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Abstract

The ability to capture inter-frame dynamics has been
critical to the development of video salient object detec-
tion (VSOD). While many works have achieved great suc-
cess in this field, a deeper insight into its dynamic na-
ture should be developed. In this work, we aim to an-
swer the following questions: How can a model adjust it-
self to dynamic variations as well as perceive fine differ-
ences in the real-world environment; How are the tem-
poral dynamics well introduced into spatial information
over time? To this end, we propose a dynamic context-
sensitive filtering network (DCFNet) equipped with a dy-
namic context-sensitive filtering module (DCFM) and an
effective bidirectional dynamic fusion strategy. The pro-
posed DCFM sheds new light on dynamic filter generation
by extracting location-related affinities between consecutive
frames. Our bidirectional dynamic fusion strategy encour-
ages the interaction of spatial and temporal information in
a dynamic manner. Experimental results demonstrate that
our proposed method can achieve state-of-the-art perfor-
mance on most VSOD datasets while ensuring a real-time
speed of 28 fps. The source code is publicly available at
https://github.com/OIPLab-DUT/DCFNet.

1. Introduction
Videos as one of the most engaging mediums strike a

deep connection with humans. As a fundamental task in
video processing, video salient object detection (VSOD)
aims to explore this connection and segment most visually

*Equal Contributions
†Corresponding Author

Figure 1. Architecture comparison of our dynamic filtering based
method (d) with 3D Convolution (a), Optical Flow (b) and ConvL-
STM (c) based methods.

distinctive regions in videos. This task has drawn broad at-
tention due to a wide range of applications in video object
segmentation [19, 33, 48], visual tracking [52], video cap-
tioning [36], video compression [17, 14] and medical anal-
ysis [18, 22]. Compared with still-image based SOD tasks,
VSOD does not only suffer from processing a huge amount
of data but also is directly affected by temporal dynamics.
The substantial differences make VSOD more challenging
than still-image based SOD task.

Most existing VSOD methods, which can be classi-
fied into 3D convolution based [24, 25], ConvLSTM based
[12, 44] and optical flow based [28, 43] methods as shown
in Figure 1, employ fixed parameter layers during infer-
ence. Given that our world is constantly changing, per-
forming convolution with dynamic parameters conditioned
on inputs can better adapt to dynamic real-world environ-
ments [3, 34]. However, directly applying the dynamic fil-
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tering mechanism to the VSOD task may fail to comprehen-
sively utilize inter-frame contextual information. Therefore,
this may impair these methods to achieve high accuracy for
saliency prediction.

Moreover, when any events that happen in the real world
are condensed into seconds, the pixels in different frames
can be temporally inconsistent over time. Such time tak-
ing the form of objects moving between consecutive frames
makes VSOD very challenging. For instance, both moving
foreground and background objects in a video clip enable
some representative VSOD methods to be less effective, as
illustrated in Figure 2. Given that spatial and temporal do-
mains are entangled in video, sufficient spatiotemporal fu-
sion is the cornerstone of VSOD. It further extends how the
temporal dynamics are incorporated into spatial information
over time.

In this paper, we strive to confront challenges towards
accurate VSOD. The primary challenge towards this goal is
to design a model capable of not only adapting to dynamic
changes but also distinguishing fine differences in the real-
world environment. The second challenge is to dynamically
formulate the cross-domain complementarity, adaptively al-
lowing more effective fusion. The key aspect in the success
of our method is in its ability to better dynamically adjust it-
self to our constantly-changing world. Concretely, our con-
tributions are fourfold:

• We propose a dynamic context-sensitive filtering mod-
ule (DCFM). DCFM can estimate the location-related
affinity weights to dynamically generate context-
sensitive convolution kernels, thus promoting the
model’s adaptability to constantly changing scenes.

• We introduce a bidirectional dynamic fusion strategy
to encourage the bidirectional interaction between spa-
tial and temporal domains. As a result, the proposed
strategy helps our network combine cross-domain fea-
tures and ensures high stability for saliency detection
in the challenging scenes.

• Furthermore, we conduct extensive experiments on 5
widely-used datasets and demonstrate that our method
outperforms 12 state-of-the-art VSOD approaches in
terms of 3 evaluation metrics. Especially, our ap-
proach reduces the MAE metric by 34.8% and 27.3%
on SegV2 [26] and DAVIS [39] respectively, which
are dominated by fast and moderate moving objects
respectively, showing the adaptability of our model in
different video scenarios.

• The proposed DCFM can be extended to improve the
existing still-image SOD based models. Experiments
demonstrate that compared with the original models,
the new ones embedded with the DCFM achieve better
performance on all the evaluation metrics.

(a) RGB (b) GT (c) Ours (d) MGA (e) RCR (f) PCSA

Figure 2. Sample prediction results of our methods compared to
MGA [28], RCRNet [57] and PCSA [13]. Column ’RGB’ shows
raw images of a consecutive video sequence from DAVIS dataset.
Column ’GT’, ’Ours’, ’MGA’, ’RCR’ and ’PCSA’ denote ground
truth, corresponding predictions from our methods, MGA, RCR-
Net and PCSA respectively.

2. Related Work

Video Salient Object Detection. Salient object detec-
tion (SOD) in color images [7, 62, 54], RGB-D images
[4, 20, 21, 40], light-field images [30, 59, 60], and videos,
have always been an active field of research. In this pa-
per, we will mainly study the video-based SOD task. Exist-
ing video salient object detection methods can be generally
classified into two categories: (1) traditional methods; (2)
deep learning based methods. Traditional methods mainly
rely on hand-crafted features and prior knowledge, such as
color-contrast, background prior and morphology cues. Esa
Rahtu et al. [42] combine a statistical framework and local
feature contrast for reasoning saliency maps. Based on the
superpixel representation of video frames, Liu et al. [32]
extract motion and color histograms at both superpixel and
frame level to generate predictions. Later, Xi et al. [56]
compute the appearance and motion saliency maps using
spatiotemporal background priors. Although traditional ap-
proaches are efficient for simple VSOD tasks, they may suf-
fer from issues including sensitivity to complex scenes and
limited capability for discriminative information.

Recently, deep learning based methods have shown
promising prospects in VSOD. Gu et al. [13] design a pyra-
mid constrained self-attention module for capturing tempo-
ral information directly. Yan et al. [57] extract spatiotempo-
ral coherence by introducing a refinement network equipped
with a non-locally recurrent module and propose a pseudo-
label generator for auto labeling datasets. Fan et al. [12]
present a baseline model with ConvLSTM and propose a
densely annotated VSOD dataset. All these methods either
adopt 3D convolution or ConvLSTM to model temporal co-
herence. Besides, to model motion cues explicitly, optical
flow based methods are also proposed. Li et al. [28] pro-
pose a two-stream architecture to combine the appearance
and optical flow information. Li et al. [27] design a flow
guided recurrent encoder for enhancing temporal coherence
by simultaneously utilizing an optical flow network and a
feature extractor with ConvLSTM.
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Figure 3. Overall architecture of our proposed DCFNet. D0 to D4 stand for feature maps with different spatial resolutions.

Dynamic Filtering Mechanism. Originally introduced by
Brabandere et al. [3], the dynamic filtering mechanism pro-
vides adjustable convolution kernel parameters conditioned
on different inputs, thus providing a powerful yet flexible
way for feature utilization. Recently, several methods have
explored dynamic filters in different fields. Wu et al. [53]
propose a dynamic filtering strategy with large sampling
field, enabling dynamic kernels to learn from diverse feature
regions for image based tasks. He et al. [15] strive to adap-
tively capture multi-scale dynamic contents for predicting
pixel-level semantic labels. In the field of RGB-D SOD,
Pang et al. [37] integrate features of different modalities,
and use their mixed features to generate dynamic filters.
While the dynamic filtering mechanism has been adopted
in video based tasks, such as human action recognition [10]
and video deblurring [61], the significance of the dynamic
filtering mechanism in video salient object detection has
not been fully studied. Considering the huge amount of
spatiotemporal data brought by the additional time dimen-
sion, simply applying the dynamic filtering mechanism to
the video-based SOD task inevitably leads to inaccurate
saliency predictions. Therefore, a suitable design tailored
for the VSOD task is putting forward.

3. The Proposed Method

3.1. Architecture Overview

We first describe the overall architecture of the DCFNet
shown in Figure 3. DCFNet follows the encoder-decoder
architecture. It takes a video clip consisting of three consec-
utive frames It−1, It, and It+1 as input, generating dense
saliency prediction for It. In terms of the encoder, we uti-
lize a ResNet-101 [16] as our backbone network for feature
extraction. It generates four feature maps with different spa-
tial resolution and channel number. Inspired by [5], last two
layers are discarded to preserve spatial structure, then re-
placed with an atrous spatial pyramid pooling (ASPP) layer
for extracting multi-scale contextual information. Outputs

of first three blocks, denoted B t
1, B t

2, B t
3, and output of

ASPP B t
4 are served as inputs to the decoder.

Figure 4 shows the structure of the decoder. It first con-
structs an interleaved feature fusion layer, in which for each
B t
i , other three feature maps are resized to its spatial res-

olution and fused using point-wise addition to produce an
enriched feature representation B̃ t

i . After feature fusion,
decoder is arranged into four stages. The input of each
stage consists of two categories: spatial features from the
feature fusion layer and temporal features from adjacent
frames. Spatial and temporal features are progressively ag-
gregated into spatiotemporal features by the decoder. It per-
forms spatiotemporal fusion by leveraging DCFMs, and fi-
nally generates saliency prediction D4 at stage four.

3.2. Dynamic Context-sensitive Filtering Module

Constant changes in the real world make fixed parame-
ter networks less adaptive to dynamic video scenarios. A
straightforward solution to this issue is to directly intro-
duce the dynamic filtering mechanism into network design
[3, 35]. However, direct application just simply stack sev-
eral convolution layers to generate dynamic convolution
kernels. This may prevent them from fully extracting con-
textual information of consecutive frames, due to limited
size of receptive fields. In other words, the generated ker-
nels cannot provide sufficient guidance for achieving high
prediction accuracy. To solve this issue, we propose a dy-
namic context-sensitive filtering module (DCFM). DCFM
estimates the location-related affinity weights by introduc-
ing matrix multiplication into the kernels’ generation pro-
cess. Therefore, dynamic convolution kernels can extract
rich contextual features that are not restricted by the re-
ceptive fields, providing comprehensive guidance for finer
saliency prediction.

Specifically, we arrange three context-sensitive filter-
generating networks in a pyramid structure, generating
three dynamic convolution kernels, then perform dilation
convolution with different dilation rates respectively. Fi-
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Figure 4. Detailed architecture of proposed decoder. D0 to D4 have the same meaning as in Figure 3.

Figure 5. Detailed structure of the dynamic context-sensitive fil-
tering module.

nally, the global attention mechanism is applied to combine
three branches’ outputs.

DCFM takes two feature maps F t−1, F t as input. Each
filter-generating network then generates a dynamic kernel
K̃t
i , where the subscript i ∈ {1, 2, 3} is added to distinguish

between different kernels. First, the network generates three
feature maps as shown below

Θt
i = Conv1×1 (F t−1),

Φti = Conv1×1 (F t),

Ωti = Conv1×1 (F t),

(1)

where Conv1×1 denotes 1× 1 convolution that reduce fea-
ture map’s dimension to RH×W×C

2 . It is noteworthy that
three convolution operations do not share parameters. Af-
ter that, all three feature maps are reshaped to RHW×C

2 ,
denoted as Θ̃t

i, Φ̃ti and Ω̃ti respectively. Three maps then
go through procedures expressed as below to generate the
dynamic kernel K̃t

i

P ti = Softmax ((Θ̃t
i × Φ̃ti)

T ),

P̃ ti = P ti × Ω̃ti + Θ̃t
i,

Kt
i = AvgPooling(Conv

′

1×1 (P̃ ti )),

(2)

where Softmax denotes softmax operation, Conv
′

1×1 de-
notes 1 × 1 convolution which transforms RHW× c

2 to
RHW× c2

4 , and AvgPooling means average pooling layer

with kernel size 3 × 3. ’×’ denotes matrix multiplication,
and the superscript T means matrix transpose. The affin-
ity weight Kt

i contains location-correlated contextual infor-
mation by adopting matrix multiplication, and finally it is
reshaped to K̃t

i ∈ R3×3× c
2×

c
2 to be used as the dynamic

convolution kernel. Instead of stacking several convolution
layers, our kernel generation network condenses more con-
textual information into context-sensitive kernels K̃t. Then
the feature map F t is convolved with generated context-
sensitive filters with dilation rate d ∈ {1, 3, 5} to obtain
scale-specific feature representation Cti , which can be de-
fined as

Cti = DConv(Conv(F t); K̃t, d), (3)

where DConv denotes the dilation convolution with dila-
tion rate d. While above operations manage to capture inter-
frame correlation, dynamic convolution is only performed
at a single scale. As a result, it fails to exploit features at
multiple scales. To break this constraint, we arrange three
Dynamic Filtering Units (DFUs) in parallel and assign dif-
ferent d to them. Each DFU can capture features at a spe-
cific scale, providing three feature representations Ct1, Ct2
and Ct3 with dilation rate 1, 3, 5 respectively, noting that
here we add subscripts to distinguish three DFUs’ outputs.
When it comes to feature integration, most existing methods
treat multi-scale features without distinction, which either
perform element-wise summation or simple concatenation.
Inspired by the visual attention mechanism, we perform in-
tegration through an attention-guided weighted summation:

wti = Fc1 (AvgPooling(Cti )),

w̃ti =
ew

t
i∑3

j=1 e
wt

j

,
(4)

where AvgPooling shrinks the input feature map from
Rh×w×c to R1×1×c, and Fc1 condenses it to a scalar value
wi. It is then normalized using softmax function to produce
w

′

i. The final output can be calculated by

Ot =

3∑
j=1

w̃tj ∗ C t
j , (5)
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Table 1. Quantitative comparisons of Sλ, Fβ and MAE on five widely-used VSOD datasets. The top four methods above the horizontal line
are traditional methods (marked by superscript †), and the following methods are neural network based. The top three results are marked
in boldface, red, green fonts respectively. In addition, ** denotes this model is trained on this dataset, thus cannot be used for evaluation.

DAVIS SegV2 ViSal VOS DAVSOD

Method Years Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓

MSTM† CVPR’16 0.583 0.429 0.165 0.643 0.526 0.114 0.749 0.673 0.095 0.657 0.567 0.144 0.532 0.344 0.211
STBP† TIP’16 0.677 0.544 0.096 0.735 0.640 0.061 0.629 0.622 0.163 0.576 0.526 0.163 0.568 0.410 0.160
SGSP† TCSVT’16 0.692 0.655 0.138 0.681 0.673 0.124 0.706 0.677 0.165 0.557 0.426 0.236 0.577 0.426 0.236
SCOM† TIP’18 0.832 0.783 0.048 0.815 0.764 0.030 0.762 0.831 0.122 0.712 0.690 0.162 0.599 0.464 0.220

SCNN TCSVT’18 0.783 0.714 0.064 ** ** ** 0.847 0.831 0.071 0.704 0.609 0.109 0.674 0.532 0.128
DLVS TIP’18 0.794 0.708 0.061 ** ** ** 0.881 0.852 0.048 0.760 0.675 0.099 0.657 0.521 0.129
FGRN CVPR’18 0.838 0.783 0.043 ** ** ** 0.861 0.848 0.045 0.715 0.669 0.097 0.693 0.573 0.098
PDB CVPR’18 0.882 0.855 0.028 0.864 0.800 0.024 0.907 0.888 0.032 0.818 0.742 0.078 0.698 0.572 0.116
RCR ICCV’19 0.886 0.848 0.027 0.842 0.781 0.035 0.922 0.906 0.026 0.873 0.833 0.051 0.741 0.653 0.087
SSAV CVPR’19 0.893 0.861 0.028 0.851 0.801 0.023 0.943 0.939 0.020 0.819 0.742 0.073 0.724 0.603 0.092
MGA ICCV’19 0.912 0.892 0.022 0.865 0.821 0.030 0.941 0.940 0.016 0.792 0.735 0.075 0.751 0.656 0.081
PCSA AAAI’20 0.902 0.880 0.022 0.865 0.810 0.025 0.946 0.940 0.017 0.827 0.747 0.065 0.741 0.655 0.086
DCFNet - 0.914 0.900 0.016 0.883 0.839 0.015 0.952 0.953 0.010 0.846 0.791 0.060 0.741 0.660 0.074

where Ot represents DCFM’s final output.

3.3. Bidirectional Dynamic Fusion Strategy

Given that spatial and temporal dimensions are deeply
connected in video scenes, exploring and modelling these
cross-domain correlations is a critical and hard task for
VSOD. Previous methods like 3D convolution ambiguously
utilize high-dimensional convolution kernels, incorporat-
ing spatial and temporal features indiscriminately. This
inevitably introduces negative features into saliency infer-
ence. To address this problem, we develop an insight into
details of temporal and spatial characteristics by explicitly
constructing spatiotemporal connections between features
of input frames, and propose a bidirectional dynamic fusion
strategy for better spatiotemporal feature fusion.

Given both spatial and temporal feature inputs, we strive
to explicitly model the cross-domain interaction at multi-
ple stages, and jointly fuse them in a progressive way. In-
stead of ambiguously fusing spatiotemporal features, we re-
arrange feature interactions in a progressive refinement ar-
chitecture. We divide the whole process into four stages,
using Fusion modules (FMs) in Figure 4 for feature fusion.

For stage i, its inputs consist of both spatial and temporal
parts. Spatial inputs come from four enhanced spatial fea-
ture maps B̃ t

1, B̃ t
2, B̃ t

3 and B̃ t
4, as mentioned in the previous

section. Temporal inputs D t−1
i and D t+1

i are aggregated
inside FMs. The outputs of all previous stages’ FMs to-
gether with spatial and temporal inputs of the current stage
are fused hierarchically, generating Dt

i at the end of the ith
stage, and Dt

4 is used as the final prediction result. It is
worth noting that B̃ t

4 is an alias of D t
0.

First, to comprehensively utilize the temporal coher-
ence in both forward and backward directions, we arrange
DCFMs in a bidirectional structure. In each FM, two
DCFMs in parallel process the input of the previous and
next frames separately, generating outputs Ot+ and Ot−. It

is worth noting that two DCFMs do not share parameters,
i.e., each direction’s DCFM maintains its own set of param-
eters, depicted in Figure 4 using two separate blocks. The
output of two DCFMs can be combined using

Otfull = Conv(Cat(Ot+, O
t
−)), (6)

where Conv denotes the convolution layer with kernel size
3, and Otfull stands for each pair of DCFMs’ output.

Second, to fuse Dt
i and temporal features Dt−1

i , Dt+1
i

inside FM, a common approach is to combine the feature
maps in a relatively undifferentiated manner (e.g., direct
point-wise summation). However, it may yield severe fu-
sion ambiguity in the scenarios of the feature redundancy
and noises among different domains. Instead of fusing spa-
tiotemporal features indiscriminately, a finer approach is
supposed to encourage the network to automatically bal-
ance cross-domain feature fusion proportion. Therefore, we
formulate FM as

D̃t
i = Otfull,

F ti = αi ∗ D̃t
i + (1− αi) ∗Dt

i ,
(7)

The scalar value αi is generated by a light-weight gate
weight generation network (GWG) in Figure 4. GWG aims
to generate a context-related scalar value α using

αi = Fc2(AvgPooling(D̃t
i)), (8)

where Fc2 has the same meaning as Fc1. Average Pooling
shrinks the feature map down to a vector, then full connec-
tion layer reduces it to the scalar value αi. GWG dynam-
ically determines the fusing proportion, hence it enables
model to be attentive on the desired features.

After F ti is generated, it absorbs both high-resolution
spatial features B̃ t

i−1 and all outputs of the pervious
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(a) RGB (b) GT (c) Ours (d) PCSA (e) RCR (f) SSAV (g) FGRN (h) PDB (i) MGA (j) SCOM† (k) SGSP†

Figure 6. Qualitative comparisons of DCFNet with eight previous VSOD methods.

stages. We then merge them using element-wise addi-
tion to produce Dt

i . The feature maps of lower resolu-
tion are convolved and upsampled using bilinear interpo-
lation. Through this bidirectional dynamic fusion strategy,
progressive interaction of spatial and temporal domains al-
lows more effective fusion.

4. Experiments
4.1. Experimental Setup

Datasets and Evaluation Metrics To evaluate the per-
formance of our method, we conduct experiments on five
widely-used VSOD datasets, i.e., DAVIS [39], VOS [29],
SegV2 [26], ViSal [49] and DAVSOD [12]. For fair com-
parisons, we split the above datasets as the same splitting
way in [12, 13, 28], and evaluate our proposed method on
the test datasets of all the five datasets. We adopt three
widely-used metrics to evaluate our model performance,
i.e., max F-measure (Fβ) [1], mean absolute error (MAE )
[2] and structure-measure (Sλ) [11].

4.2. Implementation Details

Our method is implemented on the PyTorch toolbox [38]
with a Nvidia GTX 2080Ti GPU. During training, we adopt
the same loss with [41], which includes the binary cross
entropy loss Lbce [8], IOU Loss LIoU [58] and SSIM Loss
Lssim [51] to train our DCFNet. And the final loss L can
be expressed as L = Lbce + LIoU + Lssim.

First, we initialize our backbone with a ResNet-101 [16]
pre-trained on ImageNet [9]. Then, we remove the temporal
modules, i.e., DCFMs and GWGs in DCFNet and pre-train
them on the same datasets used by PCSA [13] (include the
training dataset of VOS [29]). We adopt Adam [23] as the
optimizer with the initial learning rate of 1e-5 and batch
sizes is set to 10 in the pre-training phase. The learning
rate decays 0.1 times every 30 epochs. We resize the input
frames to 448× 448 and adopt the same data augmentation

Table 2. Quantitative comparisons with different design options of
DCFM. ’1x’, ’3x’ and ’5x’ denote dynamic filtering module with
dilation rate 1, 3, 5 respectively. GA represents global attention
and ’st’ stands for ’stack’. DCFM-original refers to our proposed
DCFNet. Top-1 results are marked in boldface.

Design Options DAVIS ViSal

Methods 1x 3x 5x GA st Fβ ↑ MAE ↓ Fβ ↑ MAE ↓

DCFNet-d1
√ √

0.893 0.017 0.948 0.012
DCFNet-d3

√ √
0.885 0.018 0.947 0.011

DCFNet-d5
√ √

0.888 0.017 0.950 0.012
DCFNet-noGA

√ √ √
0.895 0.016 0.951 0.011

DCFNet-st
√ √ √ √ √

0.889 0.017 0.949 0.011
Ours

√ √ √ √
0.900 0.016 0.952 0.010

strategies in [57]. Next, we fine-tune the whole DCFNet
with the video datasets utilized in pre-training phase. The
number of input frames is set to 4 due to the limitation of
GPU memory. The learning rate of backbone and temporal
modules are set to 1e-6 and 1e-5, respectively. The pro-
posed method takes approximately 0.036 seconds to gen-
erate a saliency map for a single frame, which reaches a
real-time speed of 28 fps.

4.3. Comparisons with State-of-the-arts

As shown in Table 1, we compare our methods with 12
video salient object detection methods including 4 tradi-
tional VSOD methods (remarked with † ): MSTM† [46],
STBP† [56], SGS P† [31], SCOM† [6] and 8 state-of-the-
art CNNs based VSOD methods: SCNN [45], DLVS [50],
FGRN [27], PDB [44], RCR [57], SSAV [12], MGA [28],
PCSA [13]. To guarantee fair comparisons, we utilize the
widely-used evaluation toolbox provided by [12].
Quantitative Evaluation. Table 1 shows the quantitative
comparisons in terms of three metrics including Fβ , MAE ,
Sλ on five widely-used VSOD datasets. It can be seen that
our method significantly outperforms both traditional and
CNNs based approaches across four datasets, and wins the
second place on the VOS dataset, and the second place in
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Table 3. Quantitative comparisons of DCFNet with different spa-
tiotemporal fusion strategy. ’uni’ denotes model with unidirec-
tional DCFMs, ’S’ denotes DCFNet with the absence of temporal
information input, and ’T’ means DCFNet without spatial input
except Dt

0. Top-1 results are marked in boldface.

DAVIS SegV2

Methods Sλ ↑ Fβ ↑ MAE ↓ Sλ ↑ Fβ ↑ MAE ↓

DCFNet-uni 0.908 0.895 0.017 0.873 0.825 0.017
DCFNet-S 0.903 0.887 0.018 0.882 0.831 0.018
DCFNet-T 0.889 0.867 0.022 0.852 0.798 0.026

DCFNet-add 0.900 0.881 0.018 0.868 0.811 0.019
DCFNet-original 0.914 0.900 0.016 0.883 0.839 0.015

Sλ on DAVSOD. In terms of the VOS dataset, RCR (the
method for the best performance) utilizes additional pseudo
label generation network to significantly enlarge the amount
of VOS training dataset. By contrast, our method does not
rely on any assistance of extra dataset augmentation strat-
egy. In our opinion, since all the existing VSOD approaches
are not trained with any subsets of ViSal, performance on it
can be used to reflect the generalization of VSOD models.
As can be seen in Table 1, on the ViSal dataset, our method
outperforms the second-best model MGA [28] by approxi-
mately 37.5% in terms of MAE.
Qualitative Evaluation. Figure 6 shows visual compar-
isons to demonstrate the superiority of our proposed ap-
proach in an intuitive way. The visual results of the Bird se-
quence (Row 1-2) demonstrate that our method can segment
salient objects with more accurate details. Compared with
other methods negatively affected by distraction of moving
crowd in the background, our method discriminates salient
objects from clutter background and achieves more accurate
predictions in the dance-twirl sequence (Row 3-4). More-
over, when facing objects that have both dynamic changes
and subtle difference, our method is capable of generating
accurate saliency predictions while maintaining fine details,
as shown in the soapbox sequence (Row 5-6). More visual-
ized results have been provided in supplementary materials.

4.4. Ablation Studies

In this section, we conduct extensive experiments to il-
lustrate the effectiveness of each component of our method.
Effect of DCFM. To prove the effect of the dynamic
context-sensitive filtering module (DCFM), in Figure 7, we
visualize the feature maps of three typical video scenes be-
fore and after being processed by the DCFM. It can be seen
from Column ’Before’ and ’After’ that the salient regions
are emphasized after adopting DCFM, significantly improv-
ing detection accuracy.

In order to offer deeper insights into the proposed
DCFM, we also perform four quantitative experiments
to validate the effectiveness of each key components of
DCFM. First, to prove the efficiency of generating location-
related affinity weights, i.e., performing matrix multiplica-

(a) RGB (b) Before (c) After (d) GT

Figure 7. Visualization for feature maps of several samples be-
fore and after adopting DCFM. Row 1: slow moving object in a
monotonous background; Row 2: fast moving object in a com-
plex background; Row 3: fast moving object from the near to the
distant with rapid changes in scale.

Figure 8. Performance comparison of DCFNet using DCFM at dif-
ferent stages.

tion between consecutive frames, we replace each filter gen-
eration network with an ordinary multiple-layer convolution
network (i.e., two input feature maps are added element-
wisely, then go through three convolution layers to produce
dynamic kernels). We denote this method as ’DCFNet-st’
in Table 2. Obviously, compared with our proposed model,
’DCFNet-st’ degrades performance to some extent, demon-
strating the advantage of our DCFM module in sufficiently
utilizing inter-frame contextual information.

Second, to validate the global attention module of
DCFM in fusing dynamic filtering results at different scales,
we replace the global attention module with a simple
element-wise addition (denoted as ‘DCFNet-noGA’). Re-
sults in Table 2 intuitively verifies the GA module’s effect.

In addition, to further prove the effectiveness of the
DCFM, we explore different design options for dilation
rates. As shown in Table 2, our DCFM with multi-
ple dilation rates (denoted as ‘DCFNet-original’) achieves
significant improvements compared with other three dy-
namic filtering modules with single dilation rates (1, 3, 5
respectively, denoted as ‘DCFNet-d1’, ‘DCFNet-d3’ and
‘DCFNet-d5’). Specifically, the MAE represents a 17.0%,
9.1% and 17.0% improvement respectively on ViSal.

Furthermore, we run ablation experiments to explore the
optimal number of stages applying DCFM. We elaborately
attach DCFM step by step to find the optimal setting. In
Figure 8, the best Sλ and MAE are obtained synchronously
when the number of stages containing DCFM is set to 4.
Effect of Bidirectional Dynamic Fusion Strategy. To
highlight the importance of the bidirectional dynamic fu-
sion strategy, first we validate the necessary of applying
DCFM in a bidirectional way. We can see from Table 3
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that compared with applying DCFM backward in a unidi-
rectional way (denoted as ‘DCFNet-uni’), the bidirectional
DCFM (denoted as ’DCFNet-original’) improves the per-
formance by 5.9% and 11.8% on MAE towards DAVIS
dataset and SegV2 dataset, respectively. Second, we con-
duct ablations with the absence of the temporal branch or
the spatial branch (denoted as ‘DCFNet-S’ and ‘DCFNet-
T’, respectively). The comparison results in Table 3 ver-
ify our claim, even the strategy that combines temporal
and spatial information with simple element-wise addition
shows impressive performance gains compared with that of
‘DCFNet-S’ and ‘DCFNet-T’. More importantly, the su-
perior performance of applying our bidirectional dynamic
fusion strategy (denoted as ‘DCFNet-original’) powerfully
demonstrates the effectiveness of explicit construction of
spatiotemporal connections between features.

4.5. Application of DCFM

In order to further verify the effect and generalization
of the proposed DCFM, we apply the DCFM in two top-
ranking RGB models (CPD [55], GCPA [7]). We attach
the DCFM to the first partial decoder of CPD and the ag-
gregation module of GCPA, respectively. This enables the
advanced RGB saliency models to capture temporal infor-
mation and show impressive performance gains towards the
VSOD task by simply appending the DCFM without the
need to modify the original models.

For the training process, to prevent the dataset bias from
affecting the fairness of comparison, we first fine-tune the
original CPD and GCPA models with the same training
settings adopted in our method’s pre-training phase (de-
noted as ‘+F’ as well as the orange bars in Figure 9 ). We
then extend the models to be applicable for the VSOD task
by training following our fine-tune settings (denoted as ’
+DCFM’ as well as gray bars in Figure 9). The quanti-
tative comparisons in Figure 9 demonstrate that compared
with two fine-tuned models (’CPD+F’ and ’GCPA+F’), the
performance of CPD embedded with DCFMs has been im-
proved by 25.7% and 2.8% on MAE and Fβ towards DAVIS
dataset, respectively. Besides, some visual comparisons of
challenging examples are illustrated in Figure 10. After ap-
plying DCFM, CPD generates more precise and consistent
saliency predictions, especially in the case of complex back-
grounds (Row 3 of Figure 10).

4.6. Limitations

While our model achieves robustness in many challeng-
ing scenes, some failure cases should not be ignored as they
can help reveal opportunities for improvement. In complex
multi-objects scenes, e.g., a group of overlapped people, or
one object occluded by another, our model may generate
incomplete saliency predictions. Multiple objects or occlu-
sions often bring difficulties to VSOD, in part because the
single annotation in most VSOD datasets may fall short of

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

F-measure

CPD CPD+F CPD+DCFM

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

F-measure

GCPA GCPA+F GCPA+DCFM

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

S-measure

CPD CPD+F CPD+DCFM

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

S-measure

GCPA GCPA+F GCPA+DCFM

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

MAE

CPD CPD+F CPD+DCFM

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

MAE

GCPA GCPA+F GCPA+DCFM

Figure 9. Application of the proposed DCFM in top-ranking RGB
saliency models. Results are evaluated on the DAVIS dataset.

(a) RGB (b) CPD (c) CPD+F (d) CPD+D (e) GT

Figure 10. Visualization of application of the proposed DCFM
in top-ranking RGB Saliency Models. ’CPD+D’ stands for
‘CPD+DCFM’.

describing the extreme situations. This might be improved
by providing a dataset enriched with more diverse attribute
annotations covering different object categories, scene cat-
egories, and challenging factors [47].

5. Conclusion
In this paper, we strive to face the challenge of accu-

rate video salient object detection using dynamic filtering
mechanism. We propose a dynamic context-sensitive fil-
tering module (DCFM), which generates context-sensitive
convolution kernels through estimating the location-related
affinity weights, allowing for more adaptability to our
constantly-changing world. To model interactions between
entangled spatial and temporal information, we further pro-
pose a bidirectional dynamic fusion strategy to aggregate
spatiotemporal information more sufficiently. Experimental
results demonstrate that our proposed method can achieve
state-of-the-art performance on most VSOD datasets while
ensuring a real-time speed of 28 fps.
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