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Abstract

Accurate lighting estimation is challenging yet criti-
cal to many computer vision and computer graphics tasks
such as high-dynamic-range (HDR) relighting. Existing ap-
proaches model lighting in either frequency domain or spa-
tial domain which is insufficient to represent the complex
lighting conditions in scenes and tends to produce inaccu-
rate estimation. This paper presents NeedleLight, a new
lighting estimation model that represents illumination with
needlets and allows lighting estimation in both frequency
domain and spatial domain jointly. An optimal thresholding
function is designed to achieve sparse needlets which trims
redundant lighting parameters and demonstrates superior
localization properties for illumination representation. In
addition, a novel spherical transport loss is designed based
on optimal transport theory which guides to regress lighting
representation parameters with consideration of the spatial
information. Furthermore, we propose a new metric that
is concise yet effective by directly evaluating the estimated
illumination maps rather than rendered images. Extensive
experiments show that NeedleLight achieves superior light-
ing estimation consistently across multiple evaluation met-
rics as compared with state-of-the-art methods.

1. Introduction

Lighting estimation aims to recover illumination from a
single image with limited field of view. It has a wide range
of applications in various computer vision and computer
graphics tasks such as high-dynamic-range (HDR) relight-
ing in mixed reality, etc. However, lighting estimation is a
challenging and ill-posed problem as it needs to predict the
illumination coming from a full sphere of directions includ-
ing those unobserved from the current view in the scene.
Additionally, it often requires to infer HDR illuminations
from low-dynamic-range (LDR) observations so as to light
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virtual objects realistically while inserting them into real
scene images as illustrated in Fig. 1.

Lighting estimation has been tackled by regressing the
parameters of various lighting representations in either fre-
quency domain [7, 15]) or spatial domain [14, 13, 33, 34].
However, lighting estimation in frequency domain nor-
mally represents illumination with Spherical Harmonics
(SH) which lack spatial localization capabilities. Thus it
tends to capture global lighting instead of the exact spa-
tial locations of the light sources which often leads to weak
shading and shadow effects as illustrated in Garon et al. [15]
of Fig. 1. Lighting estimation in spatial domain has been
addressed by direct generation of the illumination maps or
indirect reconstruction through spherical Gaussian function.
However, direct generation of illumination maps often leads
to worse generalization as lighting estimation is an under-
constrained problem by itself, and spherical Gaussian often
involves a complicated training process as described in [13].
Both types of approaches in spatial domain do not explic-
itly consider lighting frequency, and thus lead to inaccurate
relighting performance as illustrated in Gardner et al. [13]
of Fig. 1. The high frequency information also tends to be
blurred due to the use of naive L2 loss in the training. Ad-
ditionally, existing evaluation metrics in lighting estimation
usually assess the objects rendered with the predicted illu-
mination maps, which is time-consuming and sensitive to
the test setting.

In this work, we propose NeedleLight, a new model
that introduces needlet for accurate and robust lighting es-
timation from a single image. As a new generation of
spherical wavelets, needlet enjoys good localization prop-
erties in both frequency and spatial domain which makes it
ideal to be the basis for illumination representation. More-
over, to remove the redundant parameters in needlet coeffi-
cients which will disturb the regression of principle light
sources, we design an optimal thresholding function to
achieve sparse needlets which improve the lighting estima-
tion greatly.

Unlike spherical harmonic coefficients, needlet coeffi-
cients are spatially localized over a unit sphere. To utilize
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(a) Garon et al. [15] (b) Gardner et al. [13] (c) Ours (d) Ground Truth

Figure 1. The proposed NeedleLight estimates a parametric lighting representation from a single scene image which is critical to many tasks
such as virtual object insertion. Unlike previous methods that predict lighting in either frequency domain [15] (losing spatial localization)
or spatial domain [13] (losing frequency information) only, we introduce a novel needlets basis which is capable of representing and
estimating lighting accurately in both frequency and spatial domains.

the spatial information in regression, we propose a Spheri-
cal Transport Loss (STL) based on optimal transport theory.
STL is able to capture spatial information via a cost matrix
and estimate the needlet coefficients more accurately than a
naive L2 loss. Besides, STL employs auxiliary point strat-
egy to preserve high frequency information and greatly re-
duce the dimension of required parameters. Based on STL,
we design a new metric for the evaluation of lighting esti-
mation by measuring the discrepancy between illumination
maps. The new metric highly simplifies the evaluation pro-
cedure and provides concise yet effective evaluation with
regard to the lighting color, intensity and position.

The contribution of this work can be summarized in three
aspects. First, we introduce a novel needlet basis for il-
lumination representation which allows to regress the pa-
rameters in both frequency and spatial domains simultane-
ously. Second, we develop an optimal thresholding func-
tion to achieve sparse needlets which effectively removes
the redundant needlet coefficients and improves the lighting
estimation. Third, we design a novel Spherical Transport
Loss (STL) that effectively utilizes the spatial information
of needlet coefficients in regression. With STL, we also
design a new evaluation metric that is more concise and ef-
fective than existing evaluation metrics.

2. Related Works

Lighting Estimation: Lighting estimation is a classic
challenge in computer vision and computer graphics, and
it is critical for realistic relighting in virtual objects inser-
tion [11, 18, 44, 2, 16, 39, 28, 37, 5] and image composi-
tion [37, 41, 38]. Traditional approaches require user inter-
vention or assumptions about the underlying illumination
model, scene geometry, etc. For example, Karsh et al. [17]
recovers parametric 3D lighting from a single image but re-
quires user annotations for initial lighting and geometry es-
timates. Zhang et al. [42] requires a full multi-view 3D

reconstruction of scenes. Lombardi et al. [24] estimates
illumination from an object of known shape with a low-
dimensional model.

The recent works estimate lighting by regressing repre-
sentation parameters or generating illumination maps [21,
36, 16, 43, 23, 6, 30]. For example, Cheng et al. [7] re-
gresses the SH parameters of global lighting with a ren-
der loss. Garon et al. [15] estimate lighting by predicting
SH coefficients from a background image and local patch.
Gardner et al. [13] estimate the positions, intensities, and
colours of light sources and reconstructs illumination maps
with a spherical Gaussian function. Gardner et al. [14] gen-
erate illumination maps directly with a two-steps training
strategy. Song et al. [33] uses a convolutional network to
predict unobserved contents in the environment map. Leg-
endre et al. [19] regress HDR lighting from LDR images by
comparing the ground-truth sphere image to the rendered
one with the predicted illumination. Srinivasan et al. [34]
estimate a 3D volumetric RGB model of a scene and uses
standard volume rendering to estimate incident illumina-
tions. Zhan et al. [40] propose to formulate the regression
of illumination as the regression of a spherical distribution.

Needlets: Needlets are a new generation of spherical
wavelets [32] and have desirable localization capabilities in
both spatial and frequency domains. Narcowich et al. [29]
first introduces needlets in the Functional Analysis litera-
ture. Baldi et al. [1] further analyses the statistical prop-
erties of needlets. Due to the good localization property in
the pixel spaces, needlets have been widely applied to the
research of Cosmic Microwave Background [31, 26].

The aforementioned works estimate lighting in either
frequency domain or spatial domain which is insufficient
to capture the complex illumination in real scenes. Addi-
tionally, most existing works regress the illumination with a
naive L2 loss or its variant which struggles to regress high
frequency information and often introduces blurs. We intro-
duce needlet basis for lighting representation which allows
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regression of illumination in both frequency and spatial do-
mains jointly. A novel spherical transport loss is proposed
to achieve stable and accurate regression of needlet coeffi-
cients. Details on lighting representation, spherical trans-
port loss are to be presented in the ensuing sections.

3. Proposed Method
The proposed NeedleLight estimates illumination by re-

gressing needlet coefficients from a single image as illus-
trated in Fig. 2. A novel spherical transport loss is designed
to achieve stable and effective regression of needlet coef-
ficients. The following subsections describe how needlets
and spherical transport loss work together for accurate and
robust lighting estimation.

3.1. Needlets based Lighting Representation
Needlets [1, 29] are a new type of spherical wavelets that

has been successfully used in microwave signal analysis.
They can be localized at a finite number of frequencies, and
decay quasi-exponentially fast away from the global maxi-
mum. Thus they enjoy good localization properties in both
frequency and spatial domains. As described in [1], a signal
I(x) (e.g. lighting signals of interest in this research) at a
given frequency j ∈ N can be represented by the spheri-
cal needlets basis ψjk(x) and the needlet coefficients βjk as
follows:

ψjk(x) =
√
λjk

⌊Bj+1⌋∑
l=⌈Bj−1⌉

b(
l

Bj
)

l∑
m=−l

Ylm(ξjk)Y lm(x)

βjk =
√
λjk

∞∑
l=0

b(
l

Bj
)

l∑
m=−l

almYlm(ξjk)

(1)

where x ∈ S2, ξjk and λjk are pre-defined cubature points
that spread over the unit sphere as shown in Fig. 3, and the
associated cubature weights, respectively, b(·) is a window
function, B is a free parameter larger than 1, Ylm is spher-
ical harmonic function with degree l and order m, alm is
the corresponding spherical harmonic coefficients, Y lm is
the complex conjugation of Ylm. ξjk represents the spatial
location of needlet basis ψjk, thus the needlet coefficients
are spatially localized on the unit sphere. The signal I(x)
can be reconstructed via I(x) =

∑
j,k βjkψjk(x).

Compared with SH, needlets have compact supports for
the localization in spatial domain. As a result, they can
easily and parsimoniously represent signals over the unit
sphere that exhibits local sharp peaks or valleys, which are
commonly presented in HDR illumination maps. Conse-
quently, needlets serve as a more suitable basis for the rep-
resentation of illumination maps.

3.2. Sparse Needlets

A signal is said to be sparse if it can be reconstructed
with only a small amount of basis functions. An illumi-

nation map consists of several dominant light sources with
high radiance energy and an ambient residual. The light
sources are obviously sparse under the needlet basis while
the ambient component is not. For the lighting estimation,
the reconstruction of dominant light sources is more signifi-
cant than the reconstruction of the ambient component espe-
cially in high frequency sections. Besides, there are dozens
of needlet coefficients in high frequency section (252 coeffi-
cients for jmax=3), most of which are redundant parameters
of ambient. Those redundant parameters will severely dis-
turb the regression of principal light sources and lead to dif-
fuse illumination (or low frequency illumination) which is
undesired for relighting. Thus we deduce an optimal sparse
function for needlets to separate the principle coefficients of
light sources from the redundant ambient component.

We derive the sparse function from a Bayesian perspec-
tive and form the problem as a maximum posterior estima-
tor. Normally, we assume that the needlet coefficients of
light sources s follows Laplace distribution prior as Laplace
prior is well adapted to model sparse signals [4], which is
also proved in [12]. The needlet coefficients of ambient
can be ideally treated as a Gaussian distribution [25]. The
needlet coefficients β of the illumination map can thus be
modelled as:

β = s︸︷︷︸
light sources

+ ϕ︸︷︷︸
ambient

+ η︸︷︷︸
noise

(2)

where s denotes the needlet coefficients of sparse light
sources which follow Laplace distribution, ϕ denotes the
needlet coefficients of ambient which is a Gaussian distri-
bution, and η denotes noises that follow a Gaussian distri-
bution. According to Vansynge et al. [35], the Bayesian
formulation of the problem can be written as:

P (s|β) ∝ P (s)L(β|s)
L(β|s, ϕ) = N(β;ϕ+ s,Mη)

(3)

where Mη denotes the covariance matrices of the noise. As
ϕ follows Gaussian distribution, we can derive:

L(β|s) =
∫

...

∫
L(β|s, ϕ)P (ϕ)dϕ ∝

exp

[
−
1

2
βTM−1

η β + sTM−1
η β −

1

2
sTM−1

η s

]
· exp[

1

2
(M−1

η β −M−1
η s)T (M−1

η +M−1
ϕ )(M−1

η β −M−1
η s)

] (4)

where Mϕ denotes the covariance matrices of the Gaussian
distribution ϕ. As P (s) follows the Laplace distribution
namely P (s) ∝ exp [−λ||s||], the maximum posterior esti-
mator is obtained by maximizing P (s|β) = L(β|s) ∗ P (s).
We take the partial derivative with respect to s:

∂s(−log(P (s|β))) = −(Mη +MηM
−1
ϕ Mη)

−1s+M−1
η s

+ (Mη +MηM
−1
ϕ Mη)

−1β −M−1
η β + λ∂s||s||

(5)
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Figure 2. The architecture of the proposed NeedleLight: We introduce sparse needlets to represent lighting. The frequency bands in Needlet
Coefficients are denoted as j = 1, · · · , n. The needlet coefficients in each frequency band are spatially localized on a set of Cubature Points
on the unit sphere (illustration for j = k only). For stable lighting regression, we design a spherical transport loss to capture the divergence
between the predicted needlet coefficients (Prediction) and the ground-truth coefficients (Ground Truth). The values of needlet coefficients
are illustrated by color bars (only draw 5 for illustration).

Cubature Points on Sphere Cubature Points on Panorama

Figure 3. The visualization of cubature points (jmax=3) on sphere
and panorama. The red, green and blue points denote the cuba-
ture points of frequency bands from low to high frequency, namely
j=1, j=2 and j=3 respectively.

By making ∂s(−log(P (s|β))) = 0, the following solution
(or sparse function) can thus be derived:

s = β−
[
M−1

η − (Mη +MηM
−1
ϕ Mη)

−1
]−1

λ∂s||s|| (6)

which is a soft thresholding operator with threshold
(M−1

η − (Mη +MηM
−1
ϕ Mη)

−1)λ. More details about the
derivation of the sparse function are provided in the supple-
mental file.

We apply the sparse function largely to the high-
frequency needlet coefficients so as to shrink the redundant
coefficients of the ambient component. The sparse needlets
provide sparse representation of illumination maps, which
is desirable for the regression of light sources by using the
proposed spherical transport loss to be described in the fol-
lowing subsection.

3.3. Spherical Transport Loss

Different from spherical harmonics, needlet coefficients
are spatially localized in a unit sphere. A simple MSE loss
cannot utilize the spatial information. Besides, as an under-
constrained task, the optimization in lighting estimation is

severely challenging since it aims to recover the environ-
ment lighting from all directions based on a single scene
image with a limited field of view. Thus the training of
lighting estimation models struggles with the regression of
high frequency information.

In this work, we propose a novel Spherical Transport
Loss (STL) to achieve the stable and effective lighting re-
gression. Because the needlet coefficients are spatially lo-
calized on the unit sphere as specified by cubature points,
we treat the regression of needlet coefficients as an Unbal-
anced Optimal Transport (UOT) [22, 8] problem on the unit
sphere. Intuitively, UOT computes the cost for transport-
ing a measure distributed on a space to another measure
of possibly different total masses. As the needlet coeffi-
cients may contains negative values, we take the natural ex-
ponent of them before deriving the spherical transport loss.
Then we can define two sets of needlet coefficients repre-
sented by two positive vectors a = (a1, ·, an) ∈ Rn

+ and
b = (b1, · · · , bn) ∈ Rn

+ and their spatial layouts are speci-
fied by cubature points on the unit sphere. A distance matrix
C and a transportation plan matrix P can thus be derived,
where each entry Cij in C gives the cost of moving point ai
to point bj which can be defined by radian distance between
points on the unit sphere, and Pij in P represents the prob-
ability of assigning a point ai to a point bj . The regularized
UOT problem (namely STL) can thus be defined as follows:

min
P

[
⟨C,P ⟩+ τKL(P · 1⃗||a) + τKL(⃗1 · P ||b)− γH(P )

]
(7)

where τ and γ are regularization parameters, KL is the
KerKullback-Leibler Divergence, H(P ) is the entropic reg-
ularization for efficient approximation of original UOT
problem [8]. The regularized UOT can be solved by
Sinkhorn iteration [10].

To construct clear and sharp instead of diffuse (i.e., low
frequency) light sources, we expect the transportation plan
to be sparse. Otherwise the diffuse light sources will result
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Figure 4. (a) The process to achieve sparse transportation plan through auxiliary points. E and GT are the estimated needlet coefficients
and the ground truth, respectively. ‘A’ denotes the auxiliary point. E′ denotes the predicted coefficients extended with auxiliary points. The
connection between E′ and GT signifies the resulting transportation plan. (b) Transportation plans for the needlet coefficients (j=1) w/o
and w/ auxiliary points, respectively. (c) The sparsity and error of transportation plan matrix with different percentage of auxiliary points.

in weak shading and shadow effects as presented in Garon
et al. [15] of Fig. 6. Besides, the dimension of output
layer increases quickly when the frequency of needlets be-
comes large (252 needlet coefficients when jmax = 3). We
propose an auxiliary point strategy to achieve sparse trans-
portation plan and reduce the dimension of output layer.
Auxiliary points are assigned with small value (we select

1
(number of coefficients) ) and 0 cost for transport, which can
be used for absorbing unused probability mass in cases of
partial transport. As shown in Fig. 4(a), we only estimate
partial needlet coefficients (E), and then use the auxiliary
points to replace other needlet coefficients to obtain a new
set of coefficients (E′). After obtaining the optimal trans-
port between E′ and the ground truth GT, we can extract a
sparse transportation plan by removing the connection with
the auxiliary points. The two samples in Fig. 4(b) show
the transportation plan matrix for the needlet coefficients
(j = 1) with and without auxiliary points, respectively. Fig.
4(c) shows the sparsity and error of the transportation plan
matrix (n× n) with different percentage of auxiliary points
(The evaluation metrics for the sparsity and error of trans-
portation plan are described in [3]). When more auxiliary
points are used, the sparsity of the transportation matrix in-
creases but the error also increases as shown in Fig. 4 (c).
As a trade-off, we select 66% of coefficients as auxiliary
points.

Using spherical transport loss for needlet coefficients re-
gression has two clear advantages. First, it makes the re-
gression sensitive to the global geometry, thus effectively
penalizing predicted activation that is far away from the
ground truth distribution. Second, it can preserve the high
frequency information during training with the proposed
auxiliary points.

Evaluation Metric: Lighting estimation has been
widely evaluated by using root mean square error (RMSE)
and scale-invariant RMSE (si-RMSE) that measure the stan-
dard deviation of residuals of the rendered images. RMSE
mainly evaluates the estimated lighting intensity, and si-

RMSE focuses more on the evaluation of lighting posi-
tions. In addition, lighting estimation has also been eval-
uated by using Amazon Mechanical Turk (AMT) that per-
forms crowdsourcing user study for subjective assessment
of empirical realism of rendered images.

Existing metrics evaluate estimated lighting largely by
applying them to the rendered objects. Thus the perfor-
mance of an estimation model is highly affected by test set-
tings such as materials and 3D shape of the rendered ob-
jects. Based on the proposed spherical transport loss, we
design a spherical transport distance (STD) metric that di-
rectly evaluates the optimal transport distance between the
predicted illumination map and the ground-truth map on the
unit sphere. The only difference from STL is that STD dis-
cards the auxiliary point strategy. The proposed STD highly
simplifies the evaluation procedure and provides concise yet
effective evaluations regarding to the lighting color, lighting
intensity, and lighting position jointly.

Gray Diffuse Matte Silver Mirror Silver

Figure 5. The scene for quantitative evaluations consists of three
spheres with diffuse gray, matte silver and mirror silver materials.

4. Experiments
4.1. Dataset and Implementation

We evaluate NeedleLight by using the Laval Indoor HDR
Dataset [14] that consists of 2,100 HDR panoramas taken in
a variety of indoor environments. Similar to [14], we extract
eight limited field of view crops from each panorama which
produces 19,556 images as used in our experiments. The
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Table 1. Comparison of NeedleLight with several state-of-the-art lighting estimation methods: The evaluation metrics include the widely
used RMSE, si-RMSE, AMT, and our proposed STD. D, S, M denote a diffuse, a matte silver and a mirror material of the rendered objects,
respectively.

Gardner et al. [14] Gardner et al. [13] Li et al. [20] Garon et al. [15] NeedleLight
Metrics D S M D S M D S M D S M D S M
RMSE 0.13 0.16 0.18 0.06 0.10 0.15 0.21 0.23 0.26 0.18 0.20 0.24 0.07 0.07 0.09
si-RMSE 0.15 0.15 0.17 0.07 0.09 0.12 0.19 0.21 0.23 0.21 0.24 0.26 0.05 0.06 0.08
AMT 28% 23% 21% 34% 33% 30% 28% 27% 23% 29% 26% 24% 41% 39% 36%

STD 6.84 5.52 7.01 7.14 4.21

Gardner et al. 2017 OursGardner et al. 2019Garon et al. 2019Li et al. 2019 Ground Truth

Figure 6. Visual comparison of NeedleLight with state-of-the-art lighting estimation methods: With the illumination maps predicted by
different methods (at bottom-right corner of each rendered image), the rendered virtual objects demonstrate different lighting intensity,
color, shadow and shade.

image warping operation as described in [14] is applied to
the panoramas. We apply the proposed sparse needlets with
jmax = 3 to extract needlet coefficients as the ground truth
for training. Similar to [13, 15], DenseNet121 is used as the
backbone network and produces a 4096-dimensional latent
vector which is further forwarded to a fully-connected layer
with 1024 units. Three separate output layers are added to
regress needlet coefficients in frequency bands j = 1, 2, 3.
In the experiment, we randomly select 200 images as testing
set and the rest for training set. All the objects are rendered
with Blender [9].

The proposed NeedleLight is implemented by the Py-
Torch framework. The Adam is adopted as optimizer which
employs a learning rate decay mechanism (initial learning
rate is 0.001). The network is trained in 100 epochs with
a batch size of 64. In addition, the network training is per-
formed on two NVIDIA Tesla P100 GPUs with 16GB mem-
ory.

4.2. Quantitative Evaluation

We compare NeedleLight with a number of state-of-the-
art lighting estimation methods including Garon et al. [15]

that estimates lighting in frequency domain and Gardner et
al. [14, 13] and Li et al. [20] that estimate lighting in spa-
tial domain. To perform quantitative evaluations, we create
three spheres with gray diffuse, matte silver and mirror sil-
ver materials for evaluation as shown in Fig. 5, which is
consistent with the evaluation setting in [19]. Then we ren-
der 300 images of objects (100 images for each material) by
using the illumination maps that are predicted from testing
set by each compared method. Table 1 shows experimental
results by using 4 evaluation metrics as described in Evalu-
ation Metrics, where D, S and M denote a diffuse, a matte
silver and a mirror material of the objects to be rendered,
respectively. The AMT user study is conducted by show-
ing two images rendered by the ground truth and one of
the methods in Table 1 to 20 users who will pick the more
realistic image. The score is the percentage of images ren-
dered by the method that is deemed as more realistic than
the ground-truth rendering.

We can observe that NeedleLight outperforms other
methods in most cases under different evaluation metrics
and materials as it allows regression in frequency and spatial
domain jointly. The only exception is for diffuse material by
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[13] while evaluated using RMSE, largely because the pa-
rameterization in Gardner et al. [13] simplifies the scene il-
lumination in spatial domain to achieve accurate prediction
of light intensity while diffuse material is largely affected
by light intensity and RMSE is most sensitive to light inten-
sity. Gardner et al. [14] predicts illumination maps directly
by a two-stage training strategy. As an under-constrained
problem, the direct generation methods like Gardner et al.
[14] tend to over-fit the training set and present worse gen-
eralization performance. Besides, both Gardner et al. [14]
and Gardner et al. [13] estimate lighting in spatial domain
which cannot recover frequency information and tends to
generate inaccurate shading and shadow that are largely
measured by si-RMSE. Garon et al. [15] recovers light-
ing in frequency domain by regressing the SH coefficients,
which tend to capture global instead of localized lighting.
Thus Garon et al. [15] struggles to regress accurate lighting
position and recover high frequency information. Li et al.
[20] adopts spherical Gaussian functions to reconstruct illu-
mination in spatial domain, thus it cannot recover accurate
illumination frequency. Besides, it uses a masked L2 loss to
preserve high frequency information though it cannot solve
the missing of high frequency information essentially as il-
lustrated in Fig. 6. Instead, our proposed spherical transport
loss with auxiliary points improves the regression of high
frequency information significantly. In addition, we can ob-
serve that the performance of the state-of-the-art methods
is not consistent under different evaluation metrics. For ex-
ample, Li et al. [20] outperforms Garon et al. [15] in si-
RMSE but the situation becomes the other way around in
RMSE. The divergence of different metrics makes it hard
to provide consistent evaluations. The proposed spherical
transport distance (STD) instead provides relatively consis-
tent and comprehensive evaluations in light intensity, color,
position, etc. as shown in Table 1.

To evaluate the performance of spatially-varying illumi-
nation, we conduct a user study with 10 persons on the test
set described in [15]. The objects are inserted at left, cen-
ter, right of 20 images with three methods as denoted by
[NeedleLight, Gardner et al. [13], Garon et al. [15]]. The
results are left:[47%, 34%, 19%], center:[44%, 33%, 23%],
right:[46%, 30%, 24%].

4.3. Qualitative Evaluation

We also compare NeedleLight with four state-of-the-art
lighting estimation methods qualitatively. we design 25 3D
scenes with objects for insertion and render them with the
predicted illumination maps. Fig. 6 shows several rendered
images and the predicted illumination maps. We can ob-
serve that NeedleLight predicts realistic illumination maps
with plausible light sources, thus producing realistic render-
ing with clear and accurate shade and shadows that are very
close to the ground truth. Besides the testing set, we also

Figure 7. Object relighting on a variety of photos from the In-
ternet. In all cases, light estimation is performed completely au-
tomatically by our model. The predicted illumination maps are
utilized to relight the virtual objects with Blender [9]. More ren-
dering samples and the analysis of spatially-varying rendering are
available in supplementary file.

validate the proposed method on natural images collected
from the Internet as shown in Fig. 7. The proposed method
achieves accurate estimation of scene illumination, thus the
3D objects can be embedded into the images with real shad-
ing and shadow effects.

4.4. Ablation Study

We further evaluate NeedleLight by developing four
NeedleLight variants as listed in Table 2, including a base-
line model which regress spherical harmonic coefficients
with L2 loss (SH+L2), regressing original needlet coeffi-
cients with L2 loss (SN+L2), regressing needlet coefficients
after applying soft thresholding (namely sparse needlets)
with L2 loss (SN+ST+L2), regressing sparse needlets co-
efficients with spherical transport loss (SN+ST+STL). The
standard NeedleLight regresses spares needlets with both
L2 and spherical transport loss (SN+ST+L2+STL). Sim-
ilar to the setting in Quantitative Evaluation, we apply
the five variants and the standard NeedleLight to render
300 images with 15 objects of different materials. As Ta-
ble 2 shows, using needlets for illumination representation
(SN+L2) helps to achieve better lighting estimation com-
pared with spherical harmonics function (SH+L2). In ad-
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Table 2. Ablation study of the proposed NeedleLight: SH denotes using spherical harmonics for representation; SN denotes using spherical
needlets for representation; ST denotes applying the derived soft thresholding function to needlet coefficients; L2 and STL denotes regress-
ing coefficients with L2 loss and spherical transport loss; SN+ST+L2+STL denotes standard NeedleLight with sparse needlets which are
regressed with both L2 and spherical transport loss.

Models
RMSE si-RMSE AMT STD

D S M D S M D S M -
SH+L2 0.19 0.20 0.25 0.22 0.24 0.28 23% 21% 18% 7.14
SN + L2 0.14 0.14 0.16 0.11 0.14 0.15 33% 31% 28% 4.93
SN+ST+L2 0.11 0.12 0.14 0.09 0.09 0.13 34% 32% 30% 4.74
SN+ST+STL 0.10 0.11 0.13 0.07 0.10 0.12 37% 34% 32% 4.51
SN+ST+L2+STL 0.07 0.07 0.09 0.05 0.06 0.08 41% 39% 36% 4.21

Table 3. Ablation studies over different bases including spher-
ical harmonics (SH), spherical gaussian (SG), spherical distribu-
tion (SD), Haar, spherical needlets (SN). HT and ST denote ap-
ply hard thresholding and the derived soft thresholding functions
to the spherical needlet coefficients. jmax denotes the order of
needlets for representation. SN(jmax=3)+ST is the standard set-
ting of NeedleLight.

Models L2 L2 + STL
SH 7.14 7.13
SG 6.01 5.74
SD 5.75 5.54
Haar 6.07 5.83
SN (jmax=1) 7.52 7.18
SN (jmax=2) 6.71 6.20
SN (jmax=4) 5.37 4.96
SN(jmax=3) 5.32 4.93
SN(jmax=3)+HT 4.92 4.51
SN(jmax=3)+ST 4.74 4.21

dition, the performance of SN+ST+L2 is improved clearly
as sparse needlet coefficients helps the regression of light
sources significantly by the zero setting of redundant coeffi-
cients. Additionally, the standard SN+ST+L2+STL outper-
forms SN+ST+L2 and SN+ST+STL, demonstrating the L2
and the proposed STL are complementary for the regression
of needlet coefficients.

We also study effect of thresholding function and differ-
ent orders of needlets and compare spherical needlets (SN)
with other basis functions for illumination representation
such as spherical harmonics (SH), spherical gaussian (SG),
spherical distribution (SD) [40] and Haar [27] as shown in
Table 3. We followed the experimental setting as in Ta-
ble 2 and measure the proposed STD as the evaluation met-
ric. The number of coefficients of SH, SG, SD and Haar
are set to be consistent with spherical needlets with 3 or-
ders (about 250 coefficients). As Table 3 show, needlets
SN(jmax=3) outperforms other representation bases when
regressing with both L2 loss and spherical transport loss.

Compared with spherical gaussian, spherical distribution
and spherical harmonics functions, needlets enable rep-
resentation in both spatial and frequency domains, thus
achieving accurate regression in both domains. Compared
with other wavelets such as Haar, needlets is a new gen-
eration of spherical wavelets and is more suitable for the
representation of spherical image with sharp local peak
valleys which are commonly presented in HDR illumina-
tion map. Regressing spherical harmonic coefficients with
spherical transport loss doesn’t improve the performance as
there is no spatial information in spherical harmonic coef-
ficients. For spherical gaussian, spherical distribution and
Haar, the performance with the spherical transport loss in-
cluded is clearly improved as the corresponding coefficients
are spatially localized, which demonstrates the effective-
ness of the proposed spherical transport loss. Further, the
prediction performance drops when jmax=1,2 are used, and
increasing the order to jmax=4 doesn’t improve the perfor-
mance. We conjecture that the larger number of parame-
ters with jmax=4 affects the regression accuracy negatively.
Besides, the performance of SN(jmax=3)+ST outperforms
SN(jmax=3)+HT, demonstrating the superiority of the de-
rived soft thresholding function.

5. Conclusions

This paper presents NeedleLight, a lighting estimation
model that introduces needlet basis for illumination repre-
sentation and prediction. In NeedleLight, we deduce an op-
timal thresholding function from Bayesian framework for a
sparse representation in terms of needlet basis. To tackle
the regression of needlet coefficients with spatial localiza-
tion, a novel spherical transport loss with auxiliary points
is designed which performs regression by minimizing the
discrepancy between two spherical distributions. Both the
quantitative and qualitative experiments show that Needle-
Light is capable of predicting illumination accurately from a
single indoor image. We will continue to investigate needlet
basis for more efficient illumination representation and ex-
plore optimal transport for better network training.
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[4] Jérome Bobin, Yassir Moudden, J-L Starck, J Fadili, and
Nabila Aghanim. Sz and cmb reconstruction using general-
ized morphological component analysis. Statistical Method-
ology, 5(4):307–317, 2008. 3

[5] Mark Boss, Varun Jampani, Kihwan Kim, Hendrik Lensch,
and Jan Kautz. Two-shot spatially-varying brdf and shape
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3982–
3991, 2020. 2

[6] Andrew Chalmers, Junhong Zhao, Daniel Medeiros, and
Taehyun Rhee. Reconstructing reflection maps using a
stacked-cnn for mixed reality rendering. IEEE Transactions
on Visualization and Computer Graphics, 2020. 2

[7] Dachuan Cheng, Jian Shi, Yanyun Chen, Xiaoming Deng,
and Xiaopeng Zhang. Learning scene illumination by pair-
wise photos from rear and front mobile cameras. In Com-
puter Graphics Forum, pages 213–221. Wiley Online Li-
brary, 2018. 1, 2

[8] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and
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