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Abstract

We present the novel Efficient Line Segment Detector and
Descriptor (ELSD) to simultaneously detect line segments
and extract their descriptors in an image. Unlike the tradi-
tional pipelines that conduct detection and description sep-
arately, ELSD utilizes a shared feature extractor for both
detection and description, to provide the essential line fea-
tures to the higher-level tasks like SLAM and image match-
ing in real time. First, we design a one-stage compact
model, and propose to use the mid-point, angle and length
as the minimal representation of line segment, which also
guarantees the center-symmetry. The non-centerness sup-
pression is proposed to filter out the fragmented line seg-
ments caused by lines’ intersections. The fine offset predic-
tion is designed to refine the mid-point localization. Sec-
ond, the line descriptor branch is integrated with the detec-
tor branch, and the two branches are jointly trained in an
end-to-end manner. In the experiments, the proposed ELSD
achieves the state-of-the-art performance on the Wireframe
dataset and YorkUrban dataset, in both accuracy and effi-
ciency. The line description ability of ELSD also outper-
forms the previous works on the line matching task.

1. Introduction
Image perception for low-level visual patterns is an es-

sential issue for many computer vision tasks such as SLAM,
Structure-from-Motion (SfM), and image matching. Local
point features [4, 21, 24] are widely used in these tasks,
and recently the researchers have been exploring the usage
of structural features for better geometric representation[9,
10, 13, 30, 34]. Line segments are the most widely seen
structural features in man-made environments. The reliable
extraction of line segments and the matching across frames
are important for the aforementioned tasks.

Recently, the convolutional neural networks (CNN)
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Figure 1. Inference speed (FPS) and accuracy (sAP 10) on Wire-
frame dataset.

based line segment detection models have significantly out-
performed the traditional methods. The models[33, 36, 38]
consist of two stages. They first detect junctions and then
generate line segment proposals and finally feed the em-
bedding of each line segment into a classifier. Although
these two-stage methods can achieve high performance,
their running speed cannot satisfy real-time applications.
TP-LSD[12] first realizes the compact one-stage detection
by introducing the Tri-points (a root-point and two end-
points) representation of line segment. However, TP-LSD
predicts the two end-points separately and does not leverage
the center-symmetric characteristics of the line segment.
Thus, the predicted root-point might not be the exact mid-
point of the two predicted end-points, and even the three
points might be not co-linear. Moreover, the prediction of
the root point is ambiguous especially when the lines inter-
sect with each other so that many false root-points belong-
ing to the fragmented line segments are detected. Besides,
TP-LSD does not differentiate hard and easy examples dur-
ing training. Some hard root points of line segments may
not be properly detected.

Line segment descriptor is required to represent the line
segment in a high-dimensional metric space, and the same
line in two adjacent frames should be close in this metric
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space. There exist some CNN-based line descriptors[15,
16, 27]. However, these line descriptors are designed indi-
vidually, and not yet tightly coupled with the line segment
detector. It is also time-consuming to execute detection and
description separately.

To this end, we propose ELSD that simultaneously pre-
dicts line segments and inferences line descriptors in an
end-to-end fashion. 1) We introduce the one-stage architec-
ture that utilizes the Center-Angle-Length (CAL) represen-
tation to vectorize a line segment. Our line detector consists
of two module: (i) localization module and (ii) regression
module. 2) Since the mid-points might be ambiguous for
detection when lines intersect, as shown in Figure 3b, we
introduce the line-centerness to filter the false mid-points
belonging to fragmented line segments and adopt modified
focal loss[19] to focus more on the mid-points of hard cases.
3) In the regression module, the geometric maps are pre-
dicted to provide the rotation angles and lengths. Moreover,
we refine the position of the midpoints by predicting the
fine offsets to compensate for the localization accuracy. 4)
In the line descriptor branch, we obtain the descriptor of
each predicted line segment by line pooling. The descriptor
is learned by random homography-based self-supervision.
The pipeline of ELSD is shown in Figure 2.

In summary, the main contributions are as follows:

• We present a pipeline that simultaneously detects line
segments and inferences line descriptors in an end-to-
end fashion. To the best of our knowledge, this is the
first work that unifies line detector and descriptor in
a compact neural network. The major computation in
the backbone is shared by the two tasks, and the two
task branches can be jointly training, with negligible
loss on detection performance.

• We utilize the Center-Angle-Length (CAL) representa-
tion to encode a line segment that has only four param-
eters to predict. To overcome the detection ambiguity
when lines intersect, we proposed the non-centerness
suppression mechanism to remove the mid-points of
fragmented line segments. The midpoint position is
further refined by using the offset regression so that
the line segment localization is more precise.

• Our ELSD obtains state-of-the-art performance in both
accuracy and efficiency on the Wireframe and YorkUr-
ban datasets. Moreover, the light version of our model
achieves the speed of 107.5 FPS on a single GPU
(RTX2080Ti) with comparable performance.

2. Related Works
2.1. Line Segment Detection

Deep learning-based line segment detection meth-
ods has attracted great attention due to the remarkable
performances[11, 12, 33, 38, 39]. AFM[32] presented re-

gional partition maps and attraction field maps of line seg-
ment maps, followed by a squeeze module to generate line
segments. L-CNN[38] first proposed a two-stage pipeline
for wireframe parser. It predicts junction map to generate
line proposals and utilize the LoI-pooling to gather feature
of the proposals. Then a line verification network classi-
fies proposals and removes false lines. PPGNet[36] used
a graph formulation to represent the relation between junc-
tions. HAWP[33] proposed a 4-D holistic attraction field
map for generating line proposals and refine the proposals
with junction heat maps. HT-HAWP[20] combined Hough
transform and HAWP model, obtaining excellent results in
line segment detection. As the first one-stage line segment
detector, TP-LSD[12] proposed a Tri-Points representation
to encode line segments and predicted two endpoints of
each line segment in an end-to-end manner. LETR[31] ap-
plied transformers for line segment detection from coarse-
to-fine grained. Our ELSD has a similar pipeline with TP-
LSD. We encode a line segment by CAL representation, and
can directly detect possible semantic line segments in the
image without additional classification.

2.2. Object Detection

The recent surge of some keypoint-based object detec-
tors has achieved remarkable performance. CornerNet[17]
formulated each object by a pair of corner keypoints and
grouped all the detected corner keypoints to form the fi-
nal detected bounding box, which requires more compli-
cated post-processing. CenterNet[37] models an object by
the center point of its bounding box, and uses keypoint es-
timation method to find center points and regresses to its
size. FCOS[26] treats all the pixels with an object as candi-
date position and proposed center-ness to represent the im-
portance of all the candidate positions. PolarNet[29] learns
corner pairs based on polar coordinates and avoids the large
variance of learned offsets in Cartesian coordinate. Such
keypoint-based methods have good detection capabilities
with a fast speed and brief structure. Motivated by these,
we proposed a new line segment representation and further
designed a keypoint-based line segment detector.

2.3. Line Description

Like descriptor-based keypoint matching[4, 21, 24], line
matching is also based on comparing the descriptors of the
same line segments in two frames. MSLD[28] constructs
the line descriptors by counting the mean and variance of
the gradients of pixels in the neighbor region of a line seg-
ment. LBD[35] proposes a line-band descriptor that com-
putes gradient histograms over bands with more robustness
and efficiency. Recently, some deep learning-based meth-
ods such as LLD[27], DLD[16] and WLD[15] use the con-
volution neural network to learn the line descriptors and
achieve remarkable performance.
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Figure 2. Illustration of the architecture of our proposed ELSD. It consists of three components: backbone, line detector branch and line
descriptor branch. See text for details.

3. Methods
3.1. Line Representation

Line segments have two characteristics: 1) Due to the
center-symmetry, the mid-point determines the location of
the line segment, then the geometric feature is determined
by the angle and length. 2) Since a line segment is straight,
its direction can be consistently measured from a local part
of it, which is easier to learn and requires a small recep-
tive field. Therefore, we propose the Center-Angle-Length
(CAL) representation to vectorize a line segment, which
only has four parameters: 2D coordinates, rotation angle,
and total length. In comparison, the Tri-points representa-
tion in TP-LSD[12] has six parameters to predict, which is
redundant, and the prediction results might not satisfy the
center-symmetry.

With angle θ, length ρ, and center point
[
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3.2. Overall Network Architecture

As shown in Figure 2, our proposed ELSD consists of
a backbone, a line detector branch, and a line descriptor
branch. Our backbone is a U-shape network that consists
of an encoder and two decoder blocks. The backbone takes
an image of size 3 × 512 × 512 as input and outputs the
shared feature with a size of 128 × 128 × 128. After the
backbone, the architecture splits into two parts: one for line

detector and the other for line descriptor. The line detec-
tor branch can predict line segments from an image. We
can further obtain line descriptors by feeding both shared
feature and predicted line segments into the line descrip-
tor branch. ELSD can produce line segments and further
extract fixed dimensional descriptors of the line segments
in a single forward pass. Moreover, unlike the traditional
pipeline that first detects line segments, then computes line
descriptors, ELSD shares most of the parameters between
these two tasks, which reduces the computation cost and
improves the compactness.

3.3. Line Detector Branch

Our line detector branch takes the shared feature from
the backbone as input and splits into two modules: 1) Lo-
calization module, which consists of a line-midpoint detec-
tion head and a line-centerness detection head. In Non-
Centerness-Suppression (NCS), the two heads are com-
bined to get a more accurate center detection; 2) Regression
module, which contains a geometrics regression head and
a fine offset regression head. The outputs of the regression
module are a pair of geometrics maps that consists of (ρ, θ)
and a pair of fine offset maps. Finally, the outputs of two
modules are combined together to generate the mid-points
with two symmetrical endpoints as the line segment detec-
tion results.

3.3.1 Localization Module

Similar to TP-LSD[12], we use a deformable convolution,
two a-trous convolution (dilation rate=2) and a standard
convolution layers to obtain the adaptive spatial sampling
and a large receptive field, to predict the mid-point map.
Furthermore, we leverage the line-centerness, i.e. how close
an on-line point lies to the mid-point, to distinct the mid-
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Figure 3. Illustration of Non-Centerness-Suppression (NCS). (b)
and (c) show the predicted mid-point map and centerness map,
respectively.

points of the entire lines and the fragmented lines. The line-
centerness is calculated by,

Pcenterness =

√
min(d1, d2)

max(d1, d2)
(2)

where d1, d2 are the distances from a point on the line
segment to the two end-points, respectively. Apparently,
Pcenterness equals 1 when the point is midpoint and de-
creases to 0 when the point approximates the end-points.
We use a ground-truth (GT) of line segment, whose width
is 3 pixel, to generate the GT of centerness map, using Eq.
2. The pixels out of the GT of line segment are assigned ze-
ros. Note that if two line segments intersect, only the larger
centerness value is assigned to the intersection pixel.

The line-centerness module has the same architecture as
the localization module. Denote the predicted line-midpoint
map and line-centerness map as P̂mid and P̂centerness, re-
spectively. As shown in Figure 3, we propose the Non-
Centerness Suppression (NCS) to filter false local midpoints
belonging to fragmented line segments, and obtain a more
accurate center confidence map P̂ , as given by,

P̂ = P̂mid × P̂ 0.5
centerness (3)

The effectiveness of NCS is explained as follows. The
midpoint detection is to obtain the exact positions but is
prone to false detection caused by lines intersection. As
shown in Figure 3, when a line segment is intersected with
another line, its two endpoints and the intersection point
form two shorter fragmented line segments. Although the
mid-points of these fragmented line segments are not anno-
tated as ground truths and are not expected to be detected,
the detector tends to detect them because the fragmented
line segments satisfy the definition of line segment. Differ-
ently, as visualized in Figure 3, line-centerness is not ex-
act but provides a non-local distribution along the global
line segment. The non-local distribution is more significant
to inference and contains the global structure information
of the potentially intersected lines. Namely, the midpoints
can only mark a line segment without the awareness of the

Figure 4. Illustration of Line Pooling. See text for more details.

global structure, and the line-centerness map can further en-
code the global structure information with a non-local non-
linear multi-peak 2D distribution. Therefore, the line mid-
point map and line-centerness map are fused by Eq. 3 to
suppress the false detection and get the final mid-points.
Thus the ambiguity problem met by TP-LSD is effectively
alleviated.

3.3.2 Regression Module

Our regression module consists of two heads: a fine offset
regression head and a geometrics regression head. The fine
offset regression head is used to predict the offset of the cen-
ter caused by the downsampling ratio. The refined sub-pixel
mid-point can be obtained by just add the corresponding
offset to the position of the predicted mid-point. The geo-
metrics regression head can predict angle and length with
respect to the midpoint. Both of our regression heads con-
tain two 3× 3, a 1× 1 convolutional layers, and a deconvo-
lutional layer. The deconvolutional layer is used to restore
the size of the output map to 256 × 256. We can index the
related angle θ and length ρ by the center position (xc, yc)
on the output map. Then a line segment can be obtained by
Eq. 1.

We utilize the CAL representation rather than Cartesian
coordinates representation because the angle belongs to the
geometric attributes of the line segment itself. Since the an-
gle information can be perceived from a local part of the
line segment, it is easier and more precise to predict the
angle than the coordinates. We have done experiments to
compare CAL representation and Cartesian coordinate rep-
resentation under the same settings in Section 4.3.

3.4. Line Descriptor Branch

Given a set of line segments, the purpose of the line de-
scriptor branch is to learn a fixed-length descriptor for each
line segment, which is used to distinguish different line seg-
ments according to the distance between their descriptors.
We first apply two 3× 3 stride-1 convolution on the shared
feature map from backbone. Then this intermediate feature
map is resized to 256 × 256 by bilinear interpolation. The
resulting feature map named dense descriptor map is used
in the following Line Pooling.

Line Pooling: Similar to RoIPool[6] and RoIAlign[7]
used in object detection, the Line Pooling is used to squeeze
the rotated narrow ROI to a descriptor vector. As shown in
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Figure 5. Training framework. The random homography is used
to realize self-supervised training. See text for details.

Figure 4, the RoI of a line segment is defined as a rotated
bounding box centered at the line segment, with the same
length and angle as the line segment. The width of the RoI
is a hyperparameter that depends on the desired size of the
receptive field. Then we crop a fixed-size line feature map
by sampling from the dense descriptor map using bilinear
interpolation. Assuming there exist N candidate line seg-
ments and each line feature map has the size of C×H ′×W ′,
in which C is the channel dimension of the dense descriptor
map and H ′,W ′ represent the height and width of the line
feature map respectively. We further apply a 1×W ′ stride-1
depth-wise convolution as well as a stride-S max pooling to
the line feature map. Finally, the resulting feature vector is
flattened and fed into a fully connected layer and then nor-
malized, producing the final descriptor with a fixed length
denoted as d.

Self-supervised learning: Similar to [4], we apply ran-
dom homographies on an image to produce a paired image
with different views of the same scene, assuming that pla-
nar scenes or distant scenes are common in the real envi-
ronment. The homography transformation that we used is
composed of a set of transformations such as translation,
scale, rotation, and perspective distortion, covering most of
the viewpoint change caused by camera motion. After ap-
plying random homography on the input image, we can ob-
tain the exact image-to-image transformation. So we can
label matched or unmatched line segments just by trans-
forming the endpoint of the line segment from one image
to another and checking whether the distance of two corre-
sponding endpoints is close enough.

When training from scratch, inspired by the Line Sam-
pling Module of L-CNN[38] that adopts static line sampler
and dynamic line sampler to train the classifier, we use static
line segments and dynamic line segments to train the de-
scriptors. In the training stage, the static line segments are
the annotated ground-truths, and the dynamic line segments
are those predicted by the detection branch which changed
as the model training proceeds. Because the line segment
detection are not confident at the early training stage, we
only use the detected line segments that are close enough

to ground-truths as the dynamic line segments. Note that
for training line descriptor branch, the proposed ELSD is
trained on mini-batches of image pairs. We can obtain the
ground truth correspondence of a pair of image’s static line
segments set during data preparation. The ground truth
correspondence of a pair of dynamic line segments can
be given by its closest static line segments. If the closest
static line segments of a pair of dynamic line segments are
matched, we then label this dynamic pair as a match and
otherwise non-match. The whole training process of ELSD
is shown in Figure 5. To sum up, the training with the static
line segments helps to cold-start the training of descriptors
at the beginning. The training with dynamic line segments
helps to couple the descriptor with the actual prediction of
the detector.

3.5. Loss Functions

3.5.1 Total Loss

The total loss to train ELSD is composed of the line detec-
tor loss Lp and line descriptor loss Ld. Note that the input
of ELSD is a pair of images with random homographies,
which have both ground truth line segments, as well as the
ground truth correspondence of ground truth line segments
and predicted line segments. This allows us to optimize the
two losses simultaneously. Given a pair of image, (IA, IB),
and the total loss can be represented as:

L(A,B) = λp(Lp(A) + Lp(B)) + λdLd(A,B) (4)

We empirically set λp = 0.9, λd = 0.1 in this work.

3.5.2 Line Detector Loss

In the training stage of line detector branch, the outputs of
four heads include line midpoint map, line-centerness map,
geometrics maps, and fine offset maps. The ground truth of
these maps is generated from the raw line segments label.
The total loss of line segment detection is shown in Eq. (5)

Lp(A) =λmidLmid(A) + λcenLcen(A)+

λgeoLgeo(A) + λoffLoff (A)
(5)

where weights λmid,cen,geo,off = {25, 10, 1, 3}
Localization loss: Given an image IA, for each ground

truth midpoint p with continuous value, we construct the
midpoint confidence map P ∈ [0, 1]H×W×1 with four pix-
els near the midpoint by flooring and ceiling and we de-
note the selected pixels set by v. The 2D Gaussian ker-
nel Gxy =exp(− (x−px)

2+(y−py)
2

2σ2 ) is then used to compute
each confidence of the pixels in v. Then we normalize these
confidence by dividing the max value of v. If the confidence
of a pixel is assigned more than one time, we keep the max
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value of it. The overall process is described by,

Pxy = max(
Gxy

max
(i,j)∈v

Gij
, Pxy) (6)

Then we followed CornerNet[17] to use a variant of focal
loss:

Lmid(A) =
−1

N

HW∑
xy


(1− P̂xy)αlog(P̂xy), if Pxy = 1

(1− Pxy)
β(P̂xy)

α

log(1− P̂xy),
otherwise

(7)

where α and β are hyper-parameters and N is the number
of midpoints in an image. We set α = 2 and β = 4.

According to Eq. (2), we can obtain ground truth cen-
terness map. Then we use weighted Binary Cross Entropy
(BCE) loss denoted as Lcen to supervise the learning pro-
cess of the centerness.

Regression loss: Suppose the ground truth angle, length
is (θ, ρ) and the corresponding predicted angle, length is
(θ̂, ρ̂). We use L1 loss and smooth L1 loss as the geometrics
regression loss which is defined as

Lgeo(A) = λangL1(θ, θ̂) + λlenSmoothL1(ρ, ρ̂) (8)

where λang,len = {300, 10}. Besides, to recover the
discretization error of midpoint coordinate caused by down-
sampling with ratio s, we additionally predict the fine offset
maps Ô for each midpoint. The offset is trained with loss.

Loff (A) =
1

N

N∑
k=1

|Ô − (
p

s
−

⌊p
s

⌋
)| (9)

where p ∈ R2 is the 2D position of GT midpoint. Note that
only the midpoints where the confidence score of the ground
truth equals 1 are involved in regression loss calculation.

3.5.3 Line Descriptor Loss

We utilize the triplet loss proposed in Facenet[25] to learn
a line descriptor. Since the descriptors are regularized by
l2 normalization, the cosine similarity of two descriptors
can be represented as cos(di, dj) = dTi dj , where di, dj are
two descriptors. Given image pair (IA, IB) and their line
segments set LA, LB , let LA

i , d
A
i be the i-th line segment

of image IA and its corresponding descriptor, d+i be the
descriptor of its matched line segment in image IB , d−i be
the descriptor of its unmatched line segment in image IB

with the maximal cosine similarity. Then the hard-negative
triplet loss from image IA to IB can be represented as:

T (A,B) =
1

N

N∑
i=1

[m− dTi d
+
i + dTi d

−
i ]+ (10)

where [x]+ = max{0, x}. N is the number of line seg-
ments in A, m is the margin that simultaneously enhances
the consistency of matched line segments and the discrep-
ancy of unmatched line segments. As mentioned in Section

3.4, we have both static and dynamic line segments, so the
overall loss of descriptor loss is:

Ld(A,B) =λD(T D(A,B) + T D(B,A))+

λS(T S(A,B) + T S(B,A))
(11)

where T D, T S represent the dynamic and static descrip-
tor loss according to Eq. (10). We set λD =

√
e
E and

λS = 1−
√

e
E in this paper, where the E denotes the total

epochs of entire training process and e denotes the current
epoch. Briefly, we expect to rely more on static loss at the
early training stage, and rely more on dynamic loss after the
detector is well trained to adapt the descriptor to the actual
detection result.

4. Experiments
4.1. Experiment Setting

Implementation details: We use ResNet34[8] and op-
tionally Hourglass Network[23] as the backbone, respec-
tively. We conduct standard data augmentation for the train-
ing set, including horizontal/vertical flip and random rotate.
Input images are resized to 512×512. Our model is trained
using ADAM[14] optimizer with a total of 170 epochs on
four NVIDIA RTX 2080Ti GPUs and an Inter Xeon Gold
6130 2.10 GHz CPU. The initial learning rate, weight decay,
and batch size are set to 1e− 3, 1e− 5, and 16 respectively.
The learning rate is divided by 10 at the 100th and 150th
epoch.

Datasets: We train and evaluate our model on Wire-
frame Dataset[11], which contains 5000 images for training
and 462 images for testing. We further evaluate on YorkUr-
ban dataset[3] with 102 test images from both indoor scenes
and outdoor scenes to validate the generalization ability.

Structural Average Precision Metric[38]: The struc-
tural average precision (sAP) of the line segment is based
on the L2-distance between the predicted end-points and the
ground truths. The predicted line segments will be counted
as True Positive if the distance is less than a certain thresh-
old ϑ and otherwise False Positives. We set the threshold
ϑ = 5, 10, 15 and report the corresponding results, denote
by sAP5, sAP10, sAP15. For more details see [38].

Heatmap based Metric[38]: Heatmap-based F-score
and average precision, FH and APH are typical metrics
used in wireframe parsing and line segment detection. We
first convert the predicted line and ground truth line to two
heatmaps by rasterizing the lines respectively. Then we can
calculate the pixel-level precision and recall (PR) curves.
Finally, we can compute FH and APH with the PR curves.

4.2. Comparison Experiments on Line Detection

We compare our proposed ELSD with line segment
detection methods and wireframe parsing methods. Our
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Method Input
size Backbone Wireframe YorkUrban FPSsAP5 sAP10 sAP15 APH FH sAP5 sAP10 sAP15 APH FH

LSD[5] 320 / / / / 55.2 62.5 / / / 50.9 60.1 100
AFM[32] 320 U-Net 18.5 24.4 27.5 69.2 77.2 7.3 9.4 11.1 48.2 63.3 12.8
DWP[11] 512 Hourglass 3.7 5.1 5.9 67.8 72.2 1.5 2.1 2.6 51 61.6 2.2
LETR[31] 512 ResNet101 / 65.2 67.7 86.3 83.3 / 29.4 31.7 62.7 66.9 /
TP-LSD-Lite[12] 320 ResNet34 56.4 59.7 / / 80.4 24.8 26.8 / / 68.1 78.2
TP-LSD[12] 512 ResNet34 57.6 57.2 / / 80.6 27.6 27.7 / / 67.2 18.1

L-CNN[38] 512 Hourglass 58.9 62.9 64.9
80.3
82.8†

76.9
81.3† 24.3 26.4 27.5

58.5
59.6†

63.8
65.3† 11.1

HT-HAWP[20] 512 Hourglass 62.9 66.6 / / / 25 27.4 / / / 8.9

HAWP[33] 512 Hourglass 62.5 66.5 68.2
84.5
86.1†

80.3
83.1† 26.1 28.5 29.7

60.6
61.2†

64.8
66.3† 32.1

Ours-Lite 256 ResNet34 57.4 63.1 65.5 85.6 80.2 24.3 27.4 29.3 63.2 63.3 107.5
Ours-HG 512 Hourglass 62.7 67.2 69.0 84.7 80.3 23.9 26.3 27.9 57.8 62.1 47

Ours-Res34 512 ResNet34 64.3 68.9 70.9 87.2
87.3†

82.3
83.1† 27.6 30.2 31.8 62.0

62.6†
63.6
64.8† 42.6

Table 1. Comparison experiments on line segment detection. ’/’ means the values are not reported in the related paper. ’†’ means the
post-processing scheme proposed in L-CNN[38] is used.
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Figure 6. PR curves of sAP10 and APH on Wireframe datasets (the left two figures) and YorkUrban datasets (the right two figures). The
curve of our model is depicted in red. The results of DWP, AFM, and LSD on YorkUrban datasets are not displayed since they are slightly
lower than the current methods.

model use ResNet34 as backbone and for a fair compari-
son with other methods, we also alter the backbone with
Hourglass denote by Ours-HG. Ours-Lite is a faster version
of our model. In Ours-Lite, we resize the input image to
256 × 256 and add a decoder in backbone. Therefore the
outputs maps of each head is 256 × 256. Table 1 shows
quantitative results based on sAP, APH , FH , and FPS of
line segment detection.

Ours-Res34 model achieves the best sAP on two datasets
at a FPS of 42.6. It outperforms HAWP by 2.3% and 1.8%
in msAP(mean of sAP) metric on Wireframe and YorkUr-
ban respectively. Besides, when we replace the backbone
with an Hourglass network(Ours-HG), it stills reaches a
comparable sAP results on Wireframe. Since the HAWP
and L-CNN are two stage methods, their inference speeds
are limited. Moreover, their line segments rely on a pair
of junctions, where junctions are usually local features that
contain less global information. On the other hand, ben-
efiting from more accurate midpoint detection and a more
compact line representation method, our method is superior
to TP-LSD. For further comparison, we evaluate the AP of
mid-points similar to Junction AP proposed in L-CNN[38].
The mean AP of mid-point of ELSD is 2.9% higher than
TP-LSD, which means the mid-points are predicted more

accurately in ELSD.
In terms of the heatmap-based metrics, ELSD shows ad-

vanced results in APH=87.2 on wireframe dataset and com-
parable results on FH . Since the angle prediction error of
line segments could produce a lot of incorrect pixels, the
error of angle prediction has more influence on heatmap-
based metrics compared to sAP. Therefore, the improve-
ment of our model in pixel-based metrics is not as obvious
as that of sAP.

Our lightweight model can reach 107.5 FPS, which is 1.4
∼ 48.9 times faster than other learning-based methods while
the accuracy drop is limited. We use Ours-Res34 as the
representative model and depicted the precision and recall
curves on both datasets in Figure 6. Our ELSD outperforms
other line segment detection methods especially in sAP
metric on Wireframe dataset. Besides, ELSD achieved bet-
ter generalization ability on YorkUrban dataset than other
two-stage methods. More qualitative evaluations are pro-
vided in Appendix 1.2.

4.3. Ablation Study for Line Detection

We run ablation experiments on the Wireframe dataset,
as reported in Table 2.

NCS: NCS is to suppress the midpoints of fragmented
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No. NCS Upsample Focal loss CAL Descriptor sAP5 sAP10 sAP15

1 ✓ ✓ ✓ ✓ 64.3 68.9 70.9
2 ✓ ✓ ✓ ✓ ✓ 64.2 68.5 70.3
3 ✓ ✓ ✓ 63.6 68.0 70.0
4 ✓ ✓ ✓ 60.3 65.8 68.2
5 ✓ ✓ ✓ 61.8 66.0 68.0
6 ✓ ✓ ✓ 62.3 67.9 70.3
7 58.0 62.8 64.8

Table 2. Ablation study of ELSD. See text for details.

line segments and remain the midpoints of entire segments.
It improves the sAP 10 from 0.680 to 0.689 according to
No.3 and No.1 .

Descriptor: The multi-task learning of detection and de-
scription leads to slight reduction on the detection accuracy
sAP 10 from 0.689 to 0.685, according to No.1 and No.2 .

Upsample: For detecting line segments in real time, we
use the shared feature map with 128 resolution, which is the
same setting as L-CNN and HAWP. However, the prediction
of the center in 128 resolution is much difficult than higher
resolution. We solve this problem by upsampling the mid-
point map, centerness map, geometrics maps and fine offset
maps to 256 resolution. The sAP 10 is thus improved from
0.658 to 0.689 according to No.4 and No.1. Since we only
upsample once by bilinear interpolation or deconvolution, it
has almost no extra cost on inference speed.

Focal loss: We use a variant focal loss instead of stan-
dard Binary Cross Entropy (BCE) loss for training the mid-
point map. Since we treat the prediction of the midpoints as
a binary classification problem, the focal loss that we used
can have the ability to focus on the hard classified examples
of midpoints. By introducing the focal loss, the sAP 10 is
improved from 0.660 to 0.689 according to No.5 and No.1 .

CAL: The proposed CAL representation is compared to
the Tri-points representation in TP-LSD. The sAP 10 is im-
proved from 0.679 to 0.689 according to No.6 and No.1 by
replacing Tri-points with the CAL representation. This is
because the Tri-points need to regress more parameters than
the CAL representation (4 vs 2), and the angle is easier to
learn than the displacements.

4.4. Comparison Experiments on Line Description

To evaluate the line descriptor performance, we compare
our method with LBD[35], LLD[27] and WLD[15]. The
methods [18, 22] etc, are not involved to be compared, be-
cause they leverage the additional geometric characters of
lines, other than local appearances. We test all of the algo-
rithms on a subset of ScanNet dataset[2] which is an RGB-
D video dataset annotated with 3D camera poses. We select
about 1000 image pairs with large viewpoint change, rota-
tion change, and scale change for quantitative evaluation.
The GT line matches of the image pairs are obtained by
checking if the reprojection error of corresponding lines is
less than the certain threshold. We further compute the cor-
responding line descriptors of line segments detected by our

Methods Dimension Precision(%) Recall(%) F-Score(%)
LBD 78 69.3 63.8 66.4
LLD 64 57.5 43.6 49.6
WLD 16 67.0 57.2 61.7
Ours 256 72.6 77.1 74.7

64 73.5 76.2 74.8
16 68.4 69.7 69.1

Table 3. Line descriptor evaluation by line matching. We show the
precision, recall and F-Score for LBD, LLD, WLD, and Ours with
different dimension.

model. The predicted matches of line segments can be ob-
tained by finding the nearest neighbors over descriptors and
performing cross-checking. We report the recall, precision
and F-score to evaluate different descriptors. In our exper-
iments, we use the OpenCV implementation of LBD de-
scriptors and the official models of LLD/WLD descriptors.
Meanwhile, our model is trained with setting the length of
the descriptor to 256, 64, and 16 respectively.

The results are shown in Table 3. Our descriptors outper-
form the LBD, LLD and WLD significantly, especially in
Recall. The LBD descriptor is designed by the human pri-
ority that might not be the optimal solution. The LLD de-
scriptor and the similar learning-based descriptors[15, 16]
are trained with the line segments given by the line detectors
such as Edlines[1]. However, there is a gap between those
detected line segments and the annotated line segments in
the datasets[3, 11]. In comparison, our descriptors cooper-
ate well with our line detector since they share most of the
parameters and representation, and their training is coupled,
which can further reduce computation cost. The overall in-
ference speed of ELSD (ResNet34 as backbone) with both
line detector and line descriptor can achieve 38 FPS. More-
over, the 64-dimensional descriptor presents the same result
as the 256-dimensional descriptor, and is better than the 16-
dimensional descriptor in accuracy. More quantitative and
qualitative evaluations are provided in Appendix 1.3-1.5.

5. Conclusion
We proposes a fast and accurate model ELSD that simul-

taneously detects line segments and extracts descriptors in a
single forward pass, allowing share computation and repre-
sentation in the two tasks. To detect line segments, We first
utilize the Center-Angle-Length representation to encode
line segments that fully exploits the geometric characters
of lines. Furthermore, a centerness map is introduced to fil-
ter the false line segments by Non-Centerness-Suppression.
Our proposed line detector achieves state-of-the-art perfor-
mance on two benchmarks in both accuracy and efficiency.
Moreover, our model also achieves real-time speed with a
single GPU. The lite model can reach the high speed of
107.5 FPS while keeping a comparable performance, and
thus is useful for many higher-level tasks such as SLAM
and SfM that require high real-time performance.
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