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Abstract

Visual surface anomaly detection aims to detect local

image regions that significantly deviate from normal ap-

pearance. Recent surface anomaly detection methods rely

on generative models to accurately reconstruct the nor-

mal areas and to fail on anomalies. These methods are

trained only on anomaly-free images, and often require

hand-crafted post-processing steps to localize the anoma-

lies, which prohibits optimizing the feature extraction for

maximal detection capability. In addition to reconstruc-

tive approach, we cast surface anomaly detection primar-

ily as a discriminative problem and propose a discrimi-

natively trained reconstruction anomaly embedding model

(DRÆM). The proposed method learns a joint representa-

tion of an anomalous image and its anomaly-free recon-

struction, while simultaneously learning a decision bound-

ary between normal and anomalous examples. The method

enables direct anomaly localization without the need for

additional complicated post-processing of the network out-

put and can be trained using simple and general anomaly

simulations. On the challenging MVTec anomaly detec-

tion dataset, DRÆM outperforms the current state-of-the-

art unsupervised methods by a large margin and even de-

livers detection performance close to the fully-supervised

methods on the widely used DAGM surface-defect detection

dataset, while substantially outperforming them in localiza-

tion accuracy. Code at github.com/VitjanZ/DRAEM.

1. Introduction

Surface anomaly detection addresses localization of im-

age regions that deviate from a normal appearance (Fig-

ure 1). A closely related general anomaly detection prob-

lem considers anomalies as entire images that significantly

differ from the non-anomalous training set images. In con-

trast, in surface anomaly detection problems, the anomalies

occupy only a small fraction of image pixels and are typi-

cally close to the training set distribution. This is a particu-

Mo

Figure 1. DRÆM estimates the decision boundary between the

normal an anomalous pixels solely by training on synthetic anoma-

lies automatically generated on anomaly-free images (left) and

generalizes to a variety of real-world anomalies (right). The re-

sult (Mo) closely matches the ground truth (GT).

larly challenging task, which is common in quality control

and surface defect localization applications.

In practice, anomaly appearances may significantly vary,

and in applications like quality control, images with anoma-

lies present are rare and manual annotation may be overly

time consuming. This leads to highly imbalanced training

sets, often containing only anomaly-free images. Signifi-

cant effort has thus been recently invested in designing ro-

bust surface anomaly detection methods that preferably re-

quire minimal supervision from manual annotation.

Reconstructive methods, such as Autoencoders [5, 1, 2,

26] and GANs [24, 23], have been extensively explored

since they enable learning of a powerful reconstruction sub-

space, using only anomaly-free images. Relying on poor re-

construction capability of anomalous regions, not observed

in training, the anomalies can then be detected by thresh-

olding the difference between the input image and its re-
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Figure 2. Autoencoders over-generalize to anomalies, while dis-

criminative approaches over-fit to the synthetic anomalies and do

not generalize to real data. Our approach jointly discriminatively

learns the reconstruction subspace and a hyper-plane over the joint

original and reconstructed space using the simulated anomalies

and leads to substantially better generalization to real anomalies.

construction. However, determining the presence of anoma-

lies that are not substantially different from normal appear-

ance remains challenging, since these are often well recon-

structed, as depicted in Figure 2, top-left.

Recent improvements thus consider the difference be-

tween deep features extracted from a general-purpose net-

work and a network specialized for anomaly-free im-

ages [4]. Discrimination can also be formulated as a de-

viation from a dense clustering of non-anomalous textures

within the deep subspace [22, 7], as forming such a com-

pact subspace prevents anomalies from being mapped close

to anomaly-free samples. A common drawback of the gen-

erative methods is that they only learn the model from

anomaly-free data, and are not explicitly optimized for

discriminative anomaly detection, since positive examples

(i.e., anomalies) are not available at training time. Syn-

thetic anomalies could be considered to train discriminative

segmentation methods [8, 21], but this leads to over-fitting

to synthetic appearances and results in a learned decision

boundary that generalizes poorly to real anomalies (Figure

2, top-right).

We hypothesize that over-fitting can be substantially re-

duced by training a discriminative model over the joint, re-

constructed and original, appearance along with the recon-

struction subspace. This way the model does not overfit to

synthetic appearance, but rather learns a local-appearance-

conditioned distance function between the original and re-

constructed anomaly appearance, which generalizes well

over a range of real anomalies (see Figure 2, bottom).

To validate our hypothesis, we propose, as our main con-

tribution, a new deep surface anomaly detection network,

discriminatively trained in an end-to-end manner on syn-

thetically generated just-out-of-distribution patterns, which

do not have to faithfully represent the target-domain anoma-

lies. The network is composed of a reconstructive sub-

network, followed by a discriminative sub-network (Fig-

ure 3). The reconstructive sub-network is trained to learn

anomaly-free reconstruction, while the discriminative sub-

network learns a discriminative model over the joint appear-

ance of the original and reconstructed images, producing a

high-fidelity per-pixel anomaly detection map (Figure 1).

In contrast to related approaches that learn surrogate

generative tasks, the proposed model is trained discrimina-

tively, yet does not require the synthetic anomaly appear-

ances to closely match the anomalies at test time and out-

performs the recent, more complex, state-of-the-art meth-

ods by a large margin.

2. Related work

Many surface anomaly detection methods focus on im-

age reconstruction and detect anomalies based on image re-

construction error [1, 2, 5, 24, 23, 26, 31]. Auto-encoders

are commonly used for image reconstruction [5]. In [1,

2, 26] auto-encoders are trained with adversarial losses.

The anomaly score of the image is then based on the im-

age reconstruction quality or in the case of adversarially

trained auto-encoders, the discriminator output. In [24, 23]

a GAN [13] is trained to generate images that fit the train-

ing distribution. In [23] an encoder network is additionally

trained that finds the latent representation of the input image

that minimizes the reconstruction loss when used as the in-

put by the pretrained generator. The anomaly score is then

based on the reconstruction quality and the discriminator

output. In [29] an interpolation auto-encoder is trained to

learn a dense representation space of in-distribution sam-

ples. The anomaly score is then based on a discrimina-

tor, trained to estimate the distance between the input-input

and input-output joint distributions, however the approach

to surface anomaly detection remains generative as the dis-

criminator evaluates the reconstruction quality.

Instead of the commonly used image space reconstruc-

tion, the reconstruction of pretrained network features can

also be used for surface anomaly detection [4, 25]. Anoma-

lies are detected based on the assumption that features of

a pre-trained network will not be faithfully reconstructued

by another network trained only on anomaly-free images.

Alternatively [20, 11] propose surface anomaly detection as

identifying significant deviations from a Gaussian fitted to
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anomaly-free features of a pre-trained network. This re-

quires a unimodal distribution of the anomaly-free visual

features which is problematic on diverse datasets. [16] pro-

pose a one-class variational auto-encoder gradient-based at-

tention maps as output anomaly maps. However the method

is sensitive to subtle anomalies close to the normal sample

distribution.

Recently Patch-based one-class classification methods

have been considered for surface anomaly detection [30].

These are based on one-class methods [22, 7] which at-

tempt to estimate a decision boundary around anomaly-free

data that separates it from anomalous samples by assum-

ing a unimodal distribution of the anomaly-free data. This

assumption is often violated in surface anomaly data.

3. DRÆM

The proposed discriminative joint reconstruction-

anomaly embedding method (DRÆM) is composed from

a reconstructive and a discriminative sub-networks (see

Figure 3). The reconstructive sub-network is trained

to implicitly detect and reconstruct the anomalies with

semantically plausible anomaly-free content, while keeping

the non-anomalous regions of the input image unchanged.

Simultaneously, the discriminative sub-network learns a

joint reconstruction-anomaly embedding and produces ac-

curate anomaly segmentation maps from the concatenated

reconstructed and original appearance. Anomalous training

examples are created by a conceptually simple process

that simulates anomalies on anomaly-free images. This

anomaly generation method provides an arbitrary amount

of anomalous samples as well as pixel-perfect anomaly

segmentation maps which can be used for training the

proposed method without real anomalous samples.

3.1. Reconstructive sub-network

The reconstructive sub-network is formulated as an

encoder-decoder architecture that converts the local patterns

of an input image into patterns closer to the distribution of

normal samples. The network is trained to reconstruct the

original image I from an artificially corrupted version Ia
obtained by a simulator (see Section 3.3).

An l2 loss is often used in reconstruction based anomaly

detection methods [1, 2], however this assumes an indepen-

dence between neighboring pixels, therefore a patch based

SSIM [27] loss is additionally used as in [5, 31]:

LSSIM (I, Ir) =
1

Np

H
∑

i=1

W
∑

j=1

1− SSIM
(

I, Ir
)

(i,j)
, (1)

where H and W are the height and width of image I ,

respectively. Np is equal to the number of pixels in

I . Ir is the reconstructed image output by the network.

SSIM(I, Ir)(i,j) is the SSIM value for patches of I and

Ir, centered at image coordinates (i, j). The reconstruction

loss is therefore:

Lrec(I, Ir) = λLSSIM (I, Ir) + l2(I, Ir), (2)

where λ is a loss balancing hyper-parameter.

Note that an additional training signal is acquired

from the downstream discriminative network (Section 3.2),

which performs anomaly localization by detecting the re-

construction difference.

3.2. Discriminative sub-network

The discriminative sub-network uses U-Net [21]-like

architecture. The sub-network input Ic is defined as

the channel-wise concatenation of the reconstructive sub-

network output Ir and the input image I . Due to the

normality-restoring property of the reconstructive sub-

network, the joint appearance of I and Ir differs signifi-

cantly in anomalous images, providing the information nec-

essary for anomaly segmentation. In reconstruction-based

anomaly detection methods anomaly maps are obtained

using similarity functions such as SSIM [27] to compare

the original image to its reconstruction, however a surface

anomaly detection-specific similarity measure is difficult

to hand-craft. In contrast, the discriminative sub-network

learns the appropriate distance measure automatically. The

network outputs an anomaly score map Mo of the same size

as I . Focal Loss [14] (Lseg) is applied on the discriminative

sub-network output to increase robustness towards accurate

segmentation of hard examples.

Considering both the segmentation and the reconstruc-

tive objectives of the two sub-networks, the total loss used

in training DRÆM is

L(I, Ir,Ma,M) = Lrec(I, Ir) + Lseg(Ma,M), (3)

where Ma and M are the ground truth and the output

anomaly segmentation masks, respectively.

3.3. Simulated anomaly generation

DRÆM does not require simulations to realistically re-

flect the real anomaly appearance in the target domain,

but rather to generate just-out-of-distribution appearances,

which allow learning the appropriate distance function to

recognize the anomaly by its deviation from normality. The

proposed anomaly simulator follows this paradigm.

A noise image is generated by a Perlin noise genera-

tor [18] to capture a variety of anomaly shapes (Figure 4,

P ) and binarized by a threshod sampled uniformly at ran-

dom (Figure 4, Ma) into an anomaly map Ma. The anomaly

texture source image A is sampled from an anomaly source

image dataset which is unrelated to the input image dis-

tribution (Figure 4, A). Random augmentation sampling,

inspired by RandAugment [10], is then applied by a set
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Anomaly generation

Reconstructive sub-network Discriminative sub-network

Figure 3. The anomaly detection process of the proposed method. First anomalous regions are implicitly detected and inpainted by the

reconstructive sub-network trained using Lrec. The output of the reconstructive sub-network and the input image are then concatenated

and fed into the discriminative sub-network. The segmentation network, trained using the Focal loss Lfocal[14], localizes the anomalous

region and produces an anomaly map. The image level anomaly score η is acquired from the anomaly score map.

of 3 random augmentation functions sampled from the

set: {posterize, sharpness, solarize, equalize, brightness

change, color change, auto-contrast}. The augmented tex-

ture image A is masked with the anomaly map Ma and

blended with I to create anomalies that are just-out-of-

distribution, and thus help tighten the decision boundary in

the trained network. The augmented training image Ia is

therefore defined as

Ia = Ma ⊙ I + (1− β)(Ma ⊙ I) + β(Ma ⊙A), (4)

where Ma is the inverse of Ma, ⊙ is the element-wise

multiplication operation and β is the opacity parameter in

blending. This parameter is sampled uniformly from an in-

terval, i.e., β ∈ [0.1, 1.0]. The randomized blending and

augmentation afford generating diverse anomalous images

from as little as a single texture (see Figure 5).

The above described simulator thus generates training

sample triplets containing the original anomaly-free image

I , the augmented image containing simulated anomalies Ia
and the pixel-perfect anomaly mask Ma.

3.4. Surface anomaly localization and detection

The output of the discriminative sub-network is a pixel-

level anomaly detection mask Mo, which can be interpreted

in a straight-forward way for the image-level anomaly score

estimation, i.e., whether an anomaly is present in the image.

First, Mo is smoothed by a mean filter convolution layer

to aggregate the local anomaly response information. The

final image-level anomaly score η is computed by taking the

maximum value of the smoothed anomaly score map:

η = max
(

Mo ∗ fsf×sf

)

, (5)

where fsf×sf is a mean filter of size sf × sf and ∗ is the

convolution operator. In a preliminary study, we trained a

classification network for the image-level anomaly classi-

fication, but did not observe improvements over the direct

score estimation method (5).

A

Ma Ma

Ma

MaMaA

Figure 4. Simulated anomaly generation process. The binary

anomaly mask Ma is generated from Perlin noise P . The anoma-

lous regions are sampled from A according to Ma and placed on

the anomaly free image I to generate the anomalous image Ia.

Figure 5. The original anomaly source image (left) can be aug-

mented several times (center) to generate a wide variety of simu-

lated anomalous regions (right).
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4. Experiments

DRÆM is extensively evaluated and compared with the

recent state-of-the-art on unsupervised surface anomaly de-

tection and localization. Additionally, individual compo-

nents of the proposed method and the effectiveness of train-

ing on simulated anomalies are evaluated by an ablation

study. Finally, the results are placed in a broader perspec-

tive by comparing DRÆM with state-of-the-art weakly-

supervised and fully-supervised surface-defect detection

methods.

4.1. Comparison with unsupervised methods

DRÆM is evaluated on the recent challenging MVTec

anomaly detection dataset [3], which has been established

as a standard benchmark dataset for evaluating unsuper-

vised surface anomaly detection methods. We evaluate

DRÆM on the tasks of surface anomaly detection and lo-

calisation. The MVTec dataset contains 15 object classes

with a diverse set anomalies which enables a general eval-

uation of surface anomaly detection methods. Anomalous

examples of the MVTec dataset are shown in Figure 8. For

evaluation, the standard metric in anomaly detection, AU-

ROC, is used. Image-level AUROC is used for anomaly de-

tection and a pixel-based AUROC for evaluating anomaly

localization [5, 24, 17, 26]. The AUROC, however, does

not reflect the localization accuracy well in surface anomaly

detection setups, where only a small fraction of pixels are

anomalous. The reason is that false positive rate is domi-

nated by the a-priori very high number of non-anomalous

pixels and is thus kept low despite of false positive detec-

tions. We thus additionally report the pixel-wise average

precision metric (AP), which is more appropriate for highly

imbalanced classes and in particular for surface anomaly

detection, where the precision plays an important role.

In our experiments, the network is trained for 700 epochs

on the MVTec anomaly detection dataset [3]. The learning

rate is set to 10−4 and is multiplied by 0.1 after 400 and 600
epochs. Image rotation in the range of (−45, 45) degrees is

used as a data augmentation method on anomaly free im-

ages during training to alleviate overfitting due to the rela-

tively small anomaly-free training set size. The Describable

Textures Dataset [9] is used as the anomaly source dataset.

A number of obtained qualitative examples are presented

in Figure 8. As one can observe, the obtained anomaly

masks are very detailed and resemble the given ground

truth labels to a high degree of accuracy. Consequently,

DRÆM achieves state-of-the-art quantitative results across

all MVTec classes for surface anomaly detection as well as

localization.

Surface Anomaly Detection. Table 1 quantitatively

compares DRÆM with recent approaches on the task

of image-level surface anomaly detection. DRÆM sig-

nificantly outperforms all recent surface anomaly detec-

Class [1] [26] [4] [31] [20] [11] DRÆM

bottle 79.4 98.3 99.0 99.9 100 99.9 99.2

capsule 72.1 68.7 86.1 88.4 92.3 91.3 98.5

grid 74.3 86.7 81.0 99.6 92.9 96.7 99.9

leather 80.8 94.4 88.2 100 100 100 100

pill 67.1 76.8 87.9 83.8 83.4 93.3 98.9

tile 72.0 96.1 99.1 98.7 97.4 98.1 99.6

transistor 80.8 79.4 81.8 90.9 95.9 97.4 93.1

zipper 74.4 78.1 91.9 98.1 97.9 90.3 100

cable 71.1 66.5 86.2 81.9 94.0 92.7 91.8

carpet 82.1 90.3 91.6 84.2 95.5 99.8 97.0

hazelnut 87.4 100 93.1 83.3 98.7 92.0 100.0

metal nut 69.4 81.5 82.0 88.5 93.1 98.7 98.7

screw 100 100 54.9 84.5 81.2 85.8 93.9

toothbrush 70.0 95.0 95.3 100 95.8 96.1 100

wood 92.0 97.9 97.7 93.0 97.6 99.2 99.1

avg 78.2 87.3 87.7 91.7 94.4 95.5 98.0

Table 1. Results for the task of surface anomaly detection on the

MVTec dataset (AUROC). An average score over all classes is also

reported the last row (avg).

tion methods, achieving the highest AUROC in 9 out of

15 classes and achieving comparable results in the other

classes. It surpasses the previous best state-of-the-art ap-

proach by 2.5 percentage points. The reduced performance

in some classes could be explained by particularly diffi-

cult anomalies that are close to the normal image distri-

bution. The absence of a part of the object is especially

difficult to detect. Regions, where the object features are

missing, usually contain other commonly occurring fea-

tures. This makes such anomalies difficult to distinguish

from anomaly-free regions. An example of this can be seen

in Figure 6, where some of the transistor leads had been

cut. The ground truth marks the area where the broken lead

should be as anomalous. DRÆM only detects anomalous

features in a small region of the cut lead, as the background

features are common during training.

Anomaly Localization. Table 2 compares DRÆM to

the recent state-of-the-art on the task of pixel-level surface

anomaly detection. DRÆM achieves comparable results to

the previous best-performing methods in terms of AUROC

scores and surpasses the state-of-the-art by 13.4 percentage

points in terms of AP. A better AP score is achieved in 11
out of 15 classes and is comparable to the state-of-the-art

in other classes. A qualitative comparison with the state-of-

the-art method Uninformed Students [4] and PaDim [11] is

shown in Figure 7. DRÆM achieves a significant improve-

ment in anomaly segmentation accuracy.

A detailed inspection showed that some of the detection

errors can be attributed to the inaccurate ground truth labels

on ambiguous anomalies. An example of this is shown in

Figure 6, where the ground truth covers the entire surface

of the pill, yet only the yellow dots are anomalous. DRÆM

produces an anomaly map that correctly localizes the yel-

low dots, but the discrepancy with the ground truth mask

8334



Figure 6. The original image (a) contains anomalies which are dif-

ficult to mark in the ground truth mask (b) which causes a dis-

crepancy between the ground truth and the output anomaly map

(c,d).

Figure 7. The anomalous images are shown in the first row. The

middle three rows show the anomaly maps generated by our imple-

mentation of Uninformed Students [4], PaDim [11] and DRÆM,

respectively. The last row shows the direct anomaly map output of

DRÆM.

increases the performance error. These annotation ambigu-

ities also impact the AP score of the evaluated methods.

Class US[4] RIAD[31] PaDim[11] DRÆM

bottle 97.8 / 74.2 98.4 / 76.4 98.2 / 77.3 99.1 / 86.5

capsule 96.8 / 25.9 92.8 / 38.2 98.6 / 46.7 94.3 / 49.4

grid 89.9 / 10.1 98.8 / 36.4 97.1 / 35.7 99.7 / 65.7

leather 97.8 / 40.9 99.4 / 49.1 99.0 / 53.5 98.6 / 75.3

pill 96.5 / 62.0 95.7 / 51.6 95.7 / 61.2 97.6 / 48.5

tile 92.5 / 65.3 89.1 / 52.6 94.1 / 52.4 99.2 / 92.3

transistor 73.7 / 27.1 87.7 / 39.2 97.6 / 72.0 90.9 / 50.7

zipper 95.6 / 36.1 97.8 / 63.4 98.4 / 58.2 98.8 / 81.5

cable 91.9 / 48.2 84.2 / 24.4 96.7 / 45.4 94.7 / 52.4

carpet 93.5 / 52.2 96.3 / 61.4 99.0 / 60.7 95.5 / 53.5

hazelnut 98.2 / 57.8 96.1 / 33.8 98.1 / 61.1 99.7 / 92.9

metal nut 97.2 / 83.5 92.5 / 64.3 97.3 / 77.4 99.5 / 96.3

screw 97.4 / 7.8 98.8 / 43.9 98.4 / 21.7 97.6 / 58.2

toothbrush 97.9 / 37.7 98.9 / 50.6 98.8 / 54.7 98.1 / 44.7

wood 92.1 / 53.3 85.8 / 38.2 94.1 / 46.3 96.4 / 77.7

avg 93.9 / 45.5 94.2 / 48.2 97.4 / 55.0 97.3 / 68.4

Table 2. Results for the task of anomaly localization on the MVTec

dataset (AUROC / AP).

4.2. Ablation Study

The DRÆM design choices are analyzed by groups of

experiments evaluating (i) the method architecture, (ii) the

choice of anomaly appearance patterns and (iii) low pertur-

bation example generation. Results are visually grouped by

shades of gray in Table 3.

Architecture. The DRÆM reconstructive sub-network

impact on the downstream surface anomaly detection per-

formance is evaluated by removing it from the pipeline and

training the discriminative sub-network alone. The results

are shown in Table 3, experiment Disc. Note a reduction in

performance in comparison to the full DRÆM architecture

(Table 3, experiment DRÆM). The performance drop is due

to overfitting of the discriminative sub-network to the sim-

ulated anomalies, which are not a faithful representation of

the real ones.

Next, the discriminative power of the reconstructive sub-

network alone is analyzed by evaluating it as an auto-

encoder-based surface anomaly detector. The reconstructed

image output of the sub-network is compared to the input

image using the SSIM function [27] to generate the anomaly

map. The results of this approach are shown in Table 3,

experiment Recon.-AE. Recon.-AE outperforms the recent

auto-encoder-based surface anomaly detection method AE-

SSIM[5] (see results in Table 2) This suggests that sim-

ulated anomaly training introduces additional information

into the auto-encoder-based training, but judging by the per-

formance gap to DRÆM, the SSIM similarity function may

not be optimal for extraction of the anomaly information.

Indeed, using the recently proposed similarity function MS-

GMS [31] (Recon.-AEMSGMS) improves the performance,

but the results are still significantly worse than when using

the entire DRÆM architecture, which indicates that both

reconstructive and discriminative parts are required for op-

timal results.

To further emphasize the contribution of the DRÆM

backbone, we replace it entirely by the recent state-of-the-

art supervised discriminative surface anomaly detection net-

work [6] and re-train with the simulated anomalies (Table 3,

Božič et al.). Performance substantially drops, which fur-

ther supports the power of learning the anomaly deviation

extent from normality rather than the anomaly or normality

appearance.

Anomaly appearance patterns. DRÆM is re-trained

using ImageNet [12] as the texture source in the anomaly

simulator to study the influence of the anomaly generation

dataset (DRÆMImageNet in Table 3). Results are compa-

rable to using the much smaller DTD [9] dataset. Figure 9

shows the performance at various anomaly source dataset

sizes. Results suggest that the augmentation and opacity

randomization substantially contribute to performance al-

lowing remarkably small number of texture images (less

than 10). As an extreme case, the anomaly textures are
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Figure 8. Qualitative examples. The original image, the anomaly map overlay, the anomaly map and the ground truth map are shown.

Architecture Anomaly Generation Results

Method Recon. Net. Discr. Net. Augmentation β ImageNet DTD Perlin Rectangle Det. Loc.

Disc. X X X X X 93.9 92.7 / 62.5

Recon.-AE X X X X X 83.9 89.7 / 47.5

Recon.-AEMSGMS X X X X X 90.7 93.4 / 50.9

Božič et al. [6] X X X X 92.8 93.9 / 60.7

DRÆMImageNet X X X X X X 97.9 97.0 / 67.9

DRÆMcolor X X X X 96.2 92.6 / 56.5

DRÆMrect X X X X X X 96.9 96.8 / 65.1

DRÆMno aug X X X X 97.4 94.5 / 64.3

DRÆMimg aug X X X X X 97.4 95.0 / 64.5

DRÆMβ X X X X X 97.9 97.1 / 68.4

DRÆM X X X X X X 98.0 97.3 / 68.4

Table 3. Surface anomaly detection (Det.) and localization (Loc.) experiments of the ablation study grouped by shades of gray into

(i) method architecture, (ii) anomaly source dataset, (iii) hard simulated anomaly generation, (iv) simulated anomaly shape, and (v) the

performance of DRÆM for reference.

generated as homogeneous regions of a randomly sampled

color (DRÆMcolor). Note that DRÆMcolor still achieves

state-of-the-art results, further suggesting that DRÆM does

not require simulations to closely match the real anomalies.

The impact of the anomaly shape generator is evalu-

ated by replacing the Perlin noise generator by a rectangu-

lar region generator. The anomaly mask is thus generated

by sampling multiple rectangular areas for the anomalous

regions (DRÆMrect in Table 3). Training on rectangular

anomalies causes only a slight performance drop and sug-

gests that the simulated anomaly shape does not have to be

realistic to generalize well to real world anomalies. Exam-

ples of anomalies generated in anomaly appearance ablation

experiments are shown in Figure 10.

Low perturbation examples. The anomaly source im-

age augmentation and the opacity randomization are re-

sponsible for tightening the decision boundary around the

anomaly-free training distribution. Table 3 reports the re-

sults of DRÆM variants trained (i) without image augmen-

tation and opacity randomization (DRÆMno aug), (ii) using

only image augmentation (DRÆMimg aug) and (iii) using

only opacity randomization (DRÆMβ). There is a signif-

icant localization performance gap between DRÆMno aug

and DRÆM, however, this can be significantly narrowed

by using the opacity randomization in training even without

image data augmentation.

4.3. Comparison with supervised methods

Supervised methods require anomaly annotations at

training time and cannot be evaluated on MVTec. We

thus compare DRÆM with the supervised methods on the

DAGM dataset [28] that contains 10 textured object classes
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Figure 9. DRÆM achieves a remarkable detection and localization

performance already at as low as 10 texture source images in the

simulator when augmentation is applied.

Figure 10. Anomalies simulated using the DTD [9] (DRÆM),

ImageNet [12] (DRÆMImageNet), homogeneous color regions

(DRÆMcolor) and rectangular masks (DRÆMrect), from left to

right.

with small anomalies visually very similar to the back-

ground, which makes the dataset particularly challenging

for the unsupervised methods.

DRÆM is trained only on anomaly-free training samples

using the same parameters as in previous experiments. The

standard evaluation protocol on this dataset [19, 32, 15, 6]

is used – the challenge is to classify whether the image con-

tains the anomaly; localization accuracy is not measured,

since the anomalies are only coarsely labeled.

Table 4 shows that the best fully supervised methods

nearly perfectly classify anomalous images, while the state-

of-the-art unsupervised methods like RIAD [31] and US [4]

struggle with subtle anomalies on highly textured regions1.

DRÆM significantly outperforms these methods, and even

the weakly supervised CADN [32] by a large margin, ob-

taining classification performance close to the best fully-

supervised methods, which is a remarkable result.

Furthermore, DRÆM outperforms all supervised meth-

ods in terms of anomaly localization accuracy on this

dataset. Since the training images are only coarsely anno-

tated with ellipses that approximately cover the surface de-

fects and contain background, the supervised methods pro-

duce inaccurate localization in test images as well. In con-

trast, DRÆM does not use the labels at all, and thus pro-

duces more accurate anomaly maps, as shown in Figure 11.

1Please see the supplementary material for additional qualitative re-

sults.

Methods AUROC TPR TNR CA

U
n

su
p

. RIAD [31] 78.6 79.2 69.1 70.4

US [4] 72.5 72.6 65.3 66.2

MAD [20] 82.4 78.7 85.7 66.2

PaDim [11] 95.0 83.3 97.5 95.7

DRÆM 99.0 96.5 99.4 98.5

S
u

p
.

CADN [32] - - - 89.1

Rački et al. [19] 99.6 99.9 99.5 -

Lin et al. [15] 99.0 99.4 99.9 -

Božič et al. [6] 100 100 100 100

Table 4. DRÆM outperforms unsupervised methods on DAGM

dataset and performs on par with fully supervised ones.

Figure 11. Supervised methods replicate the approximate ground

truth training annotations, leading to a low localization accuracy.

DRÆM does not use the ground truth, yet produces far better lo-

calization.

5. Conclusion

A discriminative end-to-end trainable surface anomaly

detection and localization method DRÆM was presented.

DRÆM outperforms the current state-of-the-art on the

MVTec dataset [3] by 2.5 AUROC points on the surface

anomaly detection task and by 13.5 AP points on the

localization task. On the DAGM dataset [28], DRÆM

delivers anomalous image classification accuracy close to

fully supervised methods, while outperforming them in

localization accuracy. This is a remarkable result since

DRÆM is not trained on real anomalies. In fact, a detailed

analysis shows that our paradigm of learning a joint

reconstruction-anomaly embedding through a reconstruc-

tive sub-network significantly improves the results over

standard methods and that an accurate decision boundary

can be well estimated by learning the extent of deviation

from reconstruction on simple simulations rather than

learning either the normality or real anomaly appearance.
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