baseline methods using
quantitative and qualitative metrics on a wide range of
2D and 3D, simulated and real CT data.

• We demonstrate our framework’s ability to solve in-
verse problems in the projections space, such as sino-
gram extrapolation, inpainting, super-resolution and
denoising.

• The code and data are publicly available1.

2. Related work
Tomographic reconstruction. Since its invention in the
early 1970s, the Computed Tomography (CT) technique
has been established as a non-invasive and non-destructive
tool for inspecting scanned objects’ internal structures. It
has applications in many varied fields, from medical di-
agnosis [64, 41], material and geosciences [10, 22, 72],
industrial inspection [55] to security [47]. Computed tomog-
raphy encompasses several approaches for reconstructing
a density field representing the scanned object from the
acquired projections (also called sinogram). The commonly
used approach is Filtered Back-Projection (FBP) and its
3D cone beam variant, introduced by Feldkamp, Davis,
and Kress (FDK) [21]. This method provides an analyt-
ical reconstruction based on the Radon transform and its
inverse. The success of these transform-based approaches
rests on their fast reconstruction times, as well as reason-
able quality results when a sufficient number of projections
is available. However, when the tomographic problem is
highly ill-posed like in the sparse-view scenarios, these
methods’ reconstruction quality is inferior. The second
family of tomographic reconstruction methods is known as
the iterative methods. These approaches, like The Algebraic
Reconstruction Technique (ART) [28] and the Simultaneous
Algebraic Reconstruction Technique (SART) [3], solve a
discrete formulation of the reconstruction problem. These
approaches can be combined with regularization terms in an
optimization framework. This makes them well suited to the
ill-posed tomographic problems like sparse views [36, 51],
limited angles [37, 65], superresolution tomography [63, 67],
or dynamic tomography [68, 69, 34]. With the rise of AI,
several deep-learning approaches have been introduced to
the computed tomography field. These methods follow
three different strategies: (1) Preprocessing networks ap-
plied on the projections to reduce the ill-posedness of the
reconstruction problem [4, 61]. (2) Postprocessing networks
that improve the quality of the reconstructed object: [45, 26].
(3) Operator-based learning, where a differentiable forward
model is included in the network [2, 40, 14]. One of the
main downsides of these deep learning approaches is the
large number of datasets needed for network training, which
is very hard to obtain in practice. Moreover, it is difficult to
transfer the network learning from one application domain
to another since the CT data statistics are domain-specific

1https://github.com/vccimaging/IntraTomo
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Figure 2. Overview of the architecture of our framework.

(for example, please see the Supplement for generalization
experiments for FBPConvNet [39]). We propose a self-
supervised learning-based (SSL) reconstruction approach
that can handle most ill-posed scenarios without training on
additional datasets.

Coordinate-based representations. In traditional com-
puter vision tasks, the images and volumes are usually
represented as arrays of pixels (2D) or voxels (3D). An
emerging paradigm called coordinate-based representation
(CBR) is proposed as an alternative to the discrete repre-
sentation. CBR represents the signal of interest (image or
volume) as a function of the coordinates, parameterized us-
ing a multiple-layer perceptron (MLP). In the literature, this
implicit representation was already introduced to interesting
applications, such as 3D shape reconstruction [25, 49], 3D
scene modeling [12, 24, 66], and 2D vision applications like
super-resolution [15], segmentation [71], and pixel synthe-
sis [5] to name a few. Mildenhall et al. [50] propose the
neural radiance fields (NeRF) based on a continuous implicit
representation for view synthesis tasks. By leveraging a
so-called positional encoding, and re-direction conditioning,
they successfully reconstruct scenes with high-frequency
details. Tancik et al. [59, 60] generalize the idea of posi-
tional encoding to more general Fourier features. We refer
the readers to [18] for more details about coordinate-based
representations.

3. Optimization framework

3.1. System overview

In different applications, hardware constraints or other
considerations may lead to lead to challenging CT scenar-
ios like sparse views scanning, limited angle tomography,
or super-resolution reconstruction. In the sparse views
scanning, only few projections are captured. This can be
motivated by reducing the acquisition time or limiting the
radiation dosage received by a patient. In the limited angle
scenario, the projections are captured only from a limited
range of angles. This scenario occurs when there are re-
strictions on the relative rotation between the beam source
and the scanned object. This scenario is typical for the
Cryo-Electron Microscopy (Cryo-EM) setting. Finally, in
the super-resolution problem, the desired resolution is higher
than the resolution of the captured projection. Our proposed
framework, entitled IntraTomo, tackles such highly ill-posed
inverse CT problems flexibly. IntraTomo is composed of two
complementary modules, which are iteratively applied: the
sinogram prediction module and the geometry refinement
stage (see Figure 2). The first module receives input CT
measurements acquired according to one of the challenging
CT scenarios described previously. Using a coordinate-based
representation and a differentiable projection model, we
train a fully connected multi-layer perceptron (MLP) in the
sinogram prediction module. Trained in a self-supervised
end-to-end fashion, this network allows for the estimation
of a coordinate-based representation of the scanned object’s
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density field. Thus, new CT measurements can be synthe-
sized in order to make the inverse problem well-posed. After
this first step, the estimated density field is used to initialize
the second module’s forward-backward optimization. This
geometry refinement module aims to improve the density
field’s quality iteratively by incorporating different geometry
priors. We introduce a total variation and a non-local means
regularizers to act respectively on a local and a global level
in the current work. The obtained density field is used to ac-
quire new synthetic projections. By adding these projections
to the captured one, we get a new sinogram that we pass as an
input to the sinogram prediction module, in order to improve
the predicted result. After few iterations between the two
modules of our framework, the result improves significantly.
In the following, we present our framework in more detail.

3.2. Framework details

3.2.1 Sinogram prediction module.

The sinogram prediction module is a self-supervised end-to-
end network for synthesizing the missing information from
the acquired CT projections. It is comprised of four different
(groups of) layers: the input layer, the Fourier feature projec-
tion layer, the hidden layers, and the differentiable projection
layer.

Input layer. A given scanned object is usually represented
by a 2D/3D discretized density field V ∈ RNv . Where
Nv is the number of pixels/voxels that discretize the space.
Note that, in the following, we will use the notations for
the 3D case. Nevertheless, it is straightforward to apply
our framework to reconstruct 2D density fields. We define
pi = (xi, yi, zi) as the point in the coordinate domain
associated to the ith pixel/voxel. The main task of our
sinogram prediction module is to learn a mapping function
FΘ between the coordinates (pi)i=1..Nv

and the density field
V (see Equation 1). This is done by finding the best set of
parameters Θ. Thus, our system’s input layer is the three-
dimensional coordinate point pi.

FΘ(pi) = Vi, i = 1..Nv (1)

Fourier feature projection layer. Fourier feature projec-
tion (FFP) is a technique firstly used in natural language pro-
cessing and time series analysis, and recently introduced to
the implicit representations [50, 60]. It consists of mapping
low dimensional input point pi to a higher dimension vector
M(pi), that encodes sinusoidal and cosinusoidal features
(also called Gaussian random Fourier features). The use of
this encoding layer is essential to retrieve high-frequency
details for the signal to reconstruct (see Sec. 4.1). This
mapping is given by the function M(.) as follows:

M(pi) = [sin(2π ·B · pi), cos(2π ·B · pi)] (2)

Here, B ∈ Rn×3 is a vector of frequencies sampled ran-
domly from the Gaussian distribution N (0, σ2). The stan-
dard deviation σ is a hyperparameter that controls which
frequencies the network can represent. The reconstructed
density fields may be over-smoothed if a lower value of σ
is chosen, while a higher σ value may yield over-fitted and
noisy results. In practice, this hyperparameter should be
tuned for each different task.

Hidden layers. The hidden layers consist of a seven-layer
MLP. Each of the six first layers has 256 neurons, while the
last layer has only one neuron. A Swish activation function is
applied between each two successive layers of this network.
Indeed, we notice experimentally that in the highly under-
determined inverse problems, such as the CT applications
in this paper, a Swish non-linearity performs better than
the ReLU function (please refer to the ablation study in
Section 4). Finally, a Sigmoid activation is applied to the
output of the last hidden layer. The inputs of this MLP are the
Gaussian random Fourier features from the previous layer.
The MLP predicts the corresponding density field Vi at the
location of the coordinate point pi from the input layer.

Differentiable CT projection layer. In this layer, we im-
plement a differentiable projection model. Since the CT
measurements that we have in the tomography problem are
the projections (i.e., the sinogram), the main objective of
this layer is to map the density field obtained from previous
layers to the sinogram domain. We apply a differentiable
CT projection operator in this layer that computes the Radon
transform of the density field. In this layer, we project the
density field according to a uniform and dense sampling of
the angular range: θ ∈ [0, π[ in parallel beam acquisition
scenarios or θ ∈ [0, 2π[ in the fan/cone beam scenarios.
After training, this layer gives us complete control of the
number and the sampling of the projections in the sinogram,
making the synthesis of new projections possible to augment
the captured CT measurements. Then the CT reconstruction
problem can be well-posed. Furthermore, with this layer, we
also have control over the projections’ resolution, which will
be used in the super-resolution tomography scenarios.

Loss function. We use an L2-loss between the projections
obtained after the differentiable CT projection layer and
those acquired during the scan to train in the sinogram
prediction module.

3.2.2 Geometry refinement module

By synthesizing new CT measurements, thanks to the sino-
gram prediction module, our framework restores to some
extent the damaged or missing CT information in the an-
gular/frequency domain. This leads to an improved recon-
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structed density field. However, there is still space for refin-
ing the reconstruction in the spatial domain. To this end, we
propose an optimization-based geometric refinement module.
This module combines local and global structure priors into
an optimization framework to refine the spatial domain’s
reconstructed density. This geometry refinement module can
be expressed as the following optimization problem:

V∗ = argmin
V

f(V)︸ ︷︷ ︸
DFT

+ k1 · TV(V)︸ ︷︷ ︸
local prior

+ k2 · NLM(V)︸ ︷︷ ︸
non-local prior

(3)

where V ∈ RNv is the density field. f(·) is an L2 norm data
fidelity term (DFT), which is composed of two parts:

f(V) = fcaptured(V) +W · fnovel(V) (4)

These two parts of DFT measure respectively the discrep-
ancy between the projections obtained from the density field
V and those captured by the CT scanner (fcaptured(·)), and
obtained from the sinogram prediction module (fnovel(·)).
W is a confidence-based weight matrix. Each of its entries
is in the range [0, 1] and corresponds to the weight asso-
ciated with a given synthesized view from the sinogram
prediction module. TV(·) in Equation 3 corresponds to the
total variation regularizer, chosen as the local structure prior.
While NLM(·) is the non-local means prior [11, 33, 1] which
aims to regularize the geometry information at a global level
to enhance global geometric information of the density, as
illustrated in Figure 2. k1 and k2 are respectively the relative
weights for the TV and the NLM regularizers [1] in the
optimization. The reconstruction process is first initialized
using the density field obtained as the output of the hidden
layers (see Figure 2). Then, we iteratively update it using
a forward-backward splitting solver [8]. The main advan-
tage of using this optimization algorithm is its flexibility
in incorporating different regularizers into the optimization
framework. Thus, it is straightforward to later add other
task-oriented regularizers, if needed.

4. Experimental results
Baselines. We compare our proposed method with six
baseline techniques. The first method is the FBP recon-
struction approach (i.e. FDK in 3D), since it is still the most
popular tomographic reconstruction algorithm [52]. The
second baseline is SART, a robust iterative reconstruction
algorithm [38, 3], which is flexible and can be adapted to
different camera models and applications [29, 32, 70]. A TV
regularized algorithm [27] is used as the third baseline (TV).
The stochastic primal-dual algorithm (Stochastic) [13] is
chosen as the fourth baseline since it has decent performance
on arbitrarily sampled data. The deep shape prior [23, 62]
(Deep prior) is selected as the unsupervised state-of-the-
art learning technique2. Our method without geometry re-

2https://github.com/matheusgadelha/ShapeRecDeepPrior

finement optimization (Ours (no g.r.)) is included in the
comparison as an ablation study to illustrate the impact of
each module of IntraTomo. Finally, Ours (full) refers to our
complete framework IntraTomo.

Implementation details. We implemented our frame-
work in JAX [9] using the Operator Discretization Library
(ODL) [1], to speed up the computing and to optimize the
designed differentiable network. All experiments are con-
ducted on a single RTX 2080Ti GPU. Six layers of 256
neurons each and a Swish activation between each layer
are applied in the self-training process. We use the Adam
optimizer with a learning rate of 10−3 in all experiments.
The sizes of the evaluated density fields are 256 × 256 by
default if no other specification is given. For additional exper-
imental details and results, please refer to the supplementary
material.

4.1. Ablation studies

Influence of Fourier feature projection. To demonstrate
the importance of using the FFP layer in the sinogram
prediction module, we run our framework with (W/) and
without (W/o) the FFP layer. The data used in this experi-
ment correspond to the sinogram of the PET phantom [13].
Only the first 120 angles are used from the sinogram in
order to simulate the limited angle scenario. We also add a
white Gaussian noise with a standard deviation of 5 to the
sinogram. The obtained results provided in Figure 3 (top)
show clearly the impact of the FFP layer. This layer allows
a better reconstruction of the high-frequency features both
for the density field and the sinogram. This results in a 6.38
dB PSNR improvement.

Figure 3. Ablation studies. On top we compare the network with
and without Fourier features. The PSNR and SSIM values indicate
a significant improvement when using Fourier features. On the
bottom we compare the use of ReLU vs. Swish activation functions.
The improvement in PSNR and SSIM values is more modest, but
the visual difference is still very significant.
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Influence of Swish activations. For highly ill-posed prob-
lems, the Swish activation function outperforms the ReLU
function. We visually compare these two activation functions
using a sparse view scenario with a sinogram of the Shepp-
Logan phantom (SL) with only five captured projections
and white Gaussian noise (std = 1) added to the data (see
Fig. 3 bottom). Even though the use of Swish improves the
PSNR only by 0.52 dB, we can visually notice a much better
reconstruction quality compared to the reconstruction using
ReLU.

Influence of geometric refinement priors. We demon-
strate the advantages of applying geometric refinement priors
in Figure 4 and Figure 5 (last three columns). Additional
results and extensive analysis are provided in the supplement.

4.2. Applications

Sparse view tomography. We first evaluate IntraTomo on
sparse view settings using the Shepp-Logan phantom [57]
(SL), as well as data from the BrainWeb database [16], the
ATLAS dataset [44], and Covid-19 dataset [30]. For the
first dataset, only 8 projections are used as input. While for
the two other datasets, we use 20 projections. As shown
in Figure 4, the FBP method performs worst, as this ana-
lytical approach relies heavily on a large number of input
measurements to retrieve good reconstruction results. The
TV-regularized method outperforms the iterative SART al-
gorithm. A sharper result with reasonable boundaries is
obtained from the deep prior approach. However, reason-
able geometrical details are missing with the deep prior
approach. IntraTomo (Ours (full)) produces qualitatively
better reconstructions, with a significant increase of the
PSNR and the SSIM values as shown in Table 1 (left).
Additional comparisons with the learning-based approach
FBPConvNet [39] are reported in the supplemental materials.
This technique consists in learning a network to improve the
quality of an FBP sparse reconstruction. The network was
trained using images of randomly generated ellipses and uses
50 projections. The comparisons in the supplement show that
our method produces excellent quality results over a large
set of different scene types, while FBPConvNet struggles to
generalize to more diverse scenes and even has trouble with
the SL dataset, which is comprised of ellipses at a different
scale compared to their training data.

Limited angle tomography. We also evaluate our ap-
proach on limited angle tomography, which is even more
challenging than the sparse view setting. To the best of our
knowledge, we are the first to tackle the challenging case of
angles being limited to the range of only 45 degrees with
satisfying reconstruction results. Moreover, our framework
does not need any pre-trained or additional labeled data. The
reconstructed results are shown in Figure 5. The chosen

Sparse view tomography Limited angle tomography
Covid-19 [30] Average-S Pepper Average-L

FBP [52] 11.92/ .68 11.55/ .42 12.63/ .35 11.79/ .42
SART [3] 18.48/ .80 15.30/ .52 12.55/ .36 12.39/ .46
TV [27] 21.61/ .88 21.59/ .83 15.40/ .67 16.23/ .70
Stochastic [13] 22.50/ .90 22.16/ .86 15.59/ .69 16.69/ .71
Deep prior [23] 23.55/ .90 24.06/ .87 18.12/ .83 19.53/ .80
Ours (no g.r.) 24.54/ .92 24.53/ .88 25.82/ .97 25.53/ .89
Ours (full) 27.19/ .95 27.13/ .93 28.40/ .98 26.74/ .91

Table 1. PSNR/SSIM measurements for each approach. Higher
values are better for PSNR and SSIM. Besides the measurements
for Covid-19 [30] and Pepper dataset, average measurements for
all sparse view experiments (Average-S) in Figure 4 and all limited
angle experiments (Average-L) in Figure 5 are also presented. Refer
to supplementary for more numerical analysis.

limited angle settings are more ill-posed and challenging
than the sparse view scenarios. For example, reconstructing
the SL using 45 projection angles uniformly sampled in
the range [0, π

4 [ (see the first row of Figure 5) yields worse
results than the case of 8 uniformly sampled projections in
the range [0, π[ (see the first row in Figure 4). In Figure 5,
for SL, LoDoPaB-CT data [43], Pepper, and Rose dataset,
the iterative approaches (SART and TV) outperform the
analytical solution (FBP), while the deep prior achieves
the best performance among all baselines. IntraTomo, even
without geometric refinement (Ours (no g.r.)), already re-
constructs the density field in unprecedented quality. This
result is further improved by the addition of the geometry
refinement regularization for Ours (full). The Table 1 shows
that the highest PSNR and SSIM values are obtained with
our reconstruction. Some of our experiments are done on 3D
data. A corresponding 3D rendering is shown in Figure 6.
We can see clearly that our reconstruction enables a good
retrieving of the high-frequency features, like for the rose
dataset, even though the input sinogram is incomplete.

Super-resolution tomography. Our coordinate-based rep-
resentation can be used to reconstruct volumes in varying
resolutions. We analyze this property by solving tomography
reconstruction problems in the super-resolution setting. In
the following, we generate a higher resolution density field
using a network that is trained only on the low-resolution
projections. We run this experiment on a super-resolution
phantom [13], and a real scanned pepper (see Figure 6)
captured from a Nikon XT H 255 scanner. This second
dataset was captured in a cone-beam configuration and then
reprojected according to a parallel-beam configuration. The
sinogram prediction module is first trained using projections
with fixed resolution. Then, the evaluation is started at eight
times higher resolution. The results of these experiments are
shown in Figures 7 and 8. As baseline methods, different
methods are used to provide a super-resolution version of the
sinogram. Then, the Rudin-Osher-Fatemi (ROF) approach
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Figure 4. Sparse view tomographic reconstruction. From top to bottom: reconstruction with 8, 20, 20, and 20 sparse views over 180 degrees,
respectively. PSNR(dB) and SSIM are shown for each approach in Table 1. For visibility, we rescaled the input sinogram and assigned
different colormaps to different datasets.

Figure 5. Limited angle tomographic reconstruction, where the input measurements are captured respectively from an angluar coverage of
45◦, 45◦, 60◦, and 90◦ for Sheppe-Logan (first row), the LoDoPaB-CT dataset (second row), the Pepper dataset (third row), and the rose
dataset (last row). PSNR(dB) and SSIM are shown in Table 1 for each approach. For better visualization, we rescaled the input sinogram
and assigned different colormaps to different datasets.

[27] is applied to these super-resolved projections to recon-
struct higher resolution density fields. Surprisingly, even
if only 64 measurements from each angle are used in the
training process, the Figure 8) shows that the high-resolution
sinogram (512 measurements for each angle) evaluated on
the model is very close to the ground truth sinogram. Fur-
thermore, the Figure 7 shows clearly that our reconstruction
is much sharper than the other baseline methods, with this

challenging super-resolution factor (×8).

Applications in the projection domain. Our frame-
work’s high performance in solving ill-posed problems can
also be observed in the sinogram (projection) domain. In-
deed, each of the challenging CT scenarios can be interpreted
in the sinogram domain as a classical vision task. The sparse
view setting can be seen as sinogram inpainting or interpola-
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Figure 6. Reconstruction with CT scans. From left to right: CT
reconstruction of a Pepper with angles limited to 60◦, a rose flower
with 90◦, and a Covid19 patient (covid19-A-0000) [30] with 20
sparse views.

Figure 7. Examples of super-resolution tomography. From left to
right: a IntraTomo trained on low-resolution sinogram with 64
measurements per view is evaluated in high-resolution with 512
measurements (8 × upsampling), a Lanczos upsampling, and a
Bicubic upsampling of low-resolution sinogram with ROF recon-
struction [27]. The (PSNR(dB)/ SSIM) measurements are given for
each approach on the image.

tion problem. The limited angles tomography corresponds
to a sinogram extrapolation task. Finally, super-resolution
tomography coincides with the super-resolution problem on
the projections. In Figure 8, we illustrate our framework’s
results showing the sinograms and comparing them with
other baseline methods. For these baseline methods, the
full sinogram of 180 projections uniformly sampled in [0, π[
is obtained after reprojection of the reconstructed density
field. The experiments in Figure 8 correspond to: sinogram
inpainting with only 20 projections as input (uniformly sam-
pled between [0, π[), a sinogram extrapolation using as input
45 projection in the range [0, π

4 [, a super-resolution task
with a factor of 8, and sinogram denoising from corrupted
projections by white Gaussian noise (std = 15). More results
can be found in the supplementary.

5. Conclusion and future work
We presented IntraTomo, a self-supervised learning-based

framework for highly ill-posed CT imaging scenarios. We

Figure 8. Visualizing the results in the projection domain. The
(PSNR(dB)/ SSIM) measurements are given for each approach on
the image.

demonstrated our framework on a wide variety of synthetic
and real data, and we compared to multiple state-of-the-art
approaches quantitatively and qualitatively. Our framework’s
success relies on two novel modules: First, a sinogram
prediction module that synthesizes and predicts missing
projection images by representing the density fields with
continuous and differentiable functions implicitly rather than
discrete voxel grids. Second, we use a geometry refinement
module, which includes local and global geometric priors,
to improve the tomographic reconstruction in a forward-
backward fashion. Since our IntraTomo framework has the
flexibility of incorporating additional spatial and/or temporal
priors, we propose to extend the framework to dynamic
tomography problems in future work. Example applications
are dynamic medical imaging and fluid capture. Another
avenue of future work is to extend IntraTomo to the Cryo-EM
setting.
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