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Abstract

The popular unsupervised video object segmentation
methods fuse the RGB frame and optical flow via a two-
stream network. However, they cannot handle the distract-
ing noises in each input modality, which may vastly de-
teriorate the model performance. We propose to estab-
lish the correspondence between the input modalities while
suppressing the distracting signals via optimal structural
matching. Given a video frame, we extract the dense lo-
cal features from the RGB image and optical flow, and
treat them as two complex structured representations. The
Wasserstein distance is then employed to compute the glob-
al optimal flows to transport the features in one modality
to the other, where the magnitude of each flow measures
the extent of the alignment between two local features. To
plug the structural matching into a two-stream network for
end-to-end training, we factorize the input cost matrix into
small spatial blocks and design a differentiable long-short
Sinkhorn module consisting of a long-distant Sinkhorn lay-
er and a short-distant Sinkhorn layer. We integrate the mod-
ule into a dedicated two-stream network and dub our model
TransportNet. Our experiments show that aligning motion-
appearance yields the state-of-the-art results on the popular
video object segmentation datasets.

1. Introduction
Video Object Segmentation (VOS) aims to track the

moving objects with an accurate segmentation mask. It can
be divided into two scenarios depending on whether the tar-
get objects are indicated at the test time. One scenario is
the Semi-supervised VOS (SVOS) [59], where a model is
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Figure 1. Examples of distracting signals in the appearance and
motion input in UVOS. Our proposed TransportNet can gener-
ate accurate segmentation masks (column (d)) comparing to the
method without Optimal Structural Matching (OSM) (column (e)).

trained over a training set, and at the test time the model is
provided with the ground-truth mask on the first frame as
prior to track the objects to be segmented in the subsequent
frames. The other is called Unsupervised VOS (UVOS) or
primary object segmentation [21]1, where no ground-truth
mask is provided at the test time and there is no prior infor-
mation about the target object. UVOS discovers the most
salient, or primary, objects that move against a video’s back-
ground2, and all objects that consistently appear throughout
the video with predominant motion is defined as one objec-
t [36, 2] (e.g., the person and the motorbike in Figure 1 are
defined as one object). This is essentially different from the
recently proposed task of Unsupervised Multi-object Seg-
mentation [2], a variant of the conventional UVOS for seg-
menting separate objects in DAVIS-17 dataset [39], or the
task of Video Instance Segmentation [60].

We focus on the UVOS as it requires no user inter-
actions. Since the target objects are unknown, the state-
of-the-art UVOS methods rely on the motion cues (i.e.,

1 Besides these two names, it is also called “zero-shot VOS” in the literature.
2 In UVOS, the moving objects that are more likely to be followed by hu-

man gaze are referred to as “foreground” while the remaining regions (e.g.,
“people in crowds” or “still cars in the background”) are referred to as
“background” and not annotated as target objects in the ground truth [57].
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optical flow) to find the primary objects to be segment-
ed [51, 50, 19, 28, 27, 12]. A commonly-used architecture
is a two-stream CNN, consisting of an appearance branch
and a motion branch, which respectively takes the RGB
frame and optical flow as parallel inputs [19]. To establish
the deep interactions between appearance and motion, vari-
ous network variants are adapted from the two-stream CNN,
fusing the motion and appearance signals via sophisticated
cross-modality learning module [70, 51, 50].

Despite promising performance, the existing methods
are not able to well handle the distracting signals which
may significantly deteriorate the model performance. In U-
VOS, the distracting signals may originate from the RGB
frame and/or from the optical flow. To illustrate the former,
the top two rows in Figure 1 shows a video frame with the
motorbike as the only primary target foreground object to be
segmented on this dataset. As seen, the car appearing as a
static background object is a distracting object which would
bring ambiguity to the VOS model. On the other hand, as
illustrated in the bottom two rows in Figure 1, the distract-
ing signals in the optical flow are typically caused by the
inaccurate flow estimation generated by models trained on
synthetic videos [9]. When applying such models in real
videos, the domain gap can cause the flow fields to con-
tain significant noises, especially when the foreground ob-
ject is nearly static. Such noises can be further amplified
when there are unexpected camera and/or background ob-
ject movements in the video. Therefore, it is not reliable to
blindly fuse the appearance and motion features, and there
is a demand to establish the correspondence between the
flow vectors and the object instances while suppressing the
distracting signals in the input.

A natural solution to align the motion and appearance is
to compare their local features. The challenges lie in that
we have no supervision on local motion-appearance cor-
respondence for training and not all local features in one
modality can find their counterparts in the other. We for-
mulate the motion-appearance alignment as an instance of
Optimal Structure Matching (OSM), and aim to discover
the discriminative cross-modality patterns while minimiz-
ing the distracting noises in the input via structure learning.
Given a video frame, we extract the dense local features
from the optical flow and the RGB image, and obtain two
complex structured representations, each consisting of a set
of local building features. The Wasserstein distance [37]
is then employed to compute the structural similarity be-
tween the two structured representations. The Wasserstein
distance has the form of the optimal transport problem [37]
which can find the global least-expensive flows to transport
the local features in one modality to the local features in the
other, leading to the minimum structural distance. The mag-
nitude of each flow characterizes the degree of alignmen-
t between two local features and can be used to establish

the motion-appearance correspondence. Since the match-
ing process is reconstructing one structure against the other,
the distracting noises not compatible with the holistic struc-
tural matching would end up with low magnitudes in their
matching flows and be naturally filtered out.

To integrate the OSM into a two-stream CNN for end-to-
end training, we design a differentiable neural network lay-
er based on the Sinkhorn method [8], a solver used to opti-
mize the Wasserstein distance. We notice that the Sinkhorn
method involves computation/memory intensive matrix op-
erations, hindering its applicability in VOS which typically
requires high-resolution inputs and the stacking of multiple
layers to ensure the performance. To this end, we propose
a Factorized Sinkhorn method which factorizes a large in-
put cost matrix into a number of small spatial blocks and
performs structural matching within the long-distant and
short-distant local blocks. The long-distant matching can
well preserve the global structure information of the origi-
nal complex representations while the short-distant match-
ing can focus on the fine-grained details. By doing so, we
not only speed up the optimization by 27.5× but also im-
prove the performance of UVOS by 3.7% in terms of mean
J on FBMS dataset [33]. The two matching operations are
implemented as two differentiable network layers termed as
Long-distant SinkHorn (LSH) and Short-distant SinkHorn
(SSH), which can be applied sequentially as a building
block in a two-stream CNN for motion-appearance align-
ment. We plug our Long-Short SinkHorh (LSSH) block into
a network architecture designed for UVOS and dub our net-
work TransportNet to emphasize its origin from the optimal
transport problem. We conduct extensive experiments on
three popular benchmark datasets, demonstrating that our
TransportNet yields the state-of-the-art performance.

Our contributions include: (1) a novel model exploit-
ing the motion-appearance alignment for noise-tolerate U-
VOS, (2) a unique OSM mechanism establishing the struc-
tural correspondence between motion and appearance sig-
nals while suppressing the noises, (3) a novel LSSH block
to enable the structural matching in end-to-end training.

2. Related Work
Semi-supervised VOS. Numerous efforts are dedicated to
model the object appearance for SVOS [34, 10, 45, 67, 18,
62]. To capture the evolution of the object mask, some re-
cent works leverage RNN style network such as ConvLSTM
and ConvGRU to model the long and/or short-term dynam-
ics in video [52, 59, 51]. The other paradigm is to propagate
the intermediate mask predictions on the previous frames
to the current frame via memory network [34, 45, 31] or
temporal bilateral network [20]. Besides modeling tempo-
ral dynamics, another line of research is to utilize the mo-
tion as complementary information and tackle the task via
a two-stream network [4, 16, 58]. In Segflow [4], features
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Figure 2. Network architecture of the proposed TransportNet for UVOS. The input RGB frame Ia and optimal flow Im are passed through
a two-stream ResNet backbone [15], extracting the appearance-motion features Xa and Xm at each residual stage (Res2∼Res5). The
features derived from Res3 to Res5 are fed into the LSSHs to perform optimal structural matching, yielding the corresponding enhanced
features Ya and Ym. Then Ya and Ym are concatenated to yield the spatio-temporal feature representations Y = [Ya,Ym], which are
further fed into the decoder via skip connections to produce the predicted object mask S and boundary map Se.

of object segmentation and optical flow are concatenated
at different scales from mutual boosting. MoNet [58] was
proposed to exploit the motion cue from optical flow to re-
inforce the representation of the target frame by integrating
representations from its temporal neighbors. In contrast, we
focus on UVOS without any prior. Instead of treating opti-
cal flows as reliable input [4, 58], we dynamically adjust the
confidence of the flows by matching them to the appearance
features via structure learning.
Unsupervised VOS. The popular UVOS methods lever-
age the appearance features of the video frames, and model
their high-order relations [54, 31], dense pixel-wise corre-
spondence [61, 27], or discriminative feature patterns [68].
Despite promising performance, they discard the motion
signals which have been proved effective in the classic
video analysis tasks [47, 69, 30]. A few recent method-
s [19, 28, 27, 12] suggest adopting the motion cue as addi-
tional information for inferring the object mask. LMP [50]
trains a CNN, taking optical flow as input to separate the
moving and non-moving regions, and then combines the
results with objectness cues from SharpMask [38] to gen-
erate moving object mask. LVO [51] trains a two-stream
fusion network, feeding the appearance features and opti-
cal flow features into a ConvGRU module [46] to generate
the object mask. The recent effort in [70] points out that
the motion cues in the existing methods are not adequately
leveraged in that they are simply used either as extra input
or as complementary features and therefore fail to capture
the deep interactions between the two modalities. MAT-
Net [70] was proposed to transform the appearance fea-
tures via a motion-attentive transition block and generates
a motion-attentive feature representations at each convolu-
tional stage of the network. The drawback is that it blind-
ly infers the region of interests by treating all the motion-
appearance correspondences as equally reliable, which is
different from our method trying to differentiate the relia-

bility of the motion-appearance correspondences based on
the matching scores.
Optimal Structural Matching. Various vision application-
s are formulated into an instance of structural matching vi-
a solving an optimal transport problem. DeepEMD [67]
was proposed to employ the Earth Mover’s Distance [43]
as a metric in supervised deep metric learning to perform
structural matching between local patches of two images.
In [44], the network flows between two complex structures
are optimized to solve the multi-object tracking problem.
SeLa [1] unifies clustering and representation learning on
still images by extending the standard cross-entropy mini-
mization to an optimal transport problem, and solves it by a
variant of the Sinkhorn-Knopp algorithm [8]. These meth-
ods cannot be directly applied to our task since they are
not tailored to match the fine-grained local features across
modalities which demands a light and efficient optimizer
facilitating the stacking of multiple OSM operations.
Interleaving. The factorization mechanism in our Fac-
torized Sinkhorn method bears assembly with the gener-
al interleaving mechanism in network network architec-
ture design, such as Shuffle operation in ShuffleNet [66],
and the Interleaved group convolution [65]. Similar idea
has recently been extended to the Interleaved Sparse Self-
Attention [17] and Sparse Transformer [5]. Our work is d-
ifferent as our interleaving operation is explicitly driven by
a structural matching objective.

3. TransportNet for UVOS
3.1. Network Architecture

Figure 2 illustrates the network architecture of our
TransportNet. Specifically, given an input RGB frame
Ia ∈ Rw×h×3 and its optical flow map Im ∈ Rw×h×3,
the encoder extracts their intermediate features Xa =
[x>a,1; . . . ; x>a,N ], Xm = [x>m,1; . . . ; x>m,N ] ∈ RN×C at each
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Figure 3. Pipeline of LSSH. The LSSH is composed of an LSH layer and an SSH layer. First, for each of the input {Xa,Xm}, we use
the same color to represent the long-distant local features and P = 2 different colors to represent the short-distant ones, respectively.
Then, the LSH layer first permutes {Xa,Xm} to group features with the same color together, and then learns the optimal matching flows
PL
i , i = 1, . . . , P , for each group of features, outputting the aligned feature pairs {ZL

a ,ZL
m}. The {ZL

a ,ZL
m} are then fed into the SSH

layer, which are first permuted to generate Q = 3 groups of short-distant feature pairs with different colors together, and then learns the
optimal matching flows PS

i , i = 1, . . . , Q for each group, outputting the finally aligned feature pairs {Ya,Ym}.

Residual block, where {xa,i, xm,i ∈ RC} denotes the i-th
appearance-motion local feature pair, N = WH denotes
the number of features, W and H are the width and height
of the feature map, and C denotes the number of feature
channels. Afterwards, Xa,Xm are fed into an LSSH mod-
ule NLSSH (see Figure 3), to produce the aligned appear-
ance and motion features

{Ya,Ym} = NLSSH(Xa,Xm). (1)

Inside the LSSH module, we employ the Wasserstein dis-
tance [14] to measure the structural similarity between Xa

and Xm. To efficiently optimize the Wasserstein distance,
we design a Factorized Sinkhorn composed of an LSH lay-
er NLSH, followed by an SSH layer NSSH. We concatenate
Ya,Ym to produce the enhanced spatio-temporal represen-
tation Y = [Ya,Ym] ∈ RN×2C , and feed Y into the corre-
sponding feature pyramid module at the decoder layer with
skip connections. Finally, the decoder layer produces the
predicted segmentation map S ∈ Rw×h.

3.2. Optimal Structural Matching

3.2.1 Wasserstein Distance

Given the feature point sets {Xa,Xm}, the squared
Wassertein distance is defined as [14]

W 2
2 (Xa,Xm) = min

P∈PN

∑
i,j

P(i, j)C(i, j), (2)

where P is a transition matrix with each element P(i, j)
representing the matching flow of the appearance-motion
feature pair {xa,i, xm,j}. The set PN = {P ∈
(R+)N×N ,P1N = 1N ,P>1N = 1N}, where 1N is an
N -dimensional all-one vector. C is the cost matrix with
C(i, j) = ‖xa,i− xm,j‖22, which is the L2 distance between
two feature points. Since we use the normalized features,
C(i, j) can be reformulated as

C(i, j) = 2− 2x>a,ixm,i. (3)

From the optimal transport theory [25, 14], theW 2
2 in (2)

is the minimum cost induced by the optimal transport plan,

and the C(i, j) denotes the cost to move a probability mass
from xa,i to xm,j , i.e., pa,i → pm,j , satisfying

N∑
i=1

pa,iδ(x− xa,i) = 1,

N∑
i=1

pm,iδ(x− xm,i) = 1, (4)

where δ(·) is the Dirac function that satisfies δ(x) = 1 if
x = 0, and otherwise δ(x) = 0. Note that if we assume that
the unary matchabilities are uniformly distributed [3], that
is ∀i, j, pa,i = pm,j = 1

N , meaning that each feature point
has the same prior likelihood of matching, then the global
optimal matching flows P in (2) is a permutation matrix. In
this case, the optimal transport plan is equal to solving an
optimal assignment problem that is a linear program [6].

Since problem (2) is a linear program, it can be read-
ily solved with combinational algorithms including sim-
plex methods and their variants such as Hugarian or re-
laxation algorithms [37, 64]. However, it has been shown
that the best computational complexity of these methods is
O(2N3 log 2N) [37]. This hinders the method from han-
dling large-scale datasets. Recently, Cuturi [8] presents an
efficient Sinkhorn method to solve the transport plan, which
has several orders of magnitude faster than the former trans-
port solvers, thereby attracting much attention in a variety of
vision tasks [3, 6, 7, 53, 63] for optimal structural matching.
To further efficiently optimize the problem (2), we design a
Factorized Sinkhorn method that includes an LSH layer fol-
lowed by an SSH layer. In the following, we first present the
Sinkhorn layer, and then introduce the LSH and SSH layers.

3.2.2 SinkHorn (SH) Layer

With the cost matrix C in (3) as input, we design an SH
layer that leverages the Sinkhorn method [8] to model the
structural feature matching as a linear assignment problem.
The SH layer relaxes the discrete assignment constraint as
a doubly-stochastic matrix, which can be seen as a contin-
uous relaxation of the permutation matrix P that globally
optimizes the W 2

2 in (2). The Sinkhorn alternatively takes
row- and column-normalization until convergence. Given
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Figure 4. Examples of the matching results by LSH (blue arrow)
and SSH (orange arrows), respectively. The starting points of ar-
rows denote the selected locations on the RGB frames, and the
ending points represent the top-k matching locations (i.e., those
with the largest matching scores) on the optical flow maps esti-
mated by LSH (k = 1) and SSH (k = 2), respectively.

C(0) = C, the k-th iteration of the Sinkhorn operator is

C̃(k) = C(k−1) � (C(k−1)1N1>N ),

C(k) = C̃(k) � (1N1>N C̃(k)),
(5)

where � denotes the element-wise division. After conver-
gence, we obtain a doubly-stochastic matrix P that is our
optimal matching flows. We modularize the SH layer as

P = NSH(C). (6)

The SH layer is differentiable since its operation in
(5) only contains matrix-vector multiplication and element-
wise division, which can be readily plugged into the vanil-
la deep neural networks for end-to-end training. The
backward gradient of the SH layer can be readily derived
from [53], which can be readily implemented with automat-
ic differentiation in PyTorch [35].

The dense cost matrix C introduces heavy computa-
tion/memory cost when optimizing the SH layer (6), pre-
venting using high-resolution inputs and stacking multiple
SH layers that are essential for high performance in various
vision tasks. To reduce computation/memory cost, existing
works [63, 53, 7] for feature matching only plug in one SH
layer at the end of their network architectures. We address
this issue by factorizing the C into two sparse block distance
matrices CL and CS , which capture the long- and short-
range dependencies between spatial locations on the fea-
ture map, respectively. We then perform structural match-
ing within the long-distant and short-distant local blocks.
This matrix factorization method significantly reduces the
computation/memory cost, making our network be able to
stack 3 SH layers with high-resolution inputs.

3.2.3 Long-distant SinkHorn (LSH) Layer

The long-distant cost matrix CL ∈ RN×N is designed
to capture the interactions between any pair-wise appear-
ance and motion features at long-distant spatial locations
on the feature map. As shown in Figure 3, to group to-
gether the features at long-distant locations, we first per-
mute the appearance feature map Xa ∈ RN×C to gener-
ate XL

a = permute(Xa). Then, we equally divide the XL
a

into P parts, and each part has Q feature vectors. Then,
the XL

a can be rewritten as XL
a = [XL

a,1;XL
a,2; . . . ;XL

a,P ],
where each XL

a,p ∈ RQ×C is from Q long-distant spa-
tial locations. Similar operations are done for the mo-
tion feature map, yielding the corresponding motion fea-
tures XL

m = [XL
m,1;XL

m,2; . . . ;XL
m,P ], where each XL

m,p ∈
RQ×C . Then, we define the CL as a sparse block matrix

CL = diag
(
CL

1 ,C
L
2 , . . . ,C

L
P

)
, (7)

where each CL
p = XL

a,pXL>

m,p ∈ RQ×Q is a small cost ma-
trix based on all spatial locations from XL

a,p and XL
m,p, and

diag denotes a diagonal block matrix operator. We apply
the SH layer (6) on each CL

p , and obtain the optimal match-
ing flows PL = diag

(
PL
1 ,P

L
2 , . . . ,P

L
P

)
. Finally, the aligned

appearance and motion features can be computed as

ZL
a = PLXL

a ,Z
L
m = PLXL

m. (8)

3.2.4 Short-distant SinkHorn (SSH) Layer

As aforementioned, the short-distant cost matrix CS cap-
tures the interactions between the appearance-motion fea-
tures at spatial locations that have short spatial distances.

As shown in Figure 3, we leverage another permutation
on the output feature maps ZL

a and ZL
m from the LSH layer,

yielding XS
a and XS

m. Then, we equally divide the XS
a into

Q parts, and each part has P neighboring feature vectors.
The XS

a can be rewritten as XS
a = [XS

a,1;XS
a,2; . . . ;XS

a,Q],
where each XS

a,q ∈ RP×C is from P short-distant lo-
cations. Similar operations are performed for the mo-
tion feature map, yielding the corresponding motion fea-
tures XS

m = [XS
m,1;XS

m,2; . . . ;XS
m,Q], where each XS

m,q ∈
RP×C . Then, similar to the long-distant cost matrix CL, we
define the CS as a sparse block matrix

CS = diag
(
CS

1 ,C
S
2 , . . . ,C

S
Q

)
, (9)

where each CS
q = XS

a,qXS>

m,q ∈ RP×P . We apply the
SH layer (6) on CS , yielding the optimal matching flows
PS = diag

(
PS
1 ,P

S
2 , . . . ,P

S
Q

)
. Finally, we calculate the

aligned appearance and motion feature maps as

Ya = PSXS
a ,Ym = PSXS

m. (10)

Figure 4 visualizes two matching examples using LSH
and SSH, where the left example selects one point from
the noisy background while the right one selects one point
from the foreground target. The top-1 and top-2 matching
locations with the largest matching flows in PL and PS are
shown as the ending points of arrows, where we can observe
that both LSH and SSH can establish the accurate corre-
spondences with large probabilities.
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Theoretical Justification of LSSH. Theoretically, the mer-
it of LSSH is inspired by the classic convolution operator
proposed in LeNet [24]. As in Figure 3, LSSH perform-
s sparse matching between appearance and motion features
and the rationality lies in that the spatial correlation between
them is local (liken to applying a small kernel in conv op-
erator to model local spatial correlation). Contrarily, SH
does dense matching that not only ignores the local corre-
lation but also easily causes overfitting (liken to the fully-
connected layer).

3.3. Decoder Network

The decoder network is similar to U-Net [42], which us-
es skip-connections to fuse the multi-scale spatio-temporal
features from the encoder to the decoder. The fused feature
maps are gradually upscaled by a factor of two at a time,
and they are then concatenated with the feature maps of the
next layer. Finally, the aggregated features are fed into a
convolutional layer followed by a Softmax layer and a con-
volutional layer to predict the object mask S and object edge
mask Se respectively. The loss function for the network op-
timization is defined as the cross-entropy loss that aims to
pixel-wisely classifying the objects and their boundaries

L = LSeg
CE + λLEdg

CE , (11)

where LSeg
CE = −

∑
ij G(i, j) log S(i, j) and LEdg

CE =

−
∑

ij Ge(i, j) log Se(i, j), where G ∈ {0, 1}w×h denotes
the ground-truth mask and Ge denotes its corresponding
edge mask that is easily estimated by the Sobel operator. λ
is a tradeoff parameter empirically setting to 1.0 according
to the validation performance.

4. Experiments
4.1. Implementation Details

The backbones of the appearance and motion streams in
our TransportNet are ResNet101 and ResNet50 [15] respec-
tively. The LSSH is plugged at the 3-rd, 4-th, and 5-th
residual blocks of the ResNet models. In each LSSH, the
feature map with size W ×H×C is set to P = 8 partition-
s according to validation performance, and each contains
Q =WH/P features.

Our experiments follow the common practices as in [70].
The training set consists of two parts: a) all the training
data in the DAVIS-16 [36], which includes 30 videos with
2, 000 frames; b) a subset of 8, 000 frames selected from
the training set of Youtube-VOS [59], which is obtained by
sampling one frame every 10 frames in each video. We
use 10, 000 frames for training, which are much less than
the recent MATNet [70] that uses 14, 000 training frames.
All images are unified to 512 × 512 × 3, and the PWC-
Net [49] is adopted to estimate their optical flows due to

its high efficiency and accuracy. Note that using PWCNet
and ResNet as the network backbone is a common practice
in UVOS [70, 31, 61], and our work follows this practice
to ensure fair comparison. The network is trained with the
Adam optimizer [23] with an initial learning rate of 1e-4 for
the encoder, and 1e-3 for the decoder. We set the batch size,
momentum and weight decay to 2, 0.9, and 1e-5 respective-
ly, and augment the training samplings with horizontal flip
and rotations that cover a range of degrees (−10, 10).

After training, we test the model on unseen videos for
evaluation. We resize each frame to 512 × 512, and feed
it and its corresponding optical flow map into the trained
model to generate the segmentation map, which is then bi-
narized by a threshold = 0.5 to directly produce the binary
segmentation mask without any further post-processing.

The TransportNet is implemented in PyTorch [35] on
an Nvidia GTX 2080Ti GPU. For each test image of size
512 × 512 × 3, the forward inference of our TransportNet
takes ∼ 0.08s, while the optical flow estimation by PWC-
Net takes ∼ 0.2s (offline independent of inference). Even
adding the offline optical flow estimation time, our model
takes about 0.08s+0.2s = 0.28s, which is still competitive
to the online inference time of DFNet [68] (0.28s/image).

4.2. Datasets and Evaluation Metrics

We conduct experiments on four popular benchmark
datasets including DAVIS-16 [36], FBMS [33], ViSal [55]
and Youtube-Objects [40] (due to space limitation, the re-
sults on Youtube-Objects are put in the supplemental ma-
terial, in which our method achieves the SOTA perfor-
mance). Note that most of the existing UVOS works use
these datasets as the testbed [61, 68, 32] and we follow this
practice to ensure fair comparison. Though there are oth-
er VOS datasets such as Youtube-VOS [59] and DAVIS-
17 [39], they are either only used for evaluating semi-
supervised VOS [34, 62] (the former), or better fitting for a
recently proposed new task of multi-object segmentation [2]
(the latter, because it provides instance annotations). We
thus choose not to use them in our experiments.

DAVIS-16 totally consists of 50 videos, including 30
videos for training and 20 for testing. Each frame offers
a pixel-wisely annotated mask for foreground objects. In
this dataset, we leverage three evaluation metrics provided
by [36], including a) region similarity J , b) boundary accu-
racy F , c) overall J&F score that is the average of J and
F scores. Besides, we also report the salient object detec-
tion results on this dataset in terms of the Mean Absolution
Error (MAE) and the F-measure Fm.

FBMS consists of 59 video sequences with 29 training
videos and 30 test ones. The ground-truth annotations for
every 20 frame are provided, producing a total of 720 an-
notated frames in the entire dataset. We evaluate on the test
set, and the main evaluation metrics are region similarity J ,
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Figure 5. Qualitative results. From top to bottom: dance-twirl from DAVIS-16, scooter-black from DAVIS-16, and horse04 from FBMS.

MAE and F-measure Fm.
ViSal is designed for video saliency task that contains

a collection of 17 videos with a diverse set of objects and
backgrounds, varying in length from 30 to 100 frames. It
has 193 manually-annotated frames. The whole dataset is
used for evaluation in terms of MAE and F-measure Fm.

4.3. Comparison with the State-of-the-arts

Quantitative Results. Table 1 lists the quantitative compar-
ison results of our TransportNet against the state-of-the-art
UVOS methods on DAVIS-16 and FBMS. Note that it is
unfair to compare our UVOS results to the results achieved
by semi-supervised VOS methods such as STM [34]. Our
TransportNet achieves the best J&F = 84.8% over the ex-
isting state-of-the-arts. Moreover, it also achieves the high-
est performance in terms of all other evaluation metrics on
both datasets. Moreover, the TransportNet reaches a new
state-of-the-art result on the test set of FBMS with J =
78.7%, a significant gain of 2.6% over the second best per-
forming method MATNet with J = 76.1%. This demon-
strates that the TransportNet can produce high quality seg-
mentation masks by aligning the appearance and motion
features through optimal structural matching. On the con-
trary, a variety of competing methods (i.e., MATNet, COS-
Net, and AnDiff) apply post-processing techniques such
as CRFs or instance pruning to improve the performance,
which introduce more computational cost. Without this
post-processing step, 3DC-Seg [32] is the best-performing
existing method that leverages 3D convolutions for UVOS,
outperforming those based on 2D convolutions by a large
margin. 3DC-Seg uses a backbone of 3D ResNet-152 pre-
trained on IG-65M [13] and Kinetics [22], and then trains
the model using COCO Instance Segmentation dataset [29],
YouTube-VOS [59], and DAVIS-16 [36]. Notwithstanding,
the proposed TransportNet outperforms 3DC-Seg in terms
of all evaluation metrics with fewer training data and less
computation overhead due to the use of 2D convolutions.
This also verifies the effectiveness of the proposed OSM
mechanism in our TransportNet that helps learn a strong
spatial-temporal representation that is essential to produce
high-quality segmentation masks.

Table 2 shows the qualitative results of the Transport-

DAVIS16 FBMS
Method J&F ↑ J ↑ F ↑ J ↑

LMP(CVPR17) [50] 68.0 70.0 65.9 -
LVO(ICCV17) [51] 74.0 75.9 72.1 -
PDB(ECCV18) [48] 75.9 77.2 74.5 74.0

MBNM(ECCV18) [28] 79.5 80.4 78.5 73.9
AGS(CVPR19) [57] 78.6 79.7 77.4 -

COSNet(CVPR19) [31] 80.0 80.5 79.4 75.6
AGNN(ICCV19) [54] 79.9 80.7 79.1 -
AnDiff(ICCV19) [61] 81.1 81.7 80.5 -
EpO+(WACV20) [11] 78.1 80.6 75.5 -

MATNet(AAAI20) [70] 81.6 82.4 80.7 76.1
DFNet(ECCV20) [68] 82.6 83.4 81.8 -

3DC-Seg(BMVC20) [32] 84.5 84.3 84.7 -
TransportNet 84.8 84.5 85.0 78.7

Table 1. Quantitative results on the validation sets of DAVIS-16
and FBMS. For FBMS, we report J results. The best and second-
best results are highlighted using bold and underline.

Net compared to the state-of-the-arts for the task of video
saliency on DAVIS16, FBMS, and ViSal datasets. The task
of video saliency is similar to UVOS, where the defini-
tion of salient objects in ViSal [55] is related to the fore-
ground objects in DAVIS-16 and FBMS. As shown in Ta-
ble 2, the proposed TransportNet achieves new state-of-the-
art on DAVIS-16 and ViSal datasets in terms of all eval-
uation metrics, especially for the Fm scores. Our Trans-
portNet achieves Fm = 88.5% and Fm = 95.3% on F-
BMS and ViSal respectively, with a significant gain of 4%
and 3.1% over the competing counterpart 3DC-Seg with
Fm = 84.5% and 92.2%. Notably, despite only being
trained for the UVOS task, our TransportNet outperform-
s the state-of-the-art video saliency method TENet [41] in
terms of both MAE and Fm on DAVIS-16 and ViSal, and
achieves very competitive results on FBMS (MAE = 0.045
vs. 0.026, Fm = 88.5% vs. 89.7%). The speed compar-
ison and precision-recall curve plot can be found in the
supplemental material.
Qualitative Results. Figure 5 shows some qualitative re-
sults from DAVIS-16 and FBMS datasets. Specifically,
dance-twirl and scooter-black videos are from DAVIS-16,
where the foreground objects suffer from severe deforma-
tion, scale variation, and background clutter. horse04 video
is from FBMS, where it contains multiple horses as fore-

8787



DAVIS16 FBMS ViSal
Method MAE↓ Fm↑ MAE↓ Fm↑ MAE↓ Fm↑

FCNS∗(TIP17) [56] 0.053 72.9 0.100 73.5 0.041 87.7
FGRNE∗(CVPR18) [26] 0.043 78.6 0.083 77.9 0.040 85.0
TENet∗(ECCV20) [41] 0.019 90.4 0.026 89.7 0.014 94.9
MBNM(ECCV18) [28] 0.031 86.2 0.047 81.6 0.047 -

PDB(ECCV18) [48] 0.030 84.9 0.069 81.5 0.022 91.7
AnDiff(ICCV19) [61] 0.044 80.8 0.064 81.2 0.030 90.4
DFNet(ECCV20) [68] 0.018 89.9 0.054 83.3 0.017 92.7

3DC-Seg(BMVC20) [32] 0.015 91.8 0.048 84.5 0.019 92.2
TransportNet 0.013 92.8 0.045 88.5 0.012 95.3

Table 2. Quantitative results in terms of MAE and maximum F-
measure on DAVIS16, FBMS and ViSal datasets. The best and
second-best results are highlighted using bold and underline. *
means that the method is tailored to the video saliency task.

grounds to be segmented that undergo significant non-rigid
deformations. We see TransportNet can well handle these
challenges and delineate the targets with accurate contours.
More visual examples are in the supplemental material.

4.4. Ablation Study

Table 3 lists the ablation results of our module variants
on DAVIS-16 and FBMS in terms of mean J , which are
categorized into three groups to verify the effectiveness of
LSH&SSH, LSSH location, and edge loss, respectively.

Module Variants DAVIS-16 FBMS
SH LSH SSH Res3 Res4 Res5 Edge loss mean J ↑ mean J ↑
! ! ! ! ! 83.4 75.0

! ! ! ! ! 82.4 73.2
! ! ! ! ! 83.9 77.4

! 80.4 68.2
! ! ! ! 83.3 72.7
! ! ! ! ! 83.8 76.4
! ! ! ! ! 84.3 76.3
! ! ! ! ! ! 84.5 78.7

Table 3. Ablations on DAVIS-16 and FBMS. ‘Res3’, ‘Res4’, and
‘Res5’ represent the locations in the network where LSSH is
plugged.

Effect of LSH&SSH. We take the SH introduced in
Sec 3.2.2 as a baseline. The model with SH achieves mean
J = 83.4% and 75.0% on DAVIS-16 and FBMS, which are
1% and 1.8% higher than our model with LSH. The reason
is that the LSH fails to capture the local fine-grained details
that are essential to perform accurate matching. On con-
trast, with SSH, our model achieves the mean J = 82.4%
and 73.2%, outperforming the baseline by 0.5% and 2.4%
on DAVIS-16 and FBMS, respectively. This demonstrates
the effectiveness of SSH that is able to perform more ro-
bust matching than SH. The SSH does robust matching
by searching local regions, which can naturally avoid the
long-range noisy interferences that will degrade the base-
line model with SH. Finally, our model with LSSH achieves
the best mean J = 84.5% and 78.7%, with obvious gains
of 1.1% and 3.7% over the baseline, demonstrating the ef-

Figure 6. GPU memory/Time comparison between SH and LSSH.

fectiveness of the proposed factorized SH strategy to handle
the distracting signals.
Effect of LSSH location. Without plugging any LSSH, our
model achieves mean J = 80.4% and 68.2% on DAVIS-
16 and FBMS, lower than only plugging one LSSH after
Res5 by a large margin of 2.9% and 4.5%. We then further
plug the LSSH after Res4, achieving the mean J = 83.8%
and 72.7%, with a gain of 0.5% and 3.7% against the former
counterpart. By continuing to plug the LSSH after Res3, the
performance is improved to mean J = 84.5% and 78.7%.
To better balance between the performance and computa-
tion/memory cost, our TransportNet contains three LSSHs
plugged after Res3, Res4, and Res5, respectively.
Effect of Edge Loss. Without the edge loss, our model
achieves mean J = 84.3% and 76.3% on DAVIS-16 and
FBMS, respectively. The performance is lower than our
TransportNet with edge loss by 0.2% and 2.4%. This veri-
fies the effectiveness of the boundary-enhanced information
that can help to produce more accurate segmentation masks.
Efficiency Comparison. Figure 6 shows the results of
memory and time cost between our proposed LSSH and the
SH. The processing input feature map is of size 128×128×
2048. We can observe that our LSSH only uses 15.8% GPU
memory while being nearly 24.5× faster compared to the
SH. This verifies the efficiency of our solver to the task of
optimal structural matching.

5. Conclusions
In this paper, we presented a Wasserstein distance-based

optimal structural matching network, termed as Transport-
Net for UVOS. The TransportNet has a two-stream struc-
ture that establishes the correspondence between the input
modalities of RGB frame and optical flow while suppress-
ing the distracting signals via optimal structural matching.
To be more specific, the Wasserstein distance has been em-
ployed to compute the global optimal flows to transport the
features in one modality to the other. To plug the structural
matching into the network for efficient end-to-end training,
we have factorized the input cost matrix into small spatial
blocks and designed a differentiable LSSH module consist-
ing of an LSH layer and an SSH layer. Extensive exper-
iments on DAVIS-16, FBMS, and ViSal have demonstrat-
ed favorable performance of our TransportNet against the
state-of-the-art methods in terms of all evaluation metrics.
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