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Abstract

Deep convolutional neural networks (CNNs) are achiev-
ing great successes for image super-resolution (SR), where
global context is crucial for accurate restoration. However,
the basic convolutional layer in CNNs is designed to extract
local patterns, lacking the ability to model global context.
With global context information, lots of efforts have been
devoted to augmenting SR networks, especially by global
feature interaction methods. These works incorporate the
global context into local feature representation. However,
recent advances in neuroscience show that it is necessary
for the neurons to dynamically modulate their functions ac-
cording to context, which is neglected in most CNN based
SR methods. Motivated by those observations and analyses,
we propose context reasoning attention network (CRAN) to
modulate the convolution kernel according to the global
context adaptively. Specifically, we extract global context
descriptors, which are further enhanced with semantic rea-
soning. Channel and spatial interactions are then intro-
duced to generate context reasoning attention mask, which
is applied to modify the convolution kernel adaptively. Such
a modulated convolution layer is utilized as basic compo-
nent to build the blocks and networks. Extensive exper-
iments on benchmark datasets with multiple degradation
models show that CRAN obtains superior results and favor-
able trade-off between performance and model complexity.

1. Introduction
Image super-resolution (SR) aims to reconstruct an ac-

curate high-resolution (HR) image given its low-resolution

(LR) counterpart [14]. Image SR plays a fundamental role

in various computer vision applications, ranging from secu-

rity and surveillance imaging [71], medical imaging [48], to

object recognition [45]. However, image SR is an ill-posed

problem, since there exists multiple solutions for any LR

input. To tackle such an inverse problem, lots of deep con-

volutional neural networks (CNNs) have been proposed to

learn mappings between LR and HR image pairs.

Deep CNNs have achieved remarkable successes for im-

age SR [10, 12, 26, 36, 62, 18, 66, 1, 23, 31, 67]. In
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Figure 1. Visual examples for 4× SR with Bicubic (BI) degra-

dation on Urban100 [22]. SAN, CSNLN, and RFANet recover

parts of local textures. Global context guided convolution enables

CRAN to recover more structural textures with proper directions.

CNNs, convolution extracts local patches by a sliding win-

dow, making it only capable of capturing local patterns.

However, recent advances in neuroscience reveal that neu-

rons’ awareness of global context is essential for us to pro-

cess complex perceptual tasks effectively [34, 15]. The slid-

ing window mechanism in convolution limits its ability to

utilize global context, being crucial for accurate image SR.

To alleviate this limitation, many SR methods have been

recently proposed to introduce global context modeling

modules into SR networks [64, 9, 38, 65, 41]. Zhang et

al. proposed residual channel attention network [64], where

the global context was modelled with global average pool-

ing and used to rescale each feature channel. Dai et al. pro-

posed second-order channel attention by considering higher

order feature statistics in SAN [9]. Different from channel

attention, Liu et al. proposed an enhanced spatial attention

block in FRANet [38] to make the residual features be more

focused on critical spatial contents.

Zhang et al. further proposed residual non-local atten-

tion network [65] to rescale hierarchical features with mixed

channel and spatial attentions adaptively. Such a non-local

attention mechanism was further developed in cross-scale

non-local attention (CSNLN) [41]. Mei et al. proposed a

self-exemplar mining cell to exhaustively mine all the pos-

sible intrinsic priors by combining local and in-scale/cross-

scale non-local feature correlations in CSNLN [41]. As

shown in Figure 1, SAN, RFANet, and CSNLN could re-

cover some kind of local textures. But, it seems that the

directions of those textures are not faithful to the ground

truth. This is mainly because these methods mainly incor-

porate the global context into the local features.

However, as investigated in neuroscience [15], the func-
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tion of neurons should be adaptively changed according

to the behavioral context. Therefore, we can dynamically

modify the convolution kernels based on context informa-

tion [37]. Image SR has not witnessed works exploiting

such a modulation mechanism, which was tentatively in-

vestigated in other computer vision applications. Zhu et al.

proposed to adaptively set the offset of each element in a

convolution kernel and the gather value for each element in

the local feature patch [70]. However, such an operation

only changes the input features fed into the convolutional

(Conv) layer. Wu et al. proposed to generate the convolu-

tion kernel weights dynamically by taking local segments

as inputs only [55]. Similar works in [24, 25] extracted fea-

tures from the input image with another network and then

generated convolution kernel weights. The feature extrac-

tion process could be time-consuming, making it impracti-

cal for very deep CNNs in image SR. Lin et al. proposed

context-gated convolution to introduce context-awareness

to Conv layers [37]. However, most of them neglected to

mine the relationship among context information, which

could also be important for high-quality image SR.

Motivated by the observations and analyses above, we

propose a context reasoning attention network (CRAN) for

image SR. This is the first attempt in image SR to modulate

the convolution kernel according to the global context adap-

tively to the best of our knowledge (see Figure 2). Specif-

ically, we project the input feature into latent representa-

tions and extract global context descriptors. The context

relationship descriptors are further enhanced by using the

descriptor relationship with semantic reasoning. Channel

and spatial interactions [37] are then introduced to generate

context reasoning attention mask, which is applied to mod-

ify the convolution kernel adaptively. We use the modulated

convolution layer as a basic component to build blocks and

the whole networks. Consequently, our CRAN can achieve

much superior SR results (e.g., in Figure 1) against recent

leading methods and favourable efficiency trade-off.

In summary, the main contributions of this work can be

concluded in three parts:

• We propose a context reasoning attention network for

accurate image SR. Our CRAN can adaptively modu-

late the convolution kernel according to the global con-

text enhanced by semantic reasoning. CRAN achieves

superior SR results quantitatively and visually.

• We propose to extract context information into latent

representations, resulting in a bag of global context de-

scriptors. We further enhance the descriptors by using

their relationship with semantic reasoning.

• We introduce channel and spatial interactions to gen-

erate context reasoning attention mask used to modify

convolution kernel. We finally obtain the context rea-

soning attention convolution, which further serves as a

base to build blocks and networks for image SR.

*

W

(a) Previous Conv

*

Context
GuidanceW

*W

(b) Context Guided Conv

Figure 2. Conv layers. Motivated by [37], we modify Conv kernel

W as W ∗ with context. � denotes Conv operation.

2. Related Works
Deep CNN for Image SR. The pioneering work was

done by Dong et al. [10], who proposed SRCNN with three

convolutional (Conv) layers for image SR. By introducing

residual learning to ease the training difficulty, Kim et al.

proposed VDSR [26] and DRCN [27] with 20 layers and

achieved significant performance improvement. Lim et al.

proposed EDSR [36] by simplifying residual block, which

allows to build deeper and wider networks with more pa-

rameters. Zhang et al. proposed RDN [66] to reduce the

model size and keep accurate performance. However, those

methods neglect to utilize different importance across dif-

ferent feature channels and/or spatial positions. The atten-

tion mechanism was then utilized to tackle those limitations.

Zhang et al. proposed residual channel attention network

(RCAN) [64] by considering interdependencies among fea-

ture channels. Then, more and more works have been pro-

posed to investigate efficient attention mechanisms for im-

age SR. Dai et al. proposed a second-order attention net-

work (SAN) [9] for more powerful feature expression and

feature correlation learning. In those methods, the convo-

lution kernels are not adaptive to the specific context in the

inference phase, hindering the representation ability of net-

works. Those observations motivate us to modify convolu-

tion kernels adaptively according to the input.

Context Information in CNN. Tentative works have

augmented CNNs with context information and can be

briefly categorized into three types. First, similar as hu-

mans’ visual processing system, backward connections

were incorporated in CNNs [59, 57] to model the top-

down influence [15]. But, it is still hard to understand

how the feedback mechanism can perform effectively and

efficiently in CNNs. Second, attention mechanism was

utilized to modify intermediate feature representations in

CNNs [50, 52, 54, 5]. They usually utilized the global con-

text information (e.g., self-attention mechanism) to mod-

ify the local features [51, 52, 21, 54, 5, 2]. However, this

kind of methods only consider changing the input feature

maps. Third, many works attempted to dynamically chang-

ing the convolutional layer parameters by considering lo-

cal or global information [24, 8, 25, 6, 55, 70, 37]. Some

of them neglected to consider the Conv weight tensor [70],

only took local segments and inputs [55], or suffered from

expensive feature extraction process [24, 25]. Plus, most of

them neglected to mine the relation among context informa-

tion, which could be bone with semantic reasoning.
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Semantic Reasoning. Relational reasoning is initially

introduced into the artificial intelligence community as

symbolic methods [42]. As an active research area, graph-

based methods have been prevalent in recent years and

shown to be an efficient way of relational reasoning. In-

spired by the great success of CNNs in computer vi-

sion area [19], [29] proposed graph convolution networks

(GCNs) for semi-supervised classification. [56] utilized

GCNs to encode the prior knowledge into a deep reinforce-

ment learning framework to improve semantic navigation

in unseen scenes and novel objects. [5, 32] incorporated

GCN into the design of visual encoding and learn relation-

ship enhanced features end-to-end towards the task of inter-

est, such as image classification and image-text matching.

[58] trained a visual relationship detection model on Visual

Genome dataset [30] and used a GCN-based image encoder

to encode the detected relationship information.

3. Context Reasoning Attention Network for
Image Super-Resolution (SR)

In image super-resolution (SR), the original input is the

low-resolution (LR) image ILR, which would be extracted

as deep features by convolutional layers. For a convolu-

tional layer, the input is a feature map Fin ∈ R
cin×h×w,

where cin, h, w are the channel number, height, and width

of the feature map, respectively. To conduct the convolu-

tion operation, we slide window to extract a local feature

patch of size cin × k1 × k2. Then, we multiply the feature

patch with the convolutional kernel W ∈ R
cout×cin×k1×k2 ,

where cout, k1, k2 are the output channel number, height,

and width of the kernel. Here, each convolutional operation

only extracts local information, which would not affect the

kernels adaptively in the inference phase.

3.1. Context Information Extraction
To tackle the above drawback of traditional convolution,

we propose a context reasoning attention convolution (see

Figure 3). We attempt to incorporate the global context in-

formation into the convolution process. On the other hand,

the input LR image size can be arbitrarily large, so as the

feature maps. To extract context information, we first re-

duce the spatial size of input feature Fin to h′×w′ by using

a pooling layer. Then, for each feature channel, we extract

a latent representation of the global context by considering

all the spatial positions. Specifically, we use a shared linear

layer with weight WE ∈ R
h′×w′×e to project each channel

to a latent vector of size e. Following the bottleneck design

in [50, 21, 52, 37], we set the vector size as e = k1×k2

2 .

Consequently, we obtain a new feature with global context

information and denote it as FC ∈ R
cin×e.

Let’s write the global context information as a set of vec-

tors FC = [f1, · · · , fe] ∈ R
cin×e. It gives a new perspective

on the context information extraction results, which are ac-

tually a bag of global context descriptors.

CF

inF

Channel Interaction

*
CF

W

*W

CIF

AF

2AF

1AF

*

CDRRContext ExtractionResize Spatial Interaction

Figure 3. A brief view of our context reasoning attention convolu-

tion (CRAC). CDRR denotes context descriptor relationship rea-

soning. � and � denote element-wise multiplication and convo-

lution operations, respectively. Eq. (4) describes operation ⊕.

3.2. Context Descriptor Relationship Reasoning
We first obtain the global context descriptor set FC .

Then, the relationship among each context descriptor fi
enables further enhancement. Recently, visual reasoning

based methods [46, 4, 68, 33, 63] have been investigated in

deep learning to make better use of the relationship among

visual components. Motivated by those works, we construct

a relationship reasoning model among the context descrip-

tors. Specifically, with weight parameters Wϕ and Wφ, we

embed the context descriptors into two embedding spaces.

Then, the pairwise affinity can be calculated via

R(fi, fj) = (Wϕfi)T (Wφfj), (1)

which obtains the relationship between every two learned

context descriptors fi and fj , resulting in a graph.

We then denote the graph as G(FC , R), where FC is the

set of graph nodes (i.e., context descriptors) and R is the set

of graph edges (i.e., context descriptor relationships). Based

on Eq. (1), the affinity matrix R can be obtained by measur-

ing the affinity edge of each context descriptor pair. For a

graph edge, high affinity score indicates strong semantic re-

lationship among the corresponding context descriptor pair.

We then bridge FC and original input with residual learning

F ∗
C = σ(

[(
RFC

TWg

)
Wr

]T
)� FC + FC , (2)

where σ(·) is sigmoid activation function. R is the e×e
affinity matrix. Wg is a cin×cin weight matrix of the GCN

layer and Wr is the weight matrix of the residual structure.

� denotes element-wise multiplication.

3.3. Context Reasoning Attention Convolution
Inspired by [37], we try to update the convolution ker-

nel with attention by adopting the enhanced global con-

text information F ∗
C . The attention mask has size of FA ∈

R
cout×cin×k1×k2 , same as the convolution kernel weight.

Kernel Decomposition. For deep CNN based image

SR methods, the feature input and output channels cin, cout
are usually large (e.g., 128 in CSNLN [41] and 256 in

EDSR [36]), which could make the kernel modulation time

consuming. To break down the computation complexity,

we follow the previous works about convolution kernel de-

composition [20, 7, 37] and attempt to generate two tensors

FA1 ∈ R
cout×k1×k2 and FA2 ∈ R

cin×k1×k2 .

We aim to reduce the computation complexity further to

adjust for a very deep network and large feature size in im-
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age SR. Motivated by the design in depth-wise separable

convolutions [20, 7, 37], we turn to achieve such two ten-

sors FA1, FA2 and the final FA by modelling the channel

interaction and spatial interaction separately.

Channel Interaction. To fit the size of kernel weight,

we first project the global context information F ∗
C ∈ R

cin×e

to the output dimension space cout. Inspired by [17, 37],

we introduce a grouped linear layer with weight Wci ∈
R

cin
g × cout

g for the projection, where g is the number of

groups. We denote the output as FCI ∈ R
cout×e.

Spatial Interaction. Then we conduct spatial interac-

tion onto FCI and FC to get the corresponding tensors FA1

and FA2. Specifically, we utilize two linear layers with

weights WA1 ∈ R
e×k1×k2 and WA2 ∈ R

e×k1×k2 . WA1

and WA2 are shared across different feature maps in FCI

and F ∗
C , respectively. Consequently, we generate two ten-

sors FA1 = FCIWA1 and FA2 = F ∗
CWA2.

Context Reasoning Attention Convolution. After con-

ducting channel and spatial interaction [37], we generate

FA1 ∈ R
cout×k1×k2 and FA2 ∈ R

cin×k1×k2 . Then, we

form the final context reasoning attention mask FA via

FA = FA1 ⊕ FA2, (3)

where FA ∈ R
cout×cin×k1×k2 has the same size of the con-

volution kernel W . The operation ⊕ can be expressed in an

element-wise way. Specifically, each element (FA)h,i,j,k of

FA can be determined by

(FA)h,i,j,k = σ((FA1)h,j,k + (FA2)i,j,k), (4)

where σ(·) denotes the sigmoid function. In this way, we get

the attention mask FA by considering the global context.

Then, we can apply the attention mask FA to modulate

the convolution kernel weight W as follows

W ∗ = W � FA, (5)

where the operation � denotes element-wise multiplication.

With the modulated convolution kernel W ∗, the tradi-

tional convolution process on the input feature maps could

dynamically capture representative local patterns under the

guidance of global context. We name it as context reason-

ing attention convolution (CRAC), whose primary process

is shown in Figure 3. We will further show visualization

results about the diversity of W ∗ with respect to different

inputs in Section 4.6. Then, we can use CRAC further to

form the basic network modules for image SR.

3.4. CRAN for Image SR
Our proposed context reasoning attention convolution

(CRAC) can be easily used to replace traditional convolu-

tion. We use CRAC to build the basic block and network.

Context Reasoning Attention Block. Lim et al. [36]

proposed simplified residual block in EDSR [19] for im-

age SR. Such a simplified residual block has shown pretty

promising performance in image SR and served as a basic

building module in many follow-up works. Here, we sim-

ply follow the same block design in EDSR [36] by replacing

RB RB

RG RG RG

LR

HR

Conv Upscale 
module

Element-wise 
sumCRAC ReLU

CRAB

CRAB

Figure 4. The pipeline of our CRAN. We use RCAN [64] as the

backbone, where RG, RB, and CRAB denote residual group, resid-

ual block, and context reasoning attention block.

the traditional convolution with our proposed CRAC, result-

ing in context reasoning attention block (CRAB). Following

the design of basic residual block [19, 36], we formulate the

function of CRAB via

Fout = W2σ(W1Fin) + Fin, (6)

where Fin, Fout are the input and output feature. σ(·) de-

notes the ReLU [16] activation function. W1,W2 are the

weights of our proposed CRAC layer, where the bias terms

are omitted for simplicity.

Context Reasoning Attention Network. We then fol-

low the network design of RCAN [64] to build our context

reasoning attention network (CRAN) in Figure 4. It should

be noted that our proposed CRAC and CRAB can be used

for other image SR networks. Here, we mainly focus on

very deep networks and want to compare with recent related

state-of-the-art (SOTA) SR methods. Specifically, we use

RCAN [64] as a backbone and replace all the residual chan-

nel attention blocks [64] with the simplified residual block

(RB) [36] or our proposed CRABs, resulting in the context

reasoning attention network (CRAN). The super-resolved

output ISR of CRAN can be obtained by

ISR = FCRAN (ILR), (7)

where FCRAN (·) denotes the function of our CRAN.

3.5. Implementation Details
Now we specify the implementation details of our pro-

posed CRAN. For the CRAC, we use average pooling with

h′=k1 and w′=k2 to resize the feature maps. In grouped

linear layer, we set the group number as g=16. For net-

work configuration, same as the backbone RCAN [64], we

set residual group number as 10 in the residual in resid-

ual (RIR) [64] structure. To keep similar parameter num-

bers and FLOPs as RCAN, in each residual group, we set

RB number as 19 and CRAB number as 1. We place one

CRAB as the last block in each residual group. We set

cin=64, cout=64, k1=3, and k2=3 for convolution kernel

W ∈ R
cout×cin×k1×k2 in all convolutional (Conv) layers,

except for those in the input, final output Conv layers, and

upscaling module. For Conv layers with kernel size 3×3

(regardless of channel dimensions), zero-padding strategy

is used to keep size fixed. For upscaling module in the back-

bone, we follow [47, 36, 66, 64] and use ESPCNN [47] to

upscale the coarse resolution features to fine ones. The final

Conv layer has 3 filters, as we output color images. While,

our network can also process gray-scale images.
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Block Type RB [36] RCAB [64] CRAB (w/o CDRR) CRAB

PSNR (dB) 37.15 37.19 37.28 37.34

Table 1. Performance of the EDSR baseline with different block

types. Networks with CRAB (w/ or w/o CDRR) perform better.

4. Experiments
4.1. Experimental Settings

Data. Following [49, 36, 18, 66, 62], we use DIV2K

dataset [49] and Flickr2K [36] as training data. For valida-

tion, we use the first 10 validation images in DIV2K. For

testing, we use five standard benchmark datasets: Set5 [3],

Set14 [60], B100 [39], Urban100 [22], and Manga109 [40].

Image Degradation Models. We conduct experiments

with Bicubic (BI), blur-downscale (BD) [61, 62, 66], and

downscale-noise (DN) [61, 62] degradation models. For

BD degradation model, the HR image is first blurred by a

Gaussian kernel of size 7×7 with standard deviation 1.6 and

then downscaled with scaling factor ×3. For DN degrada-

tion model, the HR image is first downscaled with scaling

factor ×3 and then added Gaussian noise (noise level=30).

Evaluation Metrics. The SR results are evaluated with

PSNR and SSIM [53] on Y channel (i.e., luminance) of

transformed YCbCr space. We also compare with several

leading SR methods in terms of network parameter number,

FLOPs, and GPU memory usage.

Compared Methods. We compare with numerous im-

age SR methods: SRCNN [11], FSRCNN [12], VDSR [26],

IRCNN [61], EDSR [36], SRMDNF [62], DBPN [18],

RDN [66], RCAN [64], RNAN [65], SRFBN [35], SAN [9],

CSNLN [41], RFANet [38], HAN [43], IGNN [69], and

NSR [13]. All the results are either provided by the authors,

or produced by their officially released codes.

Training Settings. Data augmentation is performed on

the training images, which are randomly rotated by 90◦,

180◦, 270◦ and flipped horizontally. In each training batch,

16 LR color patches with the size of 48×48 are extracted as

inputs. To keep fair comparisons, we choose to optimize L1

loss function, same as other compared works c[36, 66]. Our

model is trained by ADAM optimizor [28] with β1 = 0.9,

β2 = 0.999, and ε = 10−8. The initial learning rate is set to

10−4 and then decreases to half every 2× 105 iterations of

back-propagation. We use PyTorch [44] to implement our

models with Titan Xp GPUs.

4.2. Ablation Study
We study the effects of our proposed context descrip-

tor relationship reasoning (CDRR) and context reasoning

attention block (CRAB). We further investigate the effects

of channel interaction, spatial interaction, and position of

CRAB. We use EDSR baseline [36] as the backbone, where

the residual block (RB) number and feature number are 16

and 64. We observe the best performance on validation data

under BI model for ×2 SR in 200 epochs.

Spatial interaction
FA1

√ √ √
FA2

√ √ √
Channel interaction FC1

√ √
PSNR (dB) 37.22 37.26 37.28 37.34

Table 2. Ablation study about spatial interaction and channel in-

teraction in image SR. Validation performance of EDSR baseline.

CRAB Position Baseline [36] 1-st 4-th 8-th 16-th
PSNR (dB) 37.15 37.17 37.18 37.22 37.27

Table 3. Performance of the EDSR baseline, where there are 15

RBs and one CRAB is inserted in different positions. Higher-level

position helps obtain better performance.

Effects of CDRR and CRAB. In EDSR baseline, we

replace all RBs with RCAB [64], our CRAB with or w/o

CDRR. In Table 1, we find that RCAB achieves slight per-

formance gain. However, our CRAB w/o CDRR obtains

the obvious improvement over the baseline. These compar-

isons indicate that adaptively modulating the Conv kernel

according to global context contribute to accurate image SR

greatly. With CDRR, our CRAB achieves further improve-

ment, which demonstrates the effectiveness of CDRR.

Channel Interaction and Spatial Interaction. We in-

vestigate channel interaction and spatial interaction [37] in

image SR. As shown in Figure 3, channel interaction pro-

duces FC1. Spatial interaction consists of two branches FA1

and FA2. We provide several combinations of spatial inter-

action and channel interaction components and report re-

sults in Table 2. We find that each component contributes to

the performance. The best result is achieved by using them

all, showing the reasons why we choose them.

Effects of CRAB Position. As analyzed above, we uti-

lize one CRAB to replace the 1-st, 4-th, 8-th, 16-th RB

respectively in EDSR baseline, resulting in four cases. In

Table 3, CRAB in lower-level (e.g., 1-st and 4-th) would

contribute to the performance gain slightly. When we insert

the CRAB into a higher-level position, we can obtain more

obvious gains. Such observation helps us to set up the final

configuration of a deeper network. Consequently, for our

CRAN, we keep the first 19 RBs and place CRAB as the

last block for all 20 residual groups. We then compare with

other larger networks under different degradation models.

4.3. Results with BI Degradation Model
We compare our proposed CRAN with 13 recent image

SR methods. Similar to [36, 66, 64, 9, 43], we also intro-

duce self-ensemble strategy to improve our CRAN further

and denote the self-ensembled one as CRAN+. However,

we mainly compare our CRAN with others for fairness.

Quantitative Results. Table 4 shows quantitative com-

parisons for ×2, ×3, and ×4 SR. When compared with all

previous methods, our CRAN+ performs the best on all the

datasets with all scaling factors, except for SSIM value on

Set5 (×2). Even without self-ensemble, our CRAN also

outperforms other compared methods in all cases, except for

SSIM value (copied from SAN) on Set5 (×2). Compared
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Method Scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR [36] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
SRMDNF [62] ×2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761
DBPN [18] ×2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775
RDN [66] ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780
RCAN [64] ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
RNAN [65] ×2 38.17 0.9611 33.87 0.9207 32.31 0.9014 32.73 0.9340 39.23 0.9785
SRFBN [35] ×2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
SAN [9] ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
HAN [43] ×2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
NSR [13] ×2 38.23 0.9614 33.94 0.9203 32.34 0.9020 33.02 0.9367 39.31 0.9782
IGNN [69] ×2 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
CSNLN [41] ×2 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785
RFANet [38] ×2 38.26 0.9615 34.16 0.9220 32.41 0.9026 33.33 0.9389 39.44 0.9783
CRAN (ours) ×2 38.31 0.9617 34.22 0.9232 32.44 0.9029 33.43 0.9394 39.75 0.9793
CRAN+ (ours) ×2 38.36 0.9619 34.37 0.9243 32.48 0.9033 33.61 0.9405 39.89 0.9798

EDSR [36] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
SRMDNF [62] ×3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403
RDN [66] ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484
RCAN [64] ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
RNAN [65] ×3 34.66 0.9290 30.53 0.8463 29.26 0.8090 28.75 0.8646 34.25 0.9483
SRFBN [35] ×3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
SAN [9] ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
HAN [43] ×3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
NSR [13] ×3 34.62 0.9289 30.57 0.8475 29.26 0.8100 28.83 0.8663 34.27 0.9484
IGNN [69] ×3 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
CSNLN [41] ×3 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502
RFANet [38] ×3 34.79 0.9300 30.67 0.8487 29.34 0.8115 29.15 0.8720 34.59 0.9506
CRAN (ours) ×3 34.80 0.9304 30.73 0.8498 29.38 0.8124 29.33 0.8745 34.84 0.9515
CRAN+ (ours) ×3 34.89 0.9309 30.82 0.8508 29.42 0.8131 29.50 0.8768 35.06 0.9525

EDSR [36] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
SRMDNF [62] ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024
DBPN [18] ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137
RDN [66] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151
RCAN [64] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
RNAN [65] ×4 32.43 0.8977 28.83 0.7871 27.72 0.7410 26.61 0.8023 31.09 0.9149
SRFBN [35] ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
SAN [9] ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
HAN [43] ×4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
NSR [13] ×4 32.55 0.8987 28.79 0.7876 27.72 0.7414 26.61 0.8025 31.10 0.9145
IGNN [69] ×4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
CSNLN [41] ×4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201
RFANet [38] ×4 32.66 0.9004 28.88 0.7894 27.79 0.7442 26.92 0.8112 31.41 0.9187
CRAN (ours) ×4 32.72 0.9012 29.01 0.7918 27.86 0.7460 27.13 0.8167 31.75 0.9219
CRAN+ (ours) ×4 32.79 0.9022 29.07 0.7929 27.91 0.7470 27.30 0.8197 32.02 0.9239

Table 4. Quantitative results with BI degradation model. Best and second best results are colored with red and blue.

with attention-based methods (e.g., RCAN, SAN, RNAN,

HAN, and CSNLN), especially the backbone RCAN used

in our work, our CRAN achieves higher PSNR/SSIM values

in most cases. This comparison indicates that our proposed

CRAN can further improve the performance by modulating

Conv layer kernels with global context reasoning attention.

Visual Results. In Figure 5, we further show visual com-

parisons on scale ×4. Here, we mainly provide some repre-

sentative challenging cases about texture and small details

(e.g., tiny lines). In image “img 034”, there has some brick

textures according to the HR image. Most compared meth-

ods can hardly recover such textures, but suffer from some

blurring artifacts. In contrast, our CRAN can alleviate the

blurring artifacts better to some degree and recover parts of

textures. In image “img 044”, most of the compared meth-

ods cannot recover the tiny horizontal lines clearly. How-

ever, our CRAN produces much sharper structural details,

being more faithful to the ground truth.

In image “img 092”, there are several groups of strips in

different directions. All the compared methods cannot re-

Method S
Set5 Set14 B100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×3 28.78/0.8308 26.38/0.7271 26.33/0.6918 23.52/0.6862 25.46/0.8149
SRCNN [11] ×3 32.05/0.8944 28.80/0.8074 28.13/0.7736 25.70/0.7770 29.47/0.8924
FSRCNN [12] ×3 26.23/0.8124 24.44/0.7106 24.86/0.6832 22.04/0.6745 23.04/0.7927
VDSR [26] ×3 33.25/0.9150 29.46/0.8244 28.57/0.7893 26.61/0.8136 31.06/0.9234
IRCNN [61] ×3 33.38/0.9182 29.63/0.8281 28.65/0.7922 26.77/0.8154 31.15/0.9245
SRMDNF [62] ×3 34.01/0.9242 30.11/0.8364 28.98/0.8009 27.50/0.8370 32.97/0.9391
RDN [66] ×3 34.58/0.9280 30.53/0.8447 29.23/0.8079 28.46/0.8582 33.97/0.9465
RCAN [64] ×3 34.70/0.9288 30.63/0.8462 29.32/0.8093 28.81/0.8647 34.38/0.9483
SRFBN [35] ×3 34.66/0.9283 30.48/0.8439 29.21/0.8069 28.48/0.8581 34.07/0.9466
SAN [9] ×3 34.75/0.9290 30.68/0.8466 29.33/0.8101 28.83/0.8646 34.46/0.9487
HAN [43] ×3 34.76/0.9294 30.70/0.8475 29.34/0.8106 28.99/0.8676 34.56/0.9494
RFANet [38] ×3 34.77/0.9292 30.68/0.8473 29.34/0.8104 28.89/0.8661 34.49/0.9492
CRAN (ours) ×3 34.90/0.9302 30.79/0.8485 29.40/0.8115 29.17/0.8706 34.97/0.9512
CRAN+ (ours) ×3 34.93/0.9305 30.86/0.8493 29.43/0.8121 29.34/0.8727 35.16/0.9519

Table 5. Quantitative results with BD degradation model. Best and

second best results are colored with red and blue.

construct recover the top-right strips correctly. They either

suffer from heavy blurring artifacts (e.g., EDSR, DBPN,

RDN, RCAN, and SAN) or output strips with wrong direc-

tion (e.g., CSNLN and RFANet). However, our CRAN han-

dles this challenge better and recovers shaper strips. This is

mainly because we consider the global context information

and encode it into the Conv layer kernel modulation. Those

obvious visual comparisons with most recent SOTA meth-

ods further demonstrate the effectiveness of our CRAN.
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Urban100: img 034

HR Bicubic EDSR [36] DBPN [18] RDN [66]

RCAN [64] SAN [9] CSNLN [41] RFANet [38] CRAN (ours)

Urban100: img 044

HR Bicubic EDSR [36] DBPN [18] RDN [66]

RCAN [64] SAN [9] CSNLN [41] RFANet [38] CRAN (ours)

Urban100: img 092

HR Bicubic EDSR [36] DBPN [18] RDN [66]

RCAN [64] SAN [9] CSNLN [41] RFANet [38] CRAN (ours)

Figure 5. Visual comparison for 4× SR with BI model on Urban100 dataset.

Urban100: img 015

HR Bicubic RDN [66]

RCAN [64] RFANet [38] CRAN (ours)

Urban100: img 046

HR Bicubic RDN [66]

RCAN [64] RFANet [38] CRAN (ours)

Urban100: img 078

HR Bicubic RDN [66]

RCAN [64] RFANet [38] CRAN (ours)

Figure 6. Visual comparison for 3× SR with BD model.

4.4. Results with BD Degradation Model
We apply our method to super-resolve images with blur-

down (BD) degradation model, which is also commonly

used in recent image SR works [61, 62, 66, 64, 38].

Quantitative Results. In Table 5, RFANet has achieved

very high performance on each dataset. However, our pro-

posed CRAN can obtain notable gains over RFANet. We

can achieve even better results with self-ensemble (i.e.,

CRAN+). Our CRAN achieves larger gains compared with

Method S
Set5 Set14 B100 Urban100 Manga109

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×3 24.01/0.5369 22.87/0.4724 22.92/0.4449 21.63/0.4687 23.01/0.5381
SRCNN [11] ×3 25.01/0.6950 23.78/0.5898 23.76/0.5538 21.90/0.5737 23.75/0.7148
FSRCNN [12] ×3 24.18/0.6932 23.02/0.5856 23.41/0.5556 21.15/0.5682 22.39/0.7111
VDSR [26] ×3 25.20/0.7183 24.00/0.6112 24.00/0.5749 22.22/0.6096 24.20/0.7525
IRCNN G [61] ×3 25.70/0.7379 24.45/0.6305 24.28/0.5900 22.90/0.6429 24.88/0.7765
IRCNN C [61] ×3 27.48/0.7925 25.92/0.6932 25.55/0.6481 23.93/0.6950 26.07/0.8253
RDN [66] ×3 28.47/0.8151 26.60/0.7101 25.93/0.6573 24.92/0.7364 28.00/0.8591
CRAN (ours) ×3 28.74/0.8235 26.77/0.7178 26.04/0.6647 25.43/0.7566 28.44/0.8692
CRAN+ (ours) ×3 28.76/0.8240 26.80/0.7186 26.06/0.6652 25.51/0.7587 28.55/0.8708

Table 6. Quantitative results with DN degradation model. Best and

second best results are colored with red and blue.

attention-based SR methods (e.g., RCAN and SAN). This

comparison also indicates that adaptively modulating the

Conv layer kernels with context information could perform

better than those modifying local features.

Visual Results. We also provide visual comparisons in

Figure 6, where the LR images are further blurred. For chal-

lenging details in images “img 015” and “img 078”, most

methods either suffer from heavy blurring artifacts or re-

cover parts of the columns. CRAN deblurs them to a deeper

degree and can recover more columns. In image “img 046”,

most compared methods produce some column-like details

with wrong direction. In contrast, our CRAN obtains much

better results by recovering the correct components. These

comparisons indicate that kernel modulation with context

reasoning attention would alleviate the blurring artifacts.

4.5. Results with DN Degradation Model
We further provide comparisons under the more chal-

lenging DN degradation model [61, 66], where the LR im-

ages are further added with heavy noise (noise level=30).
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Urban100: img 076

HR Bicubic VDSR [26]

IRCNN C [61] RDN [66] CRAN (ours)

Urban100: img 099

HR Bicubic VDSR [26]

IRCNN C [61] RDN [66] CRAN (ours)

Manga109: Bye.

HR Bicubic VDSR [26]

IRCNN C [61] RDN [66] CRAN (ours)

Figure 7. Visual comparison for 3× SR with DN model on Ur-

ban100 and Manga109 datasets.
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Figure 8. W ∗ diversity investigation according to different inputs.

Quantitative Results. As shown in Table 6, RDN has

achieved very high PSNR/SSIM values on each dataset.

While, our CRAN can further achieve notable performance

gains over RDN. Compared with the usage of hierarchical

features in RDN, our CRAN shows promising potential to

deal with noisy images with context reasoning attention.

Visual Results. We further show visual comparisons for

pretty challenging cases in Figure 7. In image “img 076”,

where the textural structures are noisy, the compared meth-

ods would either fail to recover the texture or generate ob-

viously different structures (e.g., RDN). Our CRAN re-

moves noise and obtains better textural structures. We

also show some grid-like cases in images “img 099” and

“Bye.”, where the heavy noise could lead most SR methods

to over-smooth the results (e.g., VDSR and IRCNN). RDN

may even produce wrong structures (e.g., in image “Bye.”).

However, having a global sense of the noisy texture with

context information, our CRAN obtains much better visual

results, showing stronger ability to suppress noise.

4.6. Diversity of Convolution Kernel W ∗

We show how much the convolution kernel W in Eq. (5)

would be modulated to W ∗ according to different inputs.

EDSR [36] RCAN [64] SAN [9] CSNLN [41] CRAN

Parameters (M) 40.73 15.44 15.67 3.06 14.94

FLOPs (G) 1,042.74 391.86 400.46 2,245.98 372.99

GPU mem. (Mb) 1,089 661 8,177 8,099 669

Running Time (s) 0.37 0.85 1.45 7.14 0.96

PSNR (dB) 39.10 39.44 39.32 39.37 39.75

Table 7. Number of parameters, FLOPs, GPU memory, and per-

formance on Manga109 with scaling factor ×2 (BI model). When

we calculate FLOPs and time, we use input size of 3×160×160.

Namely, how diverse would W ∗ be? To investigate the di-

versity of W ∗=W �FA, we consider the average Euclidean

distance between FA and the all-ones matrix I . We ran-

domly forward 100 images into the network and calculate

distance for each sample. We show the visualization results

in Fig. 8. We can see that W ∗ is diverse based on different

input, indicating the adaptive modification of W ∗.

4.7. Model Complexity Analyses
We further show comparisons with recent representative

image SR works about model complexity in terms of model

size, FLOPs, GPU memory, running time, and performance

in Table 7. It shows that EDSR [36] has the largest model

size. Our CRAN has slightly less parameter number than

that in RCAN [64] and SAN [9]. CSNLN [41] has much

smaller model size in a recurrent framework, which actually

costs huge computation operations. Specifically, when the

input size is 3×160×160, CSNLN would use over 2.2×103

G FLOPs, being over 6 times as ours. Our CRAN also

needs much less running time than CSNLN. Both SAN and

CSNLN would consume over 8×103 Mb GPU memory, be-

ing over 12 times as ours. Although RCAN, as our back-

bone, has similar model size, FLOPs, GPU memory, and

running time as ours, our CRAN obtains notable SR perfor-

mance gain over RCAN. Those comparisons and analyses

indicate that our CRAN achieves a better efficiency trade-

off between model complexity and performance.

5. Conclusion
Global context information is crucial for accurate image

super-resolution (SR). Recent works in neuroscience moti-

vate us to modify the convolution kernel according to the

global context dynamically. Therefore, we propose a con-

text reasoning attention network (CRAN) for image SR.

Specifically, we project the input feature into latent repre-

sentations and extract global context descriptors. The con-

text relationship descriptors are further enhanced by using

the descriptor relationship with semantic reasoning. Chan-

nel and spatial interactions are then introduced to generate

context reasoning attention mask, which is applied to mod-

ify the convolution kernel adaptively. We use modulated

convolution layers as basic components to build blocks and

networks. Consequently, our CRAN achieves superior SR

results under different degradation models and a favourable

trade-off between performance and model complexity.
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