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Abstract

Universal adversarial perturbation (UAP), i.e. a single
perturbation to fool the network for most images, is widely
recognized as a more practical attack because the UAP can
be generated beforehand and applied directly during the at-
tack stage. One intriguing phenomenon regarding untargeted
UAP is that most images are misclassified to a dominant la-
bel. This phenomenon has been reported in previous works
while lacking a justified explanation, for which our work
attempts to provide an alternative explanation. For a more
practical universal attack, our investigation of untargeted
UAP focuses on alleviating the dependence on the original
training samples, from removing the need for sample labels
to limiting the sample size. Towards strictly data-free untar-
geted UAP, our work proposes to exploit artificial Jigsaw
images as the training samples, demonstrating competitive
performance. We further investigate the possibility of ex-
ploiting the UAP for a data-free black-box attack which is
arguably the most practical yet challenging threat model.
We demonstrate that there exists optimization-free repetitive
patterns which can successfully attack deep models. Code is
available at https://bit.ly/3y0ZTIC.

1. Introduction
Deep neural networks [28] are widely known to be vul-

nerable to adversarial examples [52]. This intriguing phe-
nomenon of human imperceptible perturbation fooling the
DNN has inspired active research for studying the model
robustness against adversarial attack techniques [18, 36, 3].
More surprisingly, [38] shows that a single perturbation can
be generated to attack the model for most images. Due to its
image-agnostic nature, it is often termed universal adversar-
ial perturbation (UAP). The existence of UAP is especially
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worrisome because, unlike image-dependent adversarial per-
turbations, after being generated beforehand the UAP can be
applied directly for performing a real-time attack [38].

Our work revisits UAP by providing an alternative expla-
nation on the phenomenon of dominant label, i.e. an untar-
geted UAP causing the model to misclassify a large fraction
of images to a dominant label, which has been reported
in [38, 43] but still lacks a justifiable explanation. Note that
this phenomenon is counter-intuitive because unlike targeted
UAP [25, 60], the untargeted UAP is not optimized towards
any predefined target label. In the targeted setting, [25, 60]
have shown that the UAP alone leads the model to output
the target class. We observe a similar phenomenon for the
untargeted UAP by perceiving the dominant label, which
is the result of the optimization algorithm instead of being
predefined, as the pseudo-target class. When added to the
images, the UAP causes the average logit values over all
adversarial examples to be somewhat proportional to the
logit values with the UAP alone as the input. This result is
further collaborated by the layer-wise and step-wise model
response analysis, suggesting untargeted UAP has a dom-
inant contribution to the model response and there exists
a positive correlation between this dominant influence and
fooling ratio as the training evolves. This observation moti-
vates to further investigate simple yet effective techniques
towards more practical universal attacks under the data-free
constraint, in both white-box and black-box settings.

Overall our contributions are shown as follows:

• We revisit the mechanism behind the dominant label
phenomenon caused by an untargeted UAP. Specifically,
we show that the existing explanation [38] hypothesiz-
ing a dominant label occupying a large image space can
not justify some observed phenomena based on some
reasonable assumptions. We provide an alternative ex-
planation with the observation that untargeted UAP has
a dominant contribution to the model response of adver-
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sarial examples. Nonetheless, the untargeted UAP still
does not lead to the misclassification of all images, for
which we find that some samples tend to be systemati-
cally more robust against the explored untargeted UAP
and they tend to have repetitive semantic content.

• Our findings motivate the investigation of untargeted
UAP towards a more practical attack by alleviating
the dependence on the original training samples in a
progressive manner from removing the need for sample
labels to limiting the sample size. Specifically, we adopt
a self-supervision cosine similarity loss to optimize the
untargeted UAP and reduce the sample size by common
augmentation techniques. Towards strictly data-free
UAP, we propose to adopt artificial jigsaw images of
variable frequency as the training samples. Our work
suggests the benefit of designing artificial images that
mimic the properties of natural images.

• We further investigate whether the UAP can be ex-
ploited for facilitating practical data-free black-box at-
tack, also termed no-box attack in [31]. Interestingly,
we find that optimization-free repetitive content, such as
vertical/horizontal or checkerboard pattern, is sufficient
enough for a strong attack. It outperforms an existing
sophisticated optimization-based method [31] which is
resource-intensive and not strictly data-free. Beyond
the deep classifier, we further demonstrate this attack
is effective for attacking DNNs in other applications,
such as object detection and semantic segmentation.

2. Related Work
Basic Attack Methods. Szegedy et al. first found and

optimized adversarial examples by using box-constrained
L-BFGS [52]. DeepFool [40] exploits the decision boundary
to update the perturbation in the direction of minimizing
the perturbation budget in each iteration. Incorporating the
minimization of the perturbation magnitude into the opti-
mization function, Carlini and Wagner (C&W) introduce a
famous attack named after the two authors [3]. The above
methods are all cumbersome and slow. To mitigate this, [18]
has introduced an efficient one-step attack method, widely
known as the Fast Gradient Sign Method (FGSM). [27] has
extended the basic FGSM to its iterative variant, i.e. I-FGSM,
which limits the perturbation update at each iteration to only
a fraction of the allowed total perturbation budget. Projected
gradient descent (PGD) [36] is another widely adopted ef-
fective multi-step attack.

Universal Attack Methods. The above basic attack
methods can be easily adapted to UAP. For example, [38]
has first discovered the existence of UAP and generating
it through applying DeepFool [40] iteratively. Generative
Adversarial Perturbations (GAP) were proposed by Pour-
saeed et al. [46], using generative models to craft the UAP.

In another variant, UAPs are crafted by leveraging the Jaco-
bian matrices of the networks’ hidden layers [26]. Assuming
no access to the original training data, Fast Feature Fool
has been proposed in [42] to generate data-free UAPs by
optimizing the feature change caused by the applied UAP.
More follow-up works [42, 41, 47, 34, 32] have attempted
at addressing this data-free challenge. Recently, the inves-
tigation of UAP has appeared in a wide range of applica-
tions [23, 29, 45, 1, 1, 13, 55, 30, 24], which has been
summarized in a recent survey [62] on this topic.

Explanation on the Adversarial Vulnerability. Numer-
ous works have attempted at explaining the reason for ad-
versarial vulnerability from various perspectives, such as
local linearity [18, 2, 53, 54], high-dimensional input prop-
erties [50, 11, 37, 17], over-fitting [49, 54], and robustness
under noise [12, 16, 8]. The investigation on the vulner-
ability to UAP is relatively limited. [38] claims that the
significant fooling ratio gap between UAP and random per-
turbations suggests redundancies in the geometry of the deci-
sion boundary. In [39], the authors have further analyzed the
UAP existence from the geometry perspective. Specifically,
the existence has been attributed to the positively curved
decision boundary [39]. Through studying the UAP, [25] has
found that the predictive power and adversarial vulnerabil-
ity of the studied deep classifier are intertwined, suggesting
any gain in robustness must come at the cost of accuracy.
Focusing on the targeted setting, [60] shows that targeted
UAP has dominant features of the predefined target class.
In contrast, focusing on the more general untargeted setting,
our work is motivated to explain why untargeted UAP leads
the model to fool most images to a dominant label, which
is a widely known phenomenon but still lacks a convincing
explanation. One predominant explanation [23] hypothezes
that dominant label occupies a large image space. Recently,
a concurrent work [56] has also analyzed the dominant la-
bel phenomenon of UAP, providing an explanation from the
geometric and data-feature perspective in the task of speech
command classification.

3. Background and Algorithm Comparison
Untargeted UAP Task Definition. Following [38], we

adopt X to denote a distribution of images in IRd and k is
used to define a deep classifier as a function that outputs a
predicted label k̂(x) for each image x ∈ X . The goal of
UAP is to seek a single perturbation vector ν, i.e. UAP, such
that

k̂(x+ ν) ̸= k̂(x) for most x ∼ X s.t. ||ν||p ≤ ϵ. (1)

ν obeys the constraint that its lp-norm is smaller than a pre-
defined magnitude value ϵ for making it quasi-imperceptible.
For consistency we follow prior works [38, 46, 41] and adopt
l∞ = 10/255. Unless otherwise specified, the UAP in this
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work is by default untargeted. Following prior works, the
fooling ratio is adopted to evaluate the UAP effectiveness,
defined as the percentage of the samples that change its pre-
diction under the UAP attack. We evaluate the generated
UAPs on the ImageNet validation dataset.

Algorithm Discussion. The vanilla UAP method [38]
accumulates image-dependent perturbations to the final uni-
versal perturbation. These image-dependent perturbations
are iteratively generated via the attack method DeepFool [40].
To differentiate from the generated UAP, we term this vanilla
UAP method DeepFool-UAP. Instead of optimizing the per-
turbation directly, Poursaeed et al. proposed a generator-
based method (GAP) [46] training a generative network
to output a UAP. Compared to the DeepFool-UAP, the
generator-based method has the benefit that a batch of images
can be used to train the generator network instead of process-
ing each image individually. Concurrent to [46], [20] adopts
a similar approach. Combining the merits of the DeepFool-
UAP [40] and GAP [46], direct optimization of the UAP
with batches of images results in a simple yet effective UAP
algorithm. A similar approach has been adopted in [51] for
performing universal adversarial training. Algorithm 1 out-
lines the procedure. Most works adopt the cross-entropy loss
that requires the ground-truth labels of the training dataset.
In practice, however, the ground-truth labels might not be
available. To this end, we propose to optimize the UAP in
a self-supervised manner with a new loss to minimize the
cosine similarity (CosSim) as follows:

L = CosSim(k(x), k(x+ ν)) (2)

where k(·) indicates the DNN output logit vector, i.e. before
the argmax operation vs. the predicted class indicated by
k̂(·) (see Eq. 1). Intuitively, with this loss the perturbation ν
can be optimized such that k(x) and k(x+ ν) are far from
each other, consequently resulting in a change in the class
prediction for x. As a control study, we also experiment
with another variant of cosine similarity loss that maximizes
the cosine similarity between k(ν) and k(x + ν). To dif-
ferentiate it from the loss in Eq. 2, we term it CosSim-max
which is empirically found to achieve inferior performance
compared with that in Eq. 2 (see Table 1). The design of
these two variants of losses is partly motivated by the results
in Figure 2. Assuming full availability of the training dataset,
we compare the adopted Cosine-UAP with multiple existing
SOTA UAP methods [38, 46, 20, 43, 60], which all use the
ground-truth labels, and the results are shown in Table 1.
Despite being label-free, the Cosine-UAP achieves competi-
tive performance. Generator-based approaches [46, 20, 43]
require training an additional network, thus they are more
resource-intensive. On a single GPU, DeepFool-UAP [38]
requires multiple hours to craft a UAP, while Cosine-UAP
only takes around 1 minute by optimizing the UAP for 1000
iterations. Due to its effectiveness and efficiency, Cosine-

Algorithm 1: Cosine-UAP
Input: classifier k, loss L, batch size m, number of

iterations N , allowable magnitude ϵ
Output: perturbation vector ν
ν ← 0 ▷ initialization
for iteration = 1, . . . , N do

B ∼ Xν ▷ samples with |B| = m
gν ← E

x∼B
[∇νCosSim(k(x), k(x+ ν))]

▷ Gradient
ν ← Optim(gν) ▷ ν update
ν ← min(ϵ,max(ν,−ϵ)) ▷ ν clipping

end

Table 1. UAP algorithm comparison on the ImageNet validation
dataset with the metric of fooling ratio (%). The algorithms are
trained on the ImageNet training dataset. The results except Cosine-
UAP, such as DeepFool-UAP [38] and GAP [46], DF-UAP [60],
are reported as in the original papers. DF-UAP term for [60] is
adopted following [62].

Method AlexNet GoogleNet VGG16 VGG19 ResNet152

DeepFool-UAP [38] 93.3 78.9 78.3 77.8 84.0
GAP [46] - 82.7 83.7 80.1 -
UAN [20] - - - 84.6 88.1
NAG [43] - 90.37 77.57 83.78 87.24

DF-UAP [60] 96.17 88.94 94.30 94.98 90.08
Cosine-UAP (CosSim-max) 95.7 90.7 94.6 91.1 80.2

Cosine-UAP (CosSim) 96.5 90.5 97.4 96.4 90.2

UAP with the CosSim loss is adopted in the remainder of
this work for addressing the challenge of generating the UAP
with limited unlabeled or no training images.

4. Intriguing Phenomenon of Untargeted UAP

We attempt to analyze the intriguing dominant label phe-
nomenon observed in untargeted UAP [38, 43]. Unless
otherwise specified, we adopt a VGG16 network as the vic-
tim model for performing the analysis.

UAP Leading Most Images to a Dominant Label. The
authors of [38] first report this phenomenon and note that
the dominant label is found by their algorithm automati-
cally without any prior. For explaining this intriguing phe-
nomenon, the authors of [38] stated:

“We hypothesize that these dominant labels occupy large re-
gions in the image space, and therefore represent good can-
didate labels for fooling most natural images.”
Their explanation hypothesizes that the frequency of misclas-
sified prediction class is correlated to the region of the corre-
sponding label. Here, we assume that (a) input space region
is the only reason for the explanation and (b) the percentage
of a certain new class is proportional to its corresponding
input space region. Note that the authors of [38] do not ex-
plicitly make the above assumptions and the assumptions are
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Figure 1. Number of adversarial examples classified as a certain
class (left), top logit values of the used UAP ν (middle), and top
average logit values over all adversarial examples x+ ν (right).

made here to simplify our following reasoning. ImageNet
dataset has 1000 classes and thus the random chance is 0.1%
for a sample being any arbitrary class if we assume each
class has an identical region in the image space. We find that
on VGG16, under the attack of UAP (with an overall fooling
ratio of 97.4%), 90.1% of all samples are classified as the
dominant label “brain coral”, see Figure 1 (left). Given the
above hypothesis [38], the value 90.1% implies that in the
image space, the label “brain coral” occupies a significantly
larger region than the region occupied by the remaining 999
classes combined. If this would be the case, most (random)
perturbations would consequently result in a misclassifica-
tion to this dominant label. Under a certain random noise,
we observe a fooling ratio of 42.7% and only 0.1% (50 sam-
ples) of all samples are classified as the label of “brain coral”,
suggesting that “brain coral” does not necessarily occupy a
significantly larger region in the image space.

We empirically find that one factor that determines the
dominant label is the class of the training samples (see rele-
vant results in the supplementary). We optimize a UAP with
our Cosine-UAP but only on samples from a single class. We
find that limiting the training samples to a single class only
leads to a marginal performance gap compared with utilizing
all classes. The resulting UAP with different runs in most
cases leads to the same dominant label. We repeat the exper-
iment by changing that single class for sampling the training
images and, accordingly, we observe a new dominant label.
This phenomenon further suggests that large space regions
are not the major reason for the dominant label phenomenon;
otherwise, the dominant label should not change with the
chosen single class.

An Alternative Explanation. The above analysis shows
that the hypothesis of “occupying large regions in the image
space” can not explain why the UAP causes many samples
to a certain dominant label. This phenomenon is difficult
to explain by focusing on the behavior of images under the
influence of UAP, i.e. comparing k(x) and k(x + ν). We
find that this phenomenon can be intuitively explained by
comparing k(ν) and k(x + ν). Specifically, we evaluate
the UAP on the ImageNet validation images and report the
ordered logits of k(ν) in Figure 1 (middle) as well as the
ordered averaged logits of k(x+ ν) in Figure 1 (right). We

find that the class distribution for k(ν) and k(x+ ν) almost
matches exactly, indicating that the logit distribution of the
perturbation dominates that of the images x. Further under-
lining this phenomenon, most of the classes of the UAP’s top
logit values k(ν) are also found among the most classified
samples. With such dominant influence, it is not surprising
that most of the samples are classified as the dominant label
even though the UAP is untargeted without any predefined
label. Despite having a much smaller magnitude, the untar-
geted UAP overshadows the contribution of images for DNN
response.

We further perform depth-wise and step-wise analysis of
dominant label influence caused by Cosine-UAP. Feeding an
input to the model, we calculate its channel-wise average for
a certain feature layer (i-th layer for instance). The resulting
feature vector ki(·) layer is the model response triggered at
i-th layer by the input. Image (x) and UAP (ν) trigger their
corresponding model responses, i.e. ki(x) and ki(ν). When
they are combined as an adversarial example x + ν, they
trigger a joint response ki(x + ν). Here, we calculate the
cosine similarity between ki(x) and ki(x + ν) denoted by
cosi(x, x+ν) and that between ki(ν) and ki(x+ν) denoted
by cosi(ν, x+ν). We investigate and measure such similarity
by adopting the widely used cosine similarity metric. Here,
the cosine similarity value ranges from 0 to 1, with a value
close to 0 (1) indicating a small (large) contribution to the
jointly triggered response.

In the untargeted setting, we visualize cosi(x, x+ ν) and
cosi(ν, x+ ν) in Figure 2 (left), where we randomly sample
100 samples and report their mean and standard deviation.
We observe that cosi(x, x + ν) is larger for the first few
shallow layers , while cosi(ν, x+ ν) is significantly larger
for most layers, especially the deep layers. Similar behavior
has also been reported in the targeted setting [61]. It is worth
mentioning that the Cosine-UAP adopting the loss in Eq.2
does not directly encourage a maximization of cosi(ν, x+ν).
Intuitively, we can perceive the dominant label as a pseudo-
target class and directly maximize cosi(ν, x+ν) as discussed
in Sec. 3, however, it leads to inferior performance. We
confirm that combining the two losses together works worse
than only adopting the loss in Eq.2. In other words, the
dominant label influence of untargeted UAP is a natural
choice of the optimization algorithm, not necessarily subject
to the loss choice. For example, we observe that untargeted
GD-UAP [41] also shows overall similar behavior but with
some nuanced difference, i.e. relatively lower cosi(ν, x+ ν)
compared with that in Cosine-UAP especially in the very last
few layers (see relevant results in the supplementary). This
might be explained by the fact that GD-UAP optimizes the
loss at all layers. We further investigate how the influence
of UAP/image on the triggered joint response during the
training as well as their relationship with the fooling ratio.
Specifically, we only visualize the response of the final logit
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layer for simplicity and the results are shown in Figure 2
(right). We observe that cosi(ν, x+ ν) increases as training
evolves. Moreover there is a positive correlation between
the fooling ratio and cosi(ν, x+ ν) and negative correlation
between the fooling ratio and (cosi(x, x+ ν)).

Figure 2. Layer-wise (left) model and step-wise (right) analysis of
the UAP on the model response in the untargeted setting.

Existence of Robust Samples. [61] reports that there
exists a class-wise robustness gap under the attack of tar-
geted UAP. Here, we perform sample-wise UAP robustness
in the untargeted setting. Due to the image-agnostic prop-
erty, UAP fools the model for most but not all images. We
term those samples that keep the original prediction, i.e.
k̂(x+ ν) = k̂(x), robust samples. Here, we first investigate
whether these robust samples just happen to be robust to
a certain UAP on a specific model or are they inherently
more robust to the UAP regardless of the evaluated UAP or
model. We first analyze the different UAPs generated on
the same model (VGG16) with different runs and the results
are available in Table 2. We observe that the overlapping
ratio is very high. Take UAP#3 and UAP#4 as an example.
Out of 50,000 evaluation images, 1282 of them are robust
samples for UAP#3, and 1307 of them are robust samples
for UAP#4. The over-lapping number between them is
1028, suggesting a very high over-lapping ratio taking a total
of 50,000 samples into account. A cross-model analysis is
shown in Table 3, where also a high overlapping ratio across
samples can be observed. This suggests that whether a sam-
ple is robust or vulnerable is not random, instead, there exists
a systematic factor(s) that affects the sample robustness. A
preliminary check of the difference between robust and vul-
nerable samples shows that robust samples tend to have more
edge or contrast content, such as repetitive patterns (see the
relevant results in the supplementary). Our results align well
with [61] that identifies frequency as a factor for the class-
wise robustness gap against targeted UAP. Our results can
also be explained from the perspective of DNNs being more
biased to texture, i.e. content with HF property, instead of
shape [15, 7, 57].

5. Crafting UAP with Limited or No Data.
In practice, due to security or secrecy concerns, a model

manager is unlikely to open-source their training dataset.
Thus, a line of works have attempted to craft UAP with
limited [26, 34] or no [42, 41, 47, 34] data. Overall, there is

Table 2. The number of robust samples overlapping across different
UAPs. Diagonal entries indicate the total number of robust samples
for the corresponding UAP, while other numbers indicate the over-
lapping number between any two UAPs (generated on the same
target model VGG16).

UAP #1 UAP #2 UAP #3 UAP #4 UAP #5

UAP #1 1438 1096 1076 1056 1080
UAP #2 1096 1352 1062 1056 1068
UAP #3 1076 1062 1282 1028 1044
UAP #4 1056 1056 1028 1307 1051
UAP #5 1080 1068 1044 1051 1329

Table 3. The number of robust samples overlapping across the
UAPs generated on different networks. Diagonal entries indicate
the total number of robust samples for the corresponding network,
while other numbers indicate the overlapping number between any
two network-specific UAPs.

AlexNet GoogleNet VGG16 VGG19 ResNet152

AlexNet 1748 1047 658 799 1047
GoogleNet 1047 4745 1046 1344 2749

VGG16 658 1046 1309 962 1035
VGG19 799 1344 962 1816 1343

ResNet152 1047 2749 1035 1343 4890

a general consensus among the UAP researchers that crafting
UAP with limited or no data is challenging.

5.1. UAP With Limited Training Samples.

With GoogleNet as the target model, [38] showed that
limiting the data sample size to 500 achieves a fooling ratio
only slightly above 30%. [26, 34] have also investigated how
to craft an effective UAP with limited training data and their
performance is still far from the performance when the full
training dataset is given. We identify the main reason that
reduces the attack success rate as being over-fitting to the lim-
ited images. One straightforward way to improve the UAP
generalization capability is to perform data augmentation.
We adopt heavy augmentation techniques, such as random
rotation (5 degrees), random crop, random horizontal and/or
vertical flips. After data augmentation, the main object in
the image is often not recognizable in the image. This might
be an issue for algorithms that depend on the ground-truth
labels. This is not an issue in the adopted Cosine-UAP algo-
rithm due to the self-training mechanism. Table 4 shows that
Cosine-UAP achieves competitive results. This further mo-
tivates us to adopt jigsaw images as the alternative training
dataset for crafting UAP with no data.

5.2. Strictly Data-free Untargeted UAP

Motivation for Artificial Images. For some applications
where the data involves high security, even containing a small
number of training samples might be challenging for an at-
tacker. [60] shows that proxy dataset can be exploited for
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Table 4. Fooling ratio for UAPs crafted with limited samples.
Method # samples VGG16 VGG19 ResNet50

Singular Fool [26] 64 52.0 60.0 44.0
GD-UAP [41] 49 72.80 67.60 56.40

PD-UA (49) [34] 49 70.60 73.30 65.80
Cosine-UAP 64 96.0 94.9 91.8
Cosine-UAP 32 93.5 93.5 91.8

generating targeted UAP, however, in the untargeted setting,
this proxy dataset is still required to be the original train-
ing dataset. Towards strictly data-free untargeted UAP, we
aim to approximate those training samples by imitating their
characteristics with artificial images without the need for a
proxy dataset. Due to the domain gap between training sam-
ples and artificial images, a performance drop is expected.
To reduce the performance drop, the artificial images need to
have two properties for resembling the training samples: (a)
locally smooth for resembling natural images; (b) mixed fre-
quency pattern for improving diversity. To prove the concept
without losing generality, we propose an artificial jigsaw
image as a simple solution to fulfill the above two criteria.
Alternative sophisticated artificial patterns might lead to su-
perior performance, however, optimizing such patterns is
beyond the scope of this work.

Figure 3. Four examples of jigsaw images.

Figure 4. UAPs trained on jigsaw images for different networks.

Experimental Results with Jigsaw Images. To this end,
a large body of works has explored data-free UAPs[42, 41,
47, 34]. We generate the jigsaw images with random fre-
quency patterns as shown in Figure 3. The resulting UAPs
are shown in Figure 4. Our work is not the first attempt
towards strictly data-free UAP and the comparison with
existing methods is show shown in Table 5. PD-UA [34] de-
ploys a Monte Carlo sampling method to increase the model
uncertainty. Despite its delicate design, the performance
improvement over GD-UAP [41], is around 5% points. The
performance of AAA [47] is better than that of other meth-
ods but still worse than ours. Note that their AAA approach

Table 5. Comparison of the proposed method to other data-free
methods with the metric of fooling ratio (%). The first row reports
the DeepFool-UAP [38] that uses the training samples. Thus it is
not data-free; however, we use it as a benchmark to indicate the
gap between the data-free methods and DeepFool-UAP [38] with
data. The gap is indicated in the bracket for the “average” column.
“Prior” denotes the range prior in [41].

Method AlexNet GoogleNet VGG16 VGG19 ResNet152 average

DeepFool-UAP (with data) 93.3 78.9 78.3 77.8 84.0 82.46

FFF [42] 80.92 56.44 47.10 43.62 29.78 51.27(−30.89)
GD-UAP (w/o Prior) [41] 84.88 58.62 45.47 40.68 29.78 51.59(−30.57)

GD-UAP (with Prior) [41] 87.02 71.44 63.08 64.67 37.3 64.40(−17.76)
AAA [47] 89.04 75.28 71.59 72.84 60.72 73.59(−8.57)

PD-UA (w/o Prior) [34] − 67.12 53.09 48.95 53.51 −
PD-UA (with Prior) [34] − − 70.69 64.98 46.39 −

Ours (Jigsaw images) 91.07 87.57 89.48 86.81 65.35 84.08(+1.60)

Table 6. Ablation results for different artificial images.
Artificial images AlexNet GoogleNet VGG16 VGG19 ResNet152 Average

Uniform Random Noise 82.6 40.3 72.3 64.4 47.2 61.4
Gaussian Noise [41] 89.5 48.7 76.1 75.4 49.9 67.9

Flat Images 80.0 39.9 81.3 79.5 29.9 62.1
Jigsaw with fixed frequency 89.1 78.6 85.6 80.9 62.9 79.4

Jigsaw with variable frequency 91.1 87.6 89.5 86.8 65.4 84.08

Table 7. Fooling ratio for regular and adaptively trained UAP when
evaluated on validation data of different input sizes. Regular UAP
is over-fitting to the input size of 224 × 224. Adaptive UAP can
mitigate this over-fitting to some extent.

UAP Type 112 168 224 280 336

Regular UAP 58.57 54.13 89.48 64.81 62.90
Adaptive UAP 62.05 64.34 86.16 70.00 71.51

Table 8. Transferability results for various UAP methods with
VGG16 as the source model.

Target Model Technique VGG16 VGG19 ResNet50 ResNet152 GoogleNet

GD-UAP 45.47 38.20 27.70 23.80 34.13
GD-UAP+P 51.63 44.07 32.23 28.78 36.79

UA 48.46 41.97 29.09 24.90 35.52
PD-UA 53.09 49.30 33.61 30.31 39.05

VGG16 Ours (Regular UAP) 89.48 76.84 44.11 38.37 48.97
Ours (Adaptive UAP) 86.16 77.88 49.30 44.27 56.96

requires to emulate the effect of data samples by optimizing
a large number of samples of class impression [47]. Thus
their approach is much complex and resource-intensive. Our
Jigsaw images can be directly designed on-the-fly. Over-
all, our simple approach outperforms other methods by a
non-trivial margin. It is worth mentioning that our data-free
approach achieves comparable (marginally better) perfor-
mance as DeepFool-UAP that utilizes the training dataset.
Overall, our proposed jigsaw solution outperforms the exist-
ing approaches by a significant margin. The ablation study
is provided in Table 6 to justify the choice of jigsaw images
with variable frequency.

Adaptive Input Size. In practice, a CNN trained on a
fixed input size can work for different input sizes during
the inference stage [22]. Prior works on UAP do not take
an adaptive input size into account and thus the fooling
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Table 9. Performance comparison on ImageNet under the threat model of data-free black-box attack. Beyonder indicates a baseline approach
with a full training dataset. Following [31], the prediction accuracy on adversarial examples under ϵ = 0.1 is reported (lower ↓ is better).
”None” indicates that no HF removing method is used to craft an adversarial example, ”SVD” means that singular value decomposition of
the image is utilized for HF removal, and ”FT” shows that Fourier transform is applied to perform HF removal.

Method VGG-19 Inception v3 ResNet DenseNet SENet WRN PNASNet MobileNet v2 Average

Beyonder 24.9% 51.1% 30.3% 27.1% 43.7% 33.9% 51.8% 27.0% 36.2%

Naı̈ve‡ [31] 45.9% 63.9% 60.6% 56.4% 65.5% 58.8% 73.1% 37.7% 57.7%
Jigsaw [31] 31.5% 50.2% 46.2% 42.3% 59.0% 51.2% 62.3% 25.2% 46.0%

Rotation [31] 31.1% 48.1% 47.4% 41.2% 58.2% 50.7% 59.9% 26.0% 45.3%

Naı̈ve† [31] 76.2% 80.8% 83.7% 78.9% 87.0% 84.1% 86.9% 72.4% 81.2%
Prototypical [31] 19.7% 36.4% 37.9% 29.1% 44.5% 37.2% 48.5% 17.7% 33.9%
Prototypical∗ [31] 18.7% 33.6% 34.7% 26.0% 42.3% 33.1% 45.0% 16.3% 31.2%

Ours (None, checkerboard) 3.1% 34.5% 32.6% 14.0% 50.5% 39.3% 26.3% 2.3% 25.3%
Ours (FT, checkerboard) 5.5% 31.3% 26.7% 8.3% 39.2% 32.2% 19.5% 3.7% 20.8%

Ours (SVD, checkerboard) 5.3% 32.4% 30.8% 12.0% 43.6% 33.0% 20.9% 3.7% 22.7%

performance might decrease if the test images do not have
the same input size as the trained UAP. To mitigate this
problem, we propose to augment the UAP by resizing the
UAP during the training stage. A commonly chosen input
size on VGG16 on ImageNet is 224× 224. During training,
we randomly resize the UAP to a size ranging from 112
to 336. We find that resizing the UAP during the training
reduces the fooling ratio for the original input size by a
small margin; however, it achieves superior performance for
other input sizes (see Table 7). Moreover, it also improves
transferability across models (see Table 8).

Table 10. Ablation study on different patterns: uniform noise pat-
tern (UNP), horizontal pattern (HP), and the vertical pattern (VP).
Average accuracy is reported over the same models as in Table 9.

None FT SVD

UNP HP VP UNP HP VP UNP HP VP

67.3% 35.9% 32.3% 48.1% 33.1% 28.4% 51.2% 30.1% 26.7%

6. Practical Data-free Black-Box Attack

In general, adversarial attack methods can be divided
into two threat models: white-box, black-box. Black-box
attacks [44, 6, 4] are more practical since it only requires
only forward queries but is resource-intensive. To this end,
another transfer-based variant of black-box generates the
adversarial example on a substitute model [9, 10, 59, 14],
for which the original training dataset is necessary. Towards
a practical attack, one recent work [31], has recently inves-
tigated the possibility of conducting an effective transfer-
based black-box attack with a very small number of images,
which is denoted as a no-box attack. Due to the no-query
limitation, their approach still exploits the transferability
by training a substitute model. They have investigated a
total of 7 methods, among which Prototypical∗ trains one
encoder together with 20 decoders is their best model. Their

Prototypical∗ consists of three stages: (1) collecting a small
number of images; (2) training a substitute model; (3) white-
box I-FGSM attack on the substitute model to craft transfer-
able adversarial examples. For a detailed description of their
various methods, we refer the readers to [31]. Taking the
task challenge into account, their well-engineered approach
has achieved reasonable performance, even outperforming
another baseline “Beyonder” that utilizes the whole train-
ing dataset for training a substitute model. However, their
image-specific approach requires repeating the above three
steps for attacking another image from a new class. To this
end, we investigate an alternative approach by applying a
universal attack.

Our universal attack approach is optimization-free, re-
quiring none of the above three steps in [31]. We apply
a universal adversarial pattern that can be directly added
to any image. Specifically, we adopt three common pat-
terns: horizontal repetitive lines, and vertical repetitive lines,
checkerboard patterns. Additionally, we also experiment
with removing the high-frequency content in the original
images, which can bring additional performance gain. Note
that the finally added perturbation, i.e. change to the origi-
nal images, is clipped with the strict constraint of l∞ = ϵ
for a fair comparison with [31]. Due to the optimization-
free nature, the attack success rate might be low. Surpris-
ingly, we find that our simple, data-free, model-free, and
optimization-free approach even outperforms the best well-
engineered model [31] by a non-trivial margin (see Table 9).
Simply adding a checkerboard pattern already reduces the
average accuracy to 25.3%, outperforming the best model
( 31.2% ) in [31]. Together with Table 10, we observe that
checkerboard performs better than uniform noise, horizontal
repetitive lines, and vertical repetitive lines. Removing the
high-frequency content with either FT or SVD is beneficial
for further boosting performance.

Defense Models. We also test the proposed optimization-
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Table 11. Comparison of the error rate (%) after attack against
defense methods between our approach and RHP [32]. Attacked
network is Inception v3 and ϵ = 16/255. The error rates of RHP
are calculated based on the values provided in Table 1 and Table
of [32].

Method TVM HGD R&P

RHP [32] 70.4 45.4 43.2
Ours 72.8 53.4 57.1

free attack against three defense methods: TVM [19],
HGD [33], and R&P [58]. Following [32], we set the ϵ to
16/255. For evading the defense more effectively, we set the
checkerboard’s square size to 16× 16 in this setup. Table 11
shows that our optimization-free approach outperforms [32]
by a visible margin.

Object Detection and Semantic Segmentation. Our
simple optimization-free attack is also found to be effec-
tive against object detection and semantic segmentation. The
results for object detection are demonstrated quantitatively
in Table 12 and qualitatively in Figure 5. The results show
that the detection performance significantly decreases. We
also show the efficacy of our attack on the segmentation
task. From Table 13, we can observe a significant drop in
mean intersection over union (mIoU) metric indicating the
success of the attack. The qualitative examples shown in
Figure 6 demonstrates that the predicted segmentation labels
are severely damaged under our optimization-free attack.

Table 12. Performance of our attack in object detection task.
Method AP AP50 AP75 APS APM APL

Faster R-CNN w/ FPN [48] 37.0% 58.5% 39.8% 21.1% 40.3% 48.2%
Faster R-CNN w/ FPN [48] + Attack 18.3% 31.7% 18.7% 8.7% 20.2% 25.4%

Mask R-CNN w/ FPN [21] 37.9% 59.2% 41.1% 21.5% 41.4% 49.3%
Mask R-CNN w/ FPN [21] + Attack 18.0% 30.7% 18.3% 9.2% 20.3% 23.5%

Figure 5. Examples of our attack for the object detection task. The
first row shows a detection result for clean images, while detection
results under our attack are in the second row. Our simple attack
fools the detection network successfully.

7. Conclusion
Our work analyzes the mechanism behind an intriguing

dominant label phenomenon caused by the untargeted UAP.

Table 13. Performance of our attack in segmentation task.

Method mIoU

FCN ResNet101 [35] 63.7
FCN ResNet101 [35] + Attack 26.9

DeepLabV3 ResNet101 [5] 67.4
DeepLabV3 ResNet101 [5] + Attack 20.3

Figure 6. Examples of our attack in semantic segmentation task.
From left to right: the first column is the clean images, the second
column is the respective segmentation maps, the third column is the
attacked images, and the final column is their segmentation maps.
Our perturbation significantly worsens the performance quality of
the segmentation model (2nd column vs 4th column).

Based on some reasonable assumptions, the existing expla-
nation for this phenomenon is not compatible with some
observed phenomena, including the dominant label changing
with the class of training samples. Our work provides an
alternative explanation with the observation untargeted UAP
has a dominant contribution to the model response of ad-
versarial examples. Our analysis motivates us to investigate
untargeted UAP towards a more practical attack under the
data-free constraint. We adopt a new loss to alleviate the
need for ground-truth labels, simple yet effective augmen-
tation techniques to reduce sample size, and proxy jigsaw
images for crafting strictly data-free UAP. Under the data-
free constraint, our investigation in the black-box setting
shows that an optimization-free simple repetitive pattern like
checkerboard is sufficient enough for being a strong attack.
Given such success, one interesting direction of future work
is to explore more effective patterns.
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