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Abstract

It is widely acknowledged that single image super-
resolution (SISR) methods would not perform well if the
assumed degradation model deviates from those in real im-
ages. Although several degradation models take additional
factors into consideration, such as blur, they are still not ef-
fective enough to cover the diverse degradations of real im-
ages. To address this issue, this paper proposes to design a
more complex but practical degradation model that consists
of randomly shuffled blur, downsampling and noise degra-
dations. Specifically, the blur is approximated by two con-
volutions with isotropic and anisotropic Gaussian kernels;
the downsampling is randomly chosen from nearest, bilin-
ear and bicubic interpolations; the noise is synthesized by
adding Gaussian noise with different noise levels, adopting
JPEG compression with different quality factors, and gen-
erating processed camera sensor noise via reverse-forward
camera image signal processing (ISP) pipeline model and
RAW image noise model. To verify the effectiveness of the
new degradation model, we have trained a deep blind ES-
RGAN super-resolver and then applied it to super-resolve
both synthetic and real images with diverse degradations.
The experimental results demonstrate that the new degra-
dation model can help to significantly improve the practi-
cability of deep super-resolvers, thus providing a powerful
alternative solution for real SISR applications.

1. Introduction

Single image super-resolution (SISR), which aims to
reconstruct the natural and sharp detailed high-resolution
(HR) counterpart x from a low-resolution (LR) image
y [10, 47], has recently drawn significant attention due to
its high practical value. With the advance of deep neural
networks (DNNs), there is a dramatic upsurge of using feed-
forward DNNs for fast and effective SISR [17, 23, 25, 27,
49, 61]. This paper contributes to this strand.

Whereas SISR methods map an LR image onto an HR
counterpart, degradation models define how to map an HR
image to an LR one. Two representative degradation mod-
els are bicubic degradation [46] and traditional degrada-
tion [28, 45]. The former generates an LR image via bicubic
interpolation. The latter can be mathematically modeled by

y=(x⊗ k)↓s+n. (1)

It assumes the LR image is obtained by first convolving the
HR image with a Gaussian kernel (or point spread function)
k [12] to get a blurry image x ⊗ k, followed by a down-
sampling operation ↓s with scale factor s and an addition of
white Gaussian noise n with standard deviation σ. Specif-
ically, the bicubic degradation can be viewed as a special
case of traditional degradation as it can be approximated by
setting a proper kernel with zero noise [3, 52]. The degrada-
tion model is generally characterized by several factors such
as blur kernel and noise level. Depending on whether these
factors are known beforehand or not, DNNs-based SISR
methods can be broadly divided into non-blind methods and
blind ones.

Early non-blind SISR methods were mainly designed for
bicubic degradations [10]. Although significant improve-
ments on the PSNR [27, 61] and perceptual quality [24, 49]
have been achieved, such methods usually do not perform
well on real images. It is worth noting that this also holds
for deep models trained with a generative adversarial loss.
The reason is that blur kernels play a vital role for the
success of SISR methods [12] and a bicubic kernel is too
simple. To remedy this, some works use a more complex
degradation model which involves a blur kernel and addi-
tive white Gaussian noise (AWGN) and a non-blind network
that takes the blur kernel and noise level as conditional in-
puts [3, 58]. Compared to methods based on bicubic degra-
dation, these tend to be more applicable. Yet, they need an
accurate estimation of the kernel and the noise level. Oth-
erwise the performance deteriorates seriously [12]. Mean-
while, only a few methods are specially designed for the
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kernel estimation of SISR [3]. As a further step, some
blind methods propose to fuse the kernel estimation into
the network design [16, 31]. But such methods still fail
to produce visually pleasant results for most real images
such as JPEG compressed ones. Along another line of blind
SISR work with unpaired LR/HR training data, the kernel
and the noise are first extracted from the LR images and
then used to synthesize LR images from the HR images
for paired training [20]. Notably, without kernel estima-
tion, the blind model still has a promising performance. On
the other hand, it is difficult to collect accurate blur kernels
and noise models from real images. From the above dis-
cussion, we draw two conclusions. Firstly, the degradation
model is of vital importance to DNNs-based SISR methods
and a more practical degradation model is worth studying.
Secondly, no existing blind SISR models are readily appli-
cable to super-resolve real images suffering from different
degradation types. Hence, we see two main challenges: the
first is to design a more practical SISR degradation model
for real images, and the second is to learn an effective deep
blind model that can work well for most real images. In this
paper, we attempt to solve these two challenges.

For the first challenge, we argue that blur, downsam-
pling and noise are the three key factors that contribute to
the degradation of real images. Rather than utilizing Gaus-
sian kernel induced blur, bicubic downsampling, and simple
noise models, we propose to expand each of these factors
to more practical ones. Specifically, the blur is achieved
by two convolutions with an isotropic Gaussian kernel and
an anisotropic Gaussian kernel; the downsampling is more
general but includes commonly-used downscaling opera-
tors such as bilinear and bicubic interpolations; the noise
is modeled by AWGN with different noise levels, JPEG
compression noise with different quality factors, and pro-
cessed camera sensor noise by applying reverse-forward
camera image signal processing (ISP) pipeline model and
RAW image noise model. Furthermore, instead of us-
ing the commonly-used blur/downsampling/noise-addition
pipeline, we perform randomly shuffled degradations to
synthesize LR images. As a result, our new degrada-
tion model involves several more adjustable parameters and
aims to cover the degradation space of real images.

For the second challenge, we train a deep model based
on the new degradation model in an end-to-end supervised
manner. Given an HR image, we can synthesize differ-
ent realistic LR images by setting different parameters for
the degradation model. As such, an unlimited number of
paired LR/HR training data can be generated for training.
Especially noteworthy is that such training data do not suf-
fer from the misalignment issue. By further taking advan-
tage of the powerful expressiveness and advanced training
of DNNs, the deep blind model is expected to produce vi-
sually pleasant results for real LR images.

The contributions of this paper are:

1) A practical SISR degradation model for real images is
designed. It considers more complex degradations for
blur, downsampling and noise and, more importantly,
involves a degradation shuffle strategy.

2) With synthetic training data generated using our degra-
dation model, a blind SISR model is trained. It per-
forms well on real images under diverse degradations.

3) To the best of our knowledge, this is the first work to
adopt a new hand-designed degradation model for gen-
eral blind image super-resolution.

4) Our work highlights the importance of accurate degra-
dation modeling for practical applications of DNNs-
based SISR methods.

2. Related Work
Since this paper focuses on designing a practical degra-

dation model to train a deep blind DNN model, we will
next give a brief overview on related degradation models
and deep blind SISR methods.

2.1. Degradation Models

As mentioned in the introduction, existing DNNs-based
SISR methods are generally based on bicubic downsam-
pling [23, 44] and traditional degradations [26, 37, 54, 59,
60], or some simple variants [11, 41, 53, 56, 58]. It can
be found that existing complex SISR degradation models
usually consist of a sequence of blur, downsampling and
noise addition. For mathematical convenience, the noise
is usually assumed to be AWGN which rarely matches the
noise distribution of real images. Indeed, the noise could
also stem from camera sensor noise and JPEG compres-
sion noise which are usually signal-dependent and non-
uniform [42]. Regardless of whether the blur is accu-
rately modeled or not, the noise mismatch suffices to cause
a performance drop when super-resolvers are applied to
real images. In other words, existing degradation models
are wanting when it comes to the complexity of real im-
age degradations. Some works do not consider an explicit
degradation model [29, 51]. Instead, they use training data
to learn the LR-to-HR mapping which only works for the
degradations defined by the training images.

2.2. Deep Blind SISR Methods

Significant achievements resulted from the design and
training of deep non-blind SISR networks. This said, ap-
plying them for blind SISR is a non-trivial issue. It should
be noted that blind SISR methods are mainly deployed for
real SISR applications. To that end, different research di-
rections have been tried.
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The first direction is to initially estimate the degrada-
tion parameters for a given LR image, and then apply a
non-blind method to obtain the HR result. Bell-Kligler et
al. [3] propose to estimate the blur kernel via an internal-
GAN method before applying the non-blind ZSSR [45] and
SRMD [58] methods. Yet, non-blind SISR methods are usu-
ally sensitive to errors in the blur kernel, producing over-
sharp or over-smooth results.

To remedy this, a second direction aims to jointly es-
timate the blur kernel and the HR image. Gu et al. [16]
propose an iterative correction scheme to alternately im-
prove the blur kernel and HR result. Cornillere et al. [8]
propose an optimization procedure for joint blur kernel and
HR image estimation by minimizing the error predicted by
a trained kernel discriminator. Luo et al. [31] propose a
deep alternating network that consists of a kernel estimator
module and an HR image restorer module. While promis-
ing, these methods do not fully take noise into considera-
tion and thus tend to suffer from inaccurate kernel estima-
tion for noisy real images. As a matter of fact, the presence
of noise would aggravate the ill-posedness, especially when
the noise type is unknown and complex, and the noise level
is high.

A third direction is to learn a supervised model with cap-
tured real LR/HR pairs. Cai et al. [7] and Wei et al. [50]
separately established a SISR dataset with paired LR/HR
camera images. Collecting abundant well-aligned training
data is cumbersome however, and the learned models are
constrained to the LR domain defined by the captured LR
images.

Considering the fact that real LR images rarely come
with the ground-truth HR, the fourth direction aims at learn-
ing with unpaired training data [48]. Yuan et al. [51] pro-
pose a cycle-in-cycle framework to first map the noisy and
blurry LR input to a clean one and then super-resolve the in-
termediate LR image via a pre-trained model. Lugmayr et
al. [29] propose to learn a deep degradation mapping by em-
ploying a cycle consistency loss and then generate LR/HR
pairs for supervised training. Following a similar frame-
work, Ji et al. [20] propose to estimate various blur ker-
nels and extract different noise maps from LR images and
then apply the traditional degradation model to synthesize
different LR images. Notably, [20] was the winner of the
NTIRE 2020 real-world super-resolution challenge [30],
which demonstrates the importance of accurate degrada-
tion modeling. Although applying this method to training
data corrupted by a more complex degradation seems to be
straightforward, it would also reduce the accuracy of blur
kernel and noise estimation which in turn results in unreli-
able synthetic LR images.

As discussed above, existing deep blind SISR methods
are mostly trained on ideal degradation settings or specific
degradation spaces defined by the LR training data. As a

result, there is still a mismatch between the assumed degra-
dation model and the real image degradation model. Fur-
thermore, to the best of our knowledge, no existing deep
blind SISR model can be readily applied for general real
image super-resolution. Therefore, it is worthwhile to de-
sign a practical degradation model to train deep blind SISR
models for real applications. Note that, although denoising
and deblurring are related to noisy and blurry image super-
resolution, most super-resolution methods tackle the blur,
noise and super-resolution in a unified rather than a cas-
caded framework (see, e.g., [11, 12, 20, 28, 29, 30, 43, 45,
51, 52, 56, 58]).

3. A Practical Degradation Model
Before providing our new practical SISR degradation

model, it is useful to mention the following facts on the
bicubic and traditional degradation models:

1. According to the traditional degradation model, there
are three key factors, i.e., blur, downsampling and
noise, that affect the degradations of real images.

2. Since both LR and HR images could be noisy
and blurry, it is not necessary to adopt the
blur/downsampling/noise-addition pipeline as in the
traditional degradation model to generate LR images.

3. The blur kernel space of the traditional degradation
model should vary across scales, making it in practice
tricky to determine for very large scale factors.

4. While the bicubic degradation is rarely suitable for real
LR images, it can be used for data augmentation and is
indeed a good choice for clean and sharp image super-
resolution.

Inspired by the first fact, a direct way to improve the
practicability of degradation models is to make the degra-
dation space of the three key factors as large and realistic as
possible. Based on the second fact, we then further expand
the degradation space by adopting a random shuffle strat-
egy for the three key factors. Like that, an LR image could
also be a noisy, downsampled and blurred version of the HR
image. To tackle the third fact, one may take advantage of
the analytical calculation of the kernel for a large scale fac-
tor from a small one. Alternatively, according to the fourth
fact, for a large scale factor, one can apply a bicubic (or bi-
linear) downscaling before the degradation with scale factor
2. Without loss of generality, this paper focuses on design-
ing the degradation model for the widely-used scale factors
2 and 4.

In the following, we will detail the degradation model
for the following aspects: blur, downsampling, noise, and
random shuffle strategy.
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3.1. Blur

Blur is a common image degradation. We propose to
model the blur from both the HR space and LR space. On
the one hand, in the traditional SISR degradation model [28,
45], the HR image is first blurred by a convolution with a
blur kernel. This HR blur actually aims to prevent aliasing
and preserve more spatial information after the subsequent
downsampling. On the other hand, the real LR image could
be blurry and thus it is a feasible way to model such blur in
the LR space. By further considering that Gaussian kernels
suffice for the SISR task, we perform two Gaussian blur
operations, i.e., Biso with isotropic Gaussian kernels and
Baniso with anisotropic Gaussian kernels [3, 43, 58]. Note
that the HR image or LR image could be blurred by two blur
operations (see Sec. 3.4 for more details). By doing so, the
degradation space of blur can be greatly expanded.

For the blur kernel setting, the size is uniformly sampled
from {7 × 7, 9 × 9, · · · , 21 × 21}, the isotropic Gaussian
kernel samples the kernel width uniformly from [0.1, 2.4]
and [0.1, 2.8] for scale factors 2 and 4, respectively, while
the anisotropic Gaussian kernel samples the rotation angle
uniformly from [0, π] and the length of each axis for scale
factors 2 and 4 uniformly from [0.5, 6] and [0.5, 8], respec-
tively. Reflection padding is adopted to ensure the spatial
size of the blurred output stays the same. Since the isotropic
Gaussian kernel with width 0.1 corresponds to delta (iden-
tity) kernel, we can always apply the two blur operations.

3.2. Downsampling

In order to downsample the HR image, perhaps the most
direct way is nearest neighbor interpolation. Yet, the result-
ing LR image will have a misalignment of 0.5×(s− 1) pix-
els towards the upper-left corner [52]. As remedy, we shift a
centered 21× 21 isotropic Gaussian kernel by 0.5×(s− 1)
pixels via a 2D linear grid interpolation method [28], and
apply it for convolution before the nearest neighbour down-
sampling. The Gaussian kernel width is randomly chosen
from [0.1, 0.6 × s]. We denote such a downsampling as
Ds

nearest. In addition, we also adopt the bicubic and bilinear
downsampling methods, denoted by Ds

bilinear and Ds
bicubic,

respectively. Furthermore, a down-up-sampling method
Ds

down-up(= D
s/a
downD

a
up) which first downsamples the im-

age with a scale factor s/a and then upscales with a scale
factor a is also adopted. Here the interpolation methods
are randomly chosen from bilinear and bicubic interpola-
tions, and a is sampled from [1/2, s]. Clearly, the above
four downsampling methods have a blurring step in the HR
space, while Ds

down-up can introduce upscaling-induced blur
in the LR space when a is smaller than 1. We do not in-
clude such kinds of blur in Sec. 3.1 since they are coupled
in the downsampling process. We uniformly sample these
four downsampling to downscale the HR image.

3.3. Noise

Noise is ubiquitous in real images as it can be caused
by different sources. Apart from the widely-used Gaus-
sian noise, our new degradation model also considers JPEG
compression noise and camera sensor noise. We next detail
the three noise types.

Gaussian noise NG. The Gaussian noise assumption is
the most conservative choice when there is no information
about the noise [40]. To synthesize Gaussian noise, the
three-dimensional (3D) zero-mean Gaussian noise model
N (0,Σ) [39] with covariance matrix Σ is adopted. Such
noise model has two special cases: when Σ = σ2I, where I
is the identity matrix, it turns into the widely-used channel-
independent additive white Gaussian noise (AWGN) model;
when Σ = σ21, where 1 is a 3× 3 matrix with all elements
equal to one, it turns into the widely-used gray-scale AWGN
model. In our new degradation model, we always add Gaus-
sian noise for data synthesis. In particular, the probabilities
of applying the general case and two special cases are set to
0.2, 0.4, 0.4, respectively. As for σ, it is uniformly sampled
from {1/255, 2/255, · · · , 25/255}.

JPEG compression noise NJPEG. JPEG is the most
widely-used image compression standard for bandwidth
and storage reduction. Yet, it introduces annoying 8 × 8
blocking artifacts/noise, especially for the case of high com-
pression. The degree of compression is determined by the
quality factor which is an integer in the range [0, 100]. The
quality factor 0 means lower quality and higher compres-
sion, and vice versa. If the quality factor is larger than 90,
no obvious artifacts are introduced. In our new degradation
model, the JPEG quality factor is uniformly chosen from
[30, 95]. Since JPEG is the most popular digital image for-
mat, we apply two JPEG compression steps with possibili-
ties 0.75 and 1, respectively. In particular, the latter one is
used as the final degradation step.

Processed camera sensor noise NS. In modern digi-
tal cameras, the output image is obtained by passing the
raw sensor data through the image signal processing (ISP)
pipeline. In practice, if the ISP pipeline does not perform a
denoising step, the processed sensor noise would deteriorate
the output image by introducing non-Gaussian noise [42].
To synthesize such kind of noise, we first get the raw image
from an RGB image via the reverse ISP pipeline, and then
reconstruct the noisy RGB image via the forward pipeline
after adding noise to the synthetic raw image. The raw im-
age noise model is borrowed from [6]. According to the
Adobe Digital Negative (DNG) Specification [1], our for-
ward ISP pipeline consists of demosaicing, exposure com-
pensation, white balance, camera to XYZ (D50) color space
conversion, XYZ (D50) to linear RGB color space con-
version, tone mapping and gamma correction. For demo-
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Figure 1. Schematic illustration of the proposed degradation model for scale factor 2. For an HR image, the randomly shuffled
degradation sequences {Biso,Baniso,D

2,NG,NJPEG,NS} are first performed, then a JPEG compression degradation NJPEG is ap-
plied to save the LR image into JPEG format. The downscaling operation with scale factor 2, i.e., D2, is uniformly chosen from
{D2

nearest,D
2
bilinear,D

2
bicubic,D

2
down-up}.

saicing, the method in [34] which is the same as matlab’s
demosaic function, is adopted. For exposure compensa-
tion, the global scaling is chosen from [2−0.1, 20.3]. For
the white balance, the red gain and blur gain are uniformly
chosen from [1.2, 2.4]. For camera to XYZ (D50) color
space conversion, the 3 × 3 color correction matrix is a
random weighted combination of ForwardMatrix1 and
ForwardMatrix2 from the metadata of raw image files.
For the tone mapping, we manually select the best fitted
tone curve from [14] for each camera based on paired raw
image files and the RGB output. We use five digital cam-
eras, including the Canon EOS 5D Mark III and IV cam-
eras, Huawei P20, P30 and Honor V8 cameras, to estab-
lish our ISP pipeline pool. Note that the tone curve and
forward color correction matrix do not necessarily come
from the same camera. Since tone mapping is not reversible
and would result in color shift issue, one should apply the
reverse-forward tone mapping for the HR image. We apply
this noise synthesis step with a probability of 0.25.

3.4. Random Shuffle

Though simple and mathematically convenient, the tra-
ditional degradation model can hardly cover the degradation
space of real LR images. On the one hand, the real LR im-
age could also be a noisy, blurry, downsampled, and JPEG
compressed version of the HR image. On the other hand,
the degradation model which assumes the LR image is a
bicubicly downsampled, blurry and noisy version of the HR
image can also be used for SISR [16, 59]. Hence, an LR im-
age can be degraded by blur, downsampling, and noise with
different orders. We thus propose a random shuffle strategy

for the new degradation model. Specifically, the degrada-
tion sequence {Biso,Baniso,D

s,NG,NJPEG,NS} is ran-
domly shuffled, here Ds represents the downsampling op-
eration with scale factor s which is randomly chosen from
{Ds

nearest,D
s
bilinear,D

s
bicubic,D

s
down-up}. In particular, the se-

quence of D
s/a
down and Da

up for Ds
down-up can insert other

degradations. Note that a similar idea of random shuffle
strategy was proposed in [9], however, it is designed for im-
age classification and object detection and could be instead
used to augment HR images.

With the random shuffle strategy, the degradation space
can be expanded substantially. Firstly, other degradation
models, such as bicubic and traditional degradation models,
and the ones proposed in [16, 59], are special cases of ours.
Secondly, the blur degradation space is enlarged by differ-
ent arrangements of the two blur operations and one of the
four downsampling methods. Thirdly, the noise character-
istics could be changed by the blur and downsampling, thus
expanding the degradation space. For example, the down-
sampling can reduce the noise strength and make the noise
(e.g., processed camera sensor noise and JPEG compres-
sion noise) less signal-dependent, whereas Da

up (a < 1) can
make the signal-independent Gaussian noise to be signal-
dependent. Such kinds of noise could exist in real images.

Fig. 1 illustrates the proposed degradation model. For
an HR image, we can generate different LR images with
a wide range of degradations by shuffling the degradation
operations and setting different degradation parameters. As
mentioned in Sec. 3, for scale factor 4, we additionally ap-
ply a bilinear or bicubic downscaling before the degradation
for scale factor 2 with a probability of 0.25.
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4. Discussion

It is necessary to add discussion to further understand
the proposed new degradation model. Firstly, the degrada-
tion model is mainly designed to synthesize degraded LR
images. Its most direct application is to train a deep blind
super-resolver with paired LR/HR images. In particular, the
degradation model can be performed on a large dataset of
HR images to produce unlimited perfectly aligned training
images, which typically do not suffer from the limited data
issue of laboriously collected paired data and the misalign-
ment issue of unpaired training data. Secondly, the degrada-
tion model tends to be unsuited to model a degraded LR im-
age as it involves too many degradation parameters and also
adopts a random shuffle strategy. Thirdly, the degradation
model can produce some degradation cases that rarely hap-
pen in real-world scenarios, while this can still be expected
to improve the generalization ability of the trained deep
blind super-resolver. Fourthly, a DNN with large capacity
has the ability to handle different degradations via a single
model (see, e.g., [55]). It is worth noting that even when
the super-resolver reduces the performance for unrealistic
bicubic downsampling, it is still a preferred choice for real
SISR. Fifthly, one can conveniently modify the degrada-
tion model by changing the degradation parameter settings
and adding more reasonable degradation types (e.g., speckle
noise and unaligned double JPEG compression [21]) to im-
prove the practicability for certain applications.

5. Deep Blind SISR Model Training

The novelty of this paper lies in the new degradation
model and the possibility of existing network structures
such as ESRGAN [49] to be borrowed to train a deep blind
model. For the sake of showing the advantage of the pro-
posed degradation model, we adopt the widely-used ESR-
GAN network and train it with the synthetic LR/HR paired
images produced by the new degradation model. Following
ESRGAN, we first train a PSNR-oriented BSRNet model
and then train the perceptual quality-oriented BSRGAN
model. Since the PSNR-oriented BSRNet model tends to
produce oversmoothed results due to the pixel-wise aver-
age problem [24], the perceptual quality-oriented model is
preferred for real applications [5]. Thus, unless otherwise
specified, we focus more on the BSRGAN model.

Compared to ESRGAN, BSRGAN is modified in several
ways. First, we use a slightly different HR image dataset
which includes DIV2K [2], Flick2K [27, 46], WED [33]
and 2,000 face images from FFHQ [22] to capture the im-
age prior. The reason is that the goal of BSRGAN is to
solve the problem of general-purpose blind image super-
resolution, and apart from the degradation prior, an image
prior could also contribute to the success of a super-resolver.
We also remove the blurry images based on the variance

of the Laplacian of an image. Secondly, BSRGAN uses a
larger LR patch size of 72 × 72. The reason is that our
degradation model can produce severely degraded LR im-
ages and a larger patch can enable deep models to capture
more information for better restoration. Thirdly, we train
the BSRGAN by minimizing a weighted combination of
L1 loss, VGG perceptual loss and spectral norm-based least
square PatchGAN loss [19] with weights 1, 1 and 0.1, re-
spectively. In particular, the VGG perceptual loss is oper-
ated on the fourth convolution before the fourth rather than
the fifth maxpooling layer of the pre-trained 19-layer VGG
model as it is more stable to prevent color shift issues. We
train BSRGAN with Adam, using a fixed learning rate of
1× 10−5 and a batch size of 48.

6. Experimental Results

6.1. Testing Datasets

Existing blind SISR methods are generally evaluated
on specifically designed synthetic data and only very few
real images. For example, IKC [16] is evaluated on the
blurred, bicubicly downsampled synthetic LR images and
two real images; KernelGAN [3] is evaluated on the syn-
thetic DIV2KRK dataset and two real images. As a result,
to the best of our knowledge, a real LR image dataset with
diverse blur and noise degradations is still lacking.

In order to pave the way for the evaluation of blind SISR
methods, we establish two datasets, including the synthetic
DIV2K4D dataset which contains four subdatasets with a
total of 400 images generated from the 100 DIV2K val-
idation images with three different degradation types and
the real RealSRSet which consists of 20 real images either
downloaded from the internet or directly chosen from exist-
ing testing datasets [18, 35, 36, 57]. Specifically, the three
degradation types for DIV2K4D including 1) type I: the
commonly-used bicubic degradation; 2) type II: anisotropic
Gaussian blur with nearest downsampling by a scale fac-

(a) Examples from DIV2K4D (b) Examples from RealSRSet

Figure 2. Some example images from the DIV2K4D and Real-
SRSet datasets. From top to bottom of (a), we show example im-
ages generated by the degradation types II, III and IV.
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Table 1. The PSNR and LPIPS results of different methods on the DIV2K4D dataset. The best and second best results are highlighted in
red and blue, respectively. The PSNR results are calculated on Y channel of YCbCr space.

Degradation Metric RRDB IKC ESRGAN FSSR FSSR RealSR RealSR BSRNet BSRGAN
Type -DPED -JPEG -DPED -JPEG (Ours) (Ours)

Type I PSNR 30.89 29.95 28.16 24.55 22.71 21.72 27.35 29.07 27.30
(Bicubic) LPIPS 0.254 0.263 0.115 0.240 0.364 0.312 0.213 0.331 0.236

Type II PSNR 25.66 27.35 25.56 25.81 25.33 26.29 25.36 27.76 26.26
LPIPS 0.542 0.392 0.526 0.460 0.399 0.263 0.479 0.397 0.284

Type III PSNR 26.70 26.72 26.21 25.83 23.25 22.82 26.72 27.59 26.28
LPIPS 0.517 0.504 0.436 0.392 0.376 0.379 0.360 0.419 0.284

Type IV PSNR 24.03 24.01 23.68 23.62 22.40 22.97 23.85 25.67 24.58
LPIPS 0.659 0.641 0.599 0.589 0.597 0.528 0.589 0.506 0.361

PSNR↑/LPIPS↓ 23.51/0.601 23.21/0.353 23.46/0.504 25.48/0.353 24.65/0.233
(a) LR (×4) (b) IKC [16] (c) FSSR-JPEG [13] (d) RealSR-JPEG [20] (e) BSRNet (Ours) (f) BSRGAN (Ours)

Figure 3. Results of different methods on super-resolving an LR image from the DIV2K4D dataset with scale factor 4. The testing image
is synthesized by our proposed degradation (i.e., degradation type IV).

tor of 4; 3) type III: anisotropic Gaussian blur with near-
est downsampling by a scale factor of 2 and subsequent
bicubic downsampling by another scale factor of 2 and fi-
nal JPEG compression with quality factors uniformly sam-
pled from [41, 90]; and 4) type IV: our proposed degradation
model. Note that the subdataset with degradation type II
and the downsampled images by a scale factor of 2 for sub-
dataset with degradation type III are directly borrowed from
the DIV2KRK dataset [3]. Some example images from
the two datasets are shown in Fig. 2, from which we can
see the LR images are corrupted by diverse blur and noise
degradations. We argue that a general-purpose blind super-
resolver should achieve a good overall performance on the
two datasets.

6.2. Compared Methods

We compare the proposed BSRNet and BSRGAN
with RRDB [49], IKC [16], ESRGAN [49], FSSR-
DPED [13], FSSR-JPEG [13], RealSR-DPED [20] and
RealSR-JPEG [20]. Specifically, RRDB and ESRGAN are
trained on bicubic degradation; IKC is a blind model trained
with different isotropic Gaussian kernels; FSSR-DPED and
RealSR-DPED are trained to maximize the performance on
the blurry and noisy DPED dataset; FSSR-JPEG is trained
for JPEG image super-resolution; RealSR-JPEG is a re-
cently released and unpublished model on github. Note that
since our novelty lies in the degradation model, and RRDB,
ESRGAN, FSSR-DPED, FSSR-JPEG, RealSR-DPED and
RealSR-JPEG use the same network architecture as ours,
we thus did not re-train other models for comparison.

6.3. Experiments on the DIV2K4D Dataset

The PSNR and LPIPS (learned perceptual image patch
similarity) results of different methods on the DIV2K4D
datasets are shown in Table 1. Note that LPIPS is used to
measure the perceptual quality, and a lower LPIPS value
means the super-resolved image is more perceptually simi-
lar to the ground-truth. We draw several conclusions from
Table 1. Firstly, as expected, RRDB and ESRGAN per-
form well for bicubic degradation but do not perform well
on non-bicubic degradation as they are trained with the
simplified bicubic degradation. It is worth noting that,
even trained with GAN, ESRGAN can slightly improve
the LPIPS values over RRDB on degradation types II-IV.
Secondly, FSSR-DPED, FSSR-JPEG, RealSR-DPED and
RealSR-JPEG outperform RRDB and ESRGAN in terms
of LPIPS since they consider a more practical degrada-
tion. Thirdly, for degradation type II, IKC obtains promis-
ing PSNR results while RealSR-DPED achieves the best
LPIPS result as they are trained on a similar degradation.
For degradation types III and IV, they suffer a severe per-
formance drop. Fourthly, our proposed BSRNet achieves
the best overall PSNR results, while BSRGAN yields the
best overall LPIPS results.

Fig. 3 shows the results of different methods on super-
resolving an LR image from the DIV2K4D dataset. It can
be seen that IKC and RealSR-JPEG fail to remove the noise
and to recover sharp edges. On the other hand, FSSR-JPEG
can produce sharp images but also introduces some arti-
facts. In comparison, our BSRNet and BSRGAN produce
better visual results than the other methods.
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NIQE↓/NRQM↑/PI↓ 4.47/3.15/5.65 4.19/7.08/3.55 3.12/6.81/3.15 3.89/4.39/4.75 4.52/5.79/4.36

NIQE↓/NRQM↑/PI↓ 5.85/4.66/5.59 4.16/7.98/3.09 4.64/6.56/4.04 6.95/4.32/6.31 5.07/7.44/3.82

NIQE↓/NRQM↑/PI↓ 7.10/3.92/6.59 5.31/6.26/4.52 6.39/6.83/4.78 4.45/7.14/3.65 5.83/5.99/4.92
(a) LR (×4) (b) ESRGAN [49] (c) FSSR-JPEG [13] (d) RealSR-DPED [20] (e) RealSR-JPEG [20] (f) BSRGAN (Ours)

Figure 4. Results of different methods on super-resolving real images from RealSRSet with scale factor 4. The LR images from top to
bottom in each row are “Building”, “Chip”, and “Oldphoto2”, respectively. Please zoom in for better view.

6.4. Experiments on the RealSRSet Dataset

Since the ground-truth for the RealSRSet dataset is not
available, we adopt the non-reference image quality assess-
ment (IQA) metrics including NIQE [38], NRQM [32] and
PI [4] for quantitative evaluation. As one can see from Ta-
ble 2, BSRGAN fails to show promising results. Yet, as
shown in Fig. 4, BSRNet produces much better visual re-
sults than the other methods. For example, BSRGAN can
remove the unknown processed camera sensor noise for
“Building” and unknown complex noise for “Oldphoto2”,
while also producing sharp edges and fine details. In con-
trast, FSSR-JPEG, RealSR-DPED and RealSR-JPEG pro-
duce some high-frequency artifacts but have better quanti-
tative results than BSRNet. Such inconsistencies indicate
that these no-reference IQA metrics do not always match
perceptual visual quality [30] and the IQA metric could be
updated with new SISR methods [15]. We further argue that
the IQA metric for SISR should also be updated with new
image degradation types, which we leave for future work.
We note that our BSRGAN tends to produce ‘bubble’ arti-
facts in texture region, which may be solved by new loss
function or more training data with diverse textures.

7. Conclusions
In this paper, we have designed a new degradation model

to train a deep blind super-resolution model. Specifically,

Table 2. The no-reference NIQE [38], NRQM [32] and PI [4] re-
sults of different methods on the RealSRSet dataset. The best and
second best results are highlighted in red and blue, respectively.
Note that all the methods use the same network architecture.

Metric ESRGAN FSSR FSSR RealSR RealSR BSRGAN
-DPED -JPEG -DPED -JPEG (Ours)

NIQE↓ 4.95 4.86 4.04 4.58 3.99 5.60
NRQM↑ 6.02 6.28 6.88 6.59 6.23 6.17

PI↓ 4.47 4.29 3.58 3.99 4.29 4.72

by making each of the degradation factors, i.e. blur, down-
sampling and noise, more intricate and practical, and also
by introducing a random shuffle strategy, the new degrada-
tion model can cover a wide range of degradations found
in real-world scenarios. Based on the synthetic data gen-
erated by the new degradation model, we have trained a
deep blind model for general image super-resolution. Ex-
periments on synthetic and real image datasets have shown
that the deep blind model performs favorably on images cor-
rupted by diverse degradations. We believe that existing
deep super-resolution networks can benefit from our new
degradation model to enhance their usefulness in practice.
As a result, this work provides a way towards solving blind
super-resolution for real applications.
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