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Abstract

Federated Learning (FL) aims to establish a shared
model across decentralized clients under the privacy-
preserving constraint. Despite certain success, it is still
challenging for FL to deal with non-IID (non-independent
and identical distribution) client data, which is a general
scenario in real-world FL tasks. It has been demonstrated
that the performance of FL will be reduced greatly under
the non-IID scenario, since the discrepant data distribu-
tions will induce optimization inconsistency and feature di-
vergence issues. Besides, naively minimizing an aggregate
loss function in this scenario may have negative impacts
on some clients and thus deteriorate their personal model
performance. To address these issues, we propose a Uni-
fied Feature learning and Optimization objectives align-
ment method (FedUFO) for non-IID FL. In particular, an
adversary module is proposed to reduce the divergence on
feature representation among different clients, and two con-
sensus losses are proposed to reduce the inconsistency on
optimization objectives from two perspectives. Extensive
experiments demonstrate that our FedUFO can outperform
the state-of-the-art approaches, including the competitive
one data-sharing method. Besides, FedUFO can enable
more reasonable and balanced model performance among
different clients.

1. Introduction

Nowadays, the machine learning based artificial intelli-
gence (Al) technologies often rely heavily on large amounts
of training data. However, together with the over-collection
and over-utilization of personal private data, the risks of pri-
vacy disclosure and abuse are increased. For example, in
finance, medical treatment and smart city applications, data
leakage may lead to huge loss on properties, and even life.

“Ling-Yu Duan is the corresponding author.
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Figure 1. A comparison of the traditional FedAVG and the pro-
posed FedUFO. By making use of the global, group data informa-
tion extracted from global and local models, our FedUFO effec-
tively aligns the feature representation and optimization objective
on local, group and global levels.

To establish health and sustainable Al ecosystem, McMa-
han et al. [20] proposed a new machine learning paradigm
- Federated Learning (FL), which breaks the data barriers
across different clients (such as regions and industries) un-
der privacy-protection constraint. The main idea of FL is to
change the transmission and aggregation from data-level to
model-level, so that the advantage of big data can be taken
in the Al applications without privacy disclosure. Inspired
by this paradigm, data-preserving decentralized learning
has been studied in a variety of applications [3, 4, 5, 18].

In real-world FL tasks, data distributions of different
clients may vary since the data are usually collected from
different sources or scenarios. However, existing FL ap-
proaches often simply ignore the distribution divergence,
and it has been demonstrated that performance of the global
model on non-IID (non-independent and identical distribu-
tion) federated data can be much worse than that on the IID
ones [22, 9, 16]. The reason is proved to be the weight diver-
gence derived from the discrepant data distribution [32, 19],
i.e., the local models are optimized to different directions,
which are far from the ideal. The distribution divergence of
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non-IID data will also aggravate the performance fairness
issue [15], which means that the established model yields
significantly different local performance across clients.

This motivates us to develop a novel non-IID FL method

by simultaneously aligning the local optimization objectives
across clients. Specifically, a group consensus loss (CGR
loss) and a global consensus loss (CGL loss) are proposed
to explicitly reduce optimization objective inconsistencies
by considering a group of clients and all clients respectively.
This is achieved by fixing the biased distribution of model
predictions by utilizing the extracted group and global data
information. Besides, an adversary scheme with a unified
adversarial loss (UAD loss) is proposed to implicitly align
the optimization objectives on the feature level, and this en-
forces the model learning generalized feature representation
across all data distributions. Fig. 1 is a comparison between
the proposed FedUFO and traditional FedAVG [20] meth-
ods. Compared with FedAVG, which only utilizes the lo-
cal data during local training without considering the opti-
mization objective differences, our FedUFO can exploit the
additional global and group data information for objective
alignment, and hence the obtained models are more reliable.

According to the extensive experiments, it has been ver-

ified that simply using the proposed UAD loss can out-
perform the existing approaches, and performance of our
model can be further improved by adding the CGR and
CGL losses. Our FedUFO can also achieve more fair perfor-
mance distribution across clients. Moreover, by evaluating
FedUFO on four challenging re-identification and classifi-
cation tasks, the effectiveness of FedUFO in real-world FL
applications is validated.

To summarize, the main contributions of this paper are:

* We design a group consensus loss and a global consen-
sus loss to explicitly align the local, group and global
optimization objectives to alleviate the varied data dis-
tribution issue in non-IID FL.

* We propose an adversary scheme with a unified ad-
versarial loss to learn unified feature representation
that can further help align the optimization objectives
across clients implicitly.

¢ Numerous experiments are conducted in various com-
puter vision tasks. The results demonstrate superiority
of the proposed method in real-world applications.

2. Related Work

Federated Learning (FL) [20] aims to train models using
decentralized datasets under the data-preserving constraint.
Non-IID federated data is general in realistic FL scenar-
ios [9], and the performance will drop significantly when
directly applying the traditional FL. methods for IID feder-
ated data [22, 9, 16]. Hsu et al. [7] verify that the perfor-
mance decrease becomes larger with the increasing of skew-
ness in data distribution. Therefore, some FL approaches

are designed for non-IID data, and existing solutions can
be roughly grouped as two categories: server-centric and
client-centric methods.

Server-centric solution. Such methods aim to build
a global model that performs well on all datasets, which
are more valuable and useful in real-world applications.
Zhao et al. [32] quantity the dataset skewness by the earth
mover’s distance(EMD) and propose a data-sharing strat-
egy to reduce the EMD across clients. Liu et al. [16] de-
sign an algorithm that computes multiple local aggregations
on edges to alleviate the client-edge and edge-server gradi-
ent divergence. Saltter ef al. [21], He et al. [6] and Wang
et al. [26] design gradient compression, neural architecture
search and client selection algorithms on non-IID FL sce-
nario to improve the transmission, model architecture and
convergence rate respectively. In this paper, we follow the
idea of the server-centric method. Specifically, we align
the optimization objective across clients with unified fea-
ture representation, so that the influence of discrepant data
distributions will be alleviated without any data sharing.

Client-centric solution. Such methods do not pursue an
effective global model, but attempt to build local model for
every client that is only good at its own dataset, which is
more feasible in extreme conditions. Li ef al. [14] construct
consensus across clients with a public dataset to restrict the
local model training. Shen et al. [22] design a new FL
paradigm that realizes mutual learning between the global
and local models. Wu et al. [29] and Zhuang et al. [34]
split the federated model into a feature extractor and a clas-
sifier and use different strategies to transfer the knowledge
between the local and global models. These researches treat
the data information from other clients as a kind of knowl-
edge and use it to guide the local training. However, build-
ing a set of local models is not the target of this paper.

Apart from performance improvement, the proposed
method can achieve more fair performance distribution
across clients, which is also explored by ¢g-FFL [15]. How-
ever, g-FFL performs bad in non-IID scenarios. Besides, it
only focuses on fairness, and the overall model performance
may be poor. Whereas in our method, both the good overall
performance and fairness between different clients are well
guaranteed.

3. Methods

In federated learning, the non-IID client data will lead to
significant performance drop when disregarding optimiza-
tion objective difference derived from discrepant data distri-
bution [7, 32], and performance of the model is often much
worse than that in the IID data settings [22, 9, 16]. In this
paper, we propose the Unified Feature learning and Opti-
mization objective alignment method (FedUFO) for non-
IID FL. Specifically, an adversarial module with an uni-
form loss is proposed to learn unified feature representa-
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Figure 2. The whole training procedure of k-th client on #-th iteration. Step 1: Train local model w; i using the local data and exchange it
with other clients. Step 2: Extract the feature representation, global and group data information through the global model w; and all local
models we,1 ~ Wy, k... Step 3: Train posterior model w1, under aligned feature representation and optimization objective constraints.

tion across clients, which implicitly aligns the optimization
objective on feature level. And two consensus losses are
applied to fix the biased distribution of model prediction
considering a group of clients and all clients, which align
the optimization objective explicitly.

3.1. Overall Framework

Our FedUFO follows the similar training mechanism of
server-centric methods (such as FedAVG [20]): in each it-
eration, the server sends the global model to a group of
clients; then these clients train the global model separately
with local dataset and upload the generated models to the
server; and finally the server updates the global model with
a weighted aggregation of the generated models. In this pa-
per, we mainly optimize the client training procedure with
an adversary module and two consensus losses, so that the
uploaded models share the same optimization objective.

Fig. 2 illustrates the training procedure (three training
steps) of the k-th client in the #-th iteration: 1) based on the
global model wy, a local model w, j, is trained with local
dataset Dy, only, which contains data information and fea-
ture representation of the k-th client. w; ; can be regarded
as a prior model, and the client group exchange the local
models with each other; 2) the k-th client extracts the global
data information from the global model, and also extracts
group data information and feature representation from all
local models. The extracted global and group data infor-

mation are used to establish global and group optimization
objectives respectively; 3) a posterior model wy , is trained
locally under the constraints of unified feature representa-
tion and optimization objective, and finally sent to the server
for model aggregation and update.

In the following, we use K to denote the number of
clients. K. = C x K is the size of the client group [20],
and C is the fraction (C € [0, 1]). S; is the group in the ¢-th
iteration (|S;| = K.). Dataset of the k-th client is defined
as Dy, = {(Xi.k, ¥i k)|l < @ < ng}, where ny is the dataset
size. A model & consists of two parts - a feature extractor
he and a classifier h.. w; is the global model parameter in
the r-th iteration. W, , and w j are the local and posterior
model parameter respectively. f}k and y; ; are the output
feature and prediction of the sample x; ;, by the posterior
model wy . Ek‘ ; is feature of x; 5 upon the local model of
the j-th client w; ;, and y; ); is the corresponding predic-
tion. For notation simplicity, we ignore the subscript k in
the following. d;|; and d;|; represent the one-hot ground-
truth labels of features f'l (i.e., x;%) and E?Ij'

3.2. Unified Feature Representation Learning

The different data distributions will lead to different data
feature the local models focus on. Consequently, the clients
will generate disparate feature representation, which will
hinder optimization objective alignment on feature level.
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Thus, we first align the feature representation across clients
to implicitly unify the optimization objectives. Specifi-
cally, we introduce adversary learning together with a fea-
ture discriminator D upon the feature extractor h.. Dur-
ing the training procedure, D is learned to recognize which
client the input feature belongs to, while h, tries to learn
distribution-free feature representation across clients.

After obtaining the local models of all clients in S; ex-
cept itself, we first compute the data features of x; on these
local models,

£ = he(xi|W(;),1 < j < Ke,j #k, (1)

where wy ; is the parameter of feature extractor of j-th local

|7

model w; ;. Here ?ﬂ ; implies the interested feature of j-th
client, i.e., the general feature of j-th data distribution. Dur-
ing the training of the current k-th posterior model, features
from the local models {E‘ ;}k and posterior model £, will
be fed into the discriminator to predict which client (feature
representation) they belong to,

d;); = Softmaz(D(f;lwin) 1 <j < Kej #k, ()
d; = Softmaac(D(fﬂwgk)), 3)

where w . stands for the parameter of D. The d;; and d;
are K-dimensional vectors.

To enforce the extractor h. to learn unified feature repre-
sentation, feature f; is expected to have the same prediction
scores across all classes. Thus, we use a uniform adversarial

loss (UAD loss) to constrain the prediction score ai,

K
1 .
‘Cuniform = _E Z lOg(dz)v (4)
j=1

g

where Elf is the j-th element of (Ail Note that Lniform is
smallest when d] = +,Vj € [1, K].

To enable the discriminator distinguishing features ex-
tracted using different local models, all the prediction re-
sults d;); and d; are used to optimize the discriminator. We
use the client index [, to denote the class of the feature rep-
resentation of the k-th client, and by adopting cross-entropy

loss, we have the following total classification loss:
K.

> log(dy) ()

J=Lj#k

3.3. Unified Optimization Objective Alignment

Lih = —log(d) —

K.—-1

There are two types of optimization objective incon-
sistency in non-IID FL: the local-group inconsistency and
group-global inconsistency. Here, the local, group and
global optimization objectives correspond to one client,
client group S; and all clients. The local-group optimization
objective inconsistency will induce model exclusion during
aggregation. The group-global optimization objective in-
consistency will not only make the global model update un-
smooth, but also deteriorate the local model performance

of clients out of S;. Therefore, these two inconsistencies
will result in low overall model performance [7] and unfair
performance distribution [15]. To improve the performance
and performance fairness, we propose to reduce the incon-
sistency by constructing consensus on the local, group and
global levels. Specifically, a group consensus loss (CGR
loss) and a global consensus (CGL loss) loss are proposed
to align the local-group and group-global optimization ob-
jectives respectively.

3.3.1 Group Consensus Loss

We use the CGR loss to construct consensus among the
client group S; in each iteration to reduce the local-group
optimization objective inconsistency. The local optimiza-
tion objective is directly reflected from the model param-
eter changes between local and global models. However,
the model parameters are highly information concentrated
and of large-scale, thus are difficult to compare and merge.
To tackle this issue, we use distributions of the predictions
for the same data on different local models to characterize
different local optimization objectives. Then we establish
the group optimization objective with all local optimization
objectives in group S;.

We first calculate the predictions for x; by local models
of all the other clients:

Yij; = Softmazx(h(xi|w;)),1 <j < K. (6)

where y;|; is the prediction of x; using the local model w ;.
Here, w, ; is the adaptation of global model on the j-th data
D;, thus it implies the optimization direction of the j-th
client, and so does y; ;. To align the optimization objectives
across clients in .S;, we merge all the y;; considering the

category data proportion to generate a unified prediction:
K

yi = Softmaz(y_p; ®¥y;), @)
j=1

where ® is the element-wise product, p; is the data propor-
tion of every category of D; against the total category data
number in the group; y; provides an expected prediction
after considering all the client data information in S;. We
regard y; as an aligned optimization objective and use it to
restrict the prediction distribution of wy .

To enable the local optimization objective approaching
the group optimization objective, we restrict the prediction
of posterior model y; to have the same class probability dis-
tribution as y; in Eq. 7. The Kullback-Leibler divergence is
adopted as the loss function, which can capture the differ-
ence of two probability distributions, thus the CGR loss is

iven b C A~
£ y Legr = KLDiv(y||yi), (8)
3.3.2 Global Consensus Loss

The CGL loss is proposed to align the group and global op-
timization objectives. The group optimization objective is

4423



defined by using the total data of client group. Due to the
prohibition of data aggregation, it is impossible to restrict
the group optimization objective directly. To reduce the
group-global objective inconsistency, we restrict the local
model update with respect to the global data information,
and thus the group optimization objective will be adjusted
according to the global optimization objective. This can be
achieved by using the same strategy as in the CGR loss,
i.e., extracting the prediction from all the K client models
and generating a unified prediction distribution. However,
this will result in large computation and transmission costs.
Instead, we use the aggregated global model of the last it-
eration (i.e., wy) to construct the global consensus, which
will accumulate the global data information with continu-
ous training.

Similarly, we first receive the prediction y ;| of x; on the
global model,

Yijo = Softmax(h(x;|wy)), 9
where y;|o has the same effect as y; in Eq. 7, i.e., provides
an expected prediction distribution after considering all data
information. Then we compute CGL loss with prediction y;

from posterior model to align the local and global optimiza-
tion objectives:

Legr = KLDiv(yi|lyio)- 10)

Dynamic Sampling Strategy. The alignment of group
and global optimization objectives can alleviate the perfor-
mance drop of the clients not included in the current client
group. To further achieve a fair performance distribution, a
dynamic sampling strategy is adopted together with CGL
loss, where % clients that have the lowest local perfor-
mance are selected and form the group S; with other ran-
dom Igc clients. Compared with the existing methods that
select K clients randomly, this strategy can help improve

the performance fairness.

3.4. Training Procedure

The whole training procedure consists of two stages.

Stage One: Train federated model and discriminator
with constraint on feature level. In each iteration, we first
freeze the parameter of the discriminator D and train the
federated model h with the following loss,

»Ctotal = Ccls + »Cuniforma (11)

where L. is the cross-entropy loss. Then parameters of
the federated model are fixed and we train the discriminator
using £, in Eq. 5. After that, unified feature representation
that is effective on all client data can be obtained.

Stage Two: Fine-tune federated model with both fea-
ture and objective consistency constraints. Based on the
federated model and discriminator from stage one, we fine-
tune the federated model under the CGR loss, the CGL loss
and the UAD loss. Specifically, the L4 in Eq. 11 be-
comes

Method MNIST CIFAR10
centralized

(upper bound) 97.894+0.08 81.91+0.47
FedAVG [20] 94.38+1.72 59.954+3.08
FedMeta [31] 94.23+0.41 66.294+0.34
FML [22] 93.734+1.39 51.724+4.18
FedRetile [5] 95.00+0.10 63.40+0.54
q-FFL [15] 87.70+1.39 46.25+4.10
FedUAD(ours) 96.70+0.20 65.2942.07
FedUFO(ours) 96.75+0.07 67.45+0.81

Table 1. Model performance.

Etotal = Accls + L:uniform, + Ecgr + )\Ecglv (12)

where ) is a trade-off hyper-parameter.

4. Experiments

In this Section, we conduct extensive experiments to
validate the effectiveness of FedUFO, including four real-
world re-identification and classification tasks. In Sec-
tion. 4.1, we compare the model performance and perfor-
mance fairness of FedUFO with existing methods. Sec-
tion. 4.2 is the ablation study about all the proposed mod-
ules and the hyper-parameter A. In Section. 4.3, we test
FedUFO on more challenging real-world scenarios.

4.1. Performance Comparison
4.1.1 Settings

i. Dataset. Following [20], MNIST [13] and CIFAR-
10 [12] are used to evaluate the methods. Each dataset is
partitioned into 100 clients: data of each category is di-
vided into 20 shards, and each client is randomly assigned
2 shards from the total 200 shards (10 classes).

ii. Implementation. We use the same network architecture
as in [20] for MNIST and CIFAR10. For MNIST, the batch-
size B = 10, the client fraction C = 0.1 and the local training
epoch E = 10, while B = 50 for CIFAR-10 instead. For both
two datasets, the discriminator of two fc layers and ReLU
activation is used, where the output size of the first layer is
the same as the input (200 and 64 respectively). We use the
SGD optimizer in both client and server, with 0.01 as learn-
ing rate, 0.9 as momentum and 0.0002 as weight decay. A
in Eq. 12 is set to be 3 on both of the datasets.

iii. Evaluation Metrics. The classification accuracy P, is
used to evaluate the model performance. Similar as [15], the
best, worst local performance and the stand deviation(std)
of all the local performances are used to evaluate the per-
formance fairness, which are termed as P, P,, and Py;4.
iv. Comparison Methods. We compare FedUFO with Fe-
dAVG [20], FedMeta [31], FML [22], FedRetile [5] and g¢-
FFL [15]. They adopt the same implementation settings as
in ii. Implementation for fair comparison. Apart from the
common settings, for FedMeta, 10% data of every client are
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centralized comparison methods ours
(upper bound) FedAVG FedMeta FML FedRetile g¢-FFL FedUAD FedUFO
=3 100 98.95 98.86 98.75 100 98.10 100 100
MNIST P, 91.55 86.80 85.00 85.88 82.40 71.81 89.69 89.69
Psia 1.47 2.81 2.80 2.84 3.79 4.99 2.05 1.87
P, 92.30 73.60 81.30 70.80 83.90 62.90 78.60 75.40
CIFARIO P, 66.40 32.50 46.00 36.00 30.10 26.20 47.80 55.40
Py 5.21 9.23 7.63 8.02 12.77 8.16 7.07 3.54
Table 2. Performance fairness comparison on MNIST and CIFAR-10.
used to construct the meta data that finetune the aggregated Method Poce
global model in each iteration. For FML, performances of baseline cls 59.95+3.08
the global models are reported for fair comparison. For g- +cgr 65.104+1.02
FFL, we test ¢ = 1,2,5 and provide the result of ¢ = 2, one module +cgl 65.01+3.45
which is also the best result. +uad 65.29+£2.07
+uad+cgr 66.2941.59
4.1.2 Model Performance two modules +uad+tcgl  66.30+1.63
all modules  +all 67.80+£0.87

Table. 1 displays the model performance of different meth-
ods on MNIST and CIFARI10 datasets. The centralized
learning is provided as “centralized” in the table, which is
the upper bound of the FL algorithms. The FedUAD and Fe-
dUFO represent the model trained after stage one and stage
two respectively. From the table, we can see that only ap-
plying the adversarial scheme already achieves higher per-
formance than non-data-sharing methods. This verifies that
the proposed adversarial module helps the federated model
learning unified feature representation, so that the optimiza-
tion objective divergence can be alleviated on feature level.
After appending the consensus losses, the model perfor-
mance further improves, even exceeds the FedMeta on both
datasets, where the clients share a fraction of data with the
server. g-FFL is proposed to solve the unfair local perfor-
mance distribution. We can find that the emphasis of ¢g-FFL
on performance fairness is at the expense of model perfor-
mance, while our FedUFO can maintain and even improve
the model performance. This is because under the unified
optimization objective, the model exclusion will be greatly
mitigated, and performances on all clients will improve si-
multaneously in FedUFO.

4.1.3 Performance Fairness

Table. 2 compares Py, P,, and Py of all the methods. We
highlight the highest P, and P, as well as the lowest Pg:q
second to the results of “centralized” in bold. On both
datasets, FedUFO yields the lowest P,;; among all com-
pared methods, even exceeds the centralized learning on
CIFAR-10, which means the proposed adversary scheme
and consensus losses can result in a fairer performance
distribution. FedUAD has the second lowest Pi;4, as the
unified feature representation can also alleviate the mu-
tual exclusion among local models on feature level. This
can also be verified by the results on P,,, where FedUFO

Table 3. Model performance comparison across different varia-
tions of FedUFO on CIFARI10.

and FedUAD are the first and second highest respectively.
FedRetile has higher P, than FedUAD and FedUFO on
CIFAR-10. However, it yields the highest P;;; in the mean-
time. This reveals the character of some FL algorithms:
enhancing the model performance by only improving the
local performance of the easy-to-learned clients, while the
other clients are out of the consideration. g-FFL performs
badly in non-IID FL scenario. As the motivation of g-FFL
is to emphasize the clients with lower local performance, it
can not tackle optimization divergence in non-IID scenario,
thus overemphasis of one client will lead to the performance
drop on other clients.

4.2. Ablation Study

In this section, we verify the effectiveness of proposed
modules by splitting and combining the UAD loss, CGR
loss and CGL loss one by one. cgr, cgl and uad rep-
resent applying the CGR loss, CGL loss and UAD loss re-
spectively. all is the model trained with all three losses.
The baseline method that only uses classification loss is de-
noted as c1s, but it equals to FedAVG method actually and
we just copy the results from Table. 1. For a fair compari-
son, the implementation settings are the same on all ablation
methods (Section. 4.1.1).

4.2.1 Model Performance

Table. 3 displays the model performance of different vari-
ations of FedUFO. cgr and cgl yield lower performance
than uad in the table. This indicates that only applying the
consensus losses without unified feature representation can
not align the optimization objectives across clients. After
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one module

two modules

cls +cgr +cgl +uad +uad+cgr +uadtcgl tall

P, 98.95 98.79  99.52 100 100 100 100
MNIST P, 86.80 87.01 88.87 89.69 89.28 89.79 89.18
Pty 2.81 2.39 2.06 2.05 1.95 1.90 1.98
P, 73.60 78.50 83.10 78.60 81.10 75.00 80.60
CIFARIO P, 32.50 43.80 43.30 47.80 45.50 55.80 49.30
Psiq 9.23 7.87 8.56 7.07 7.63 4.21 7.42

Table 4. Performance fairness comparison across different variations of FedUFO on MNIST and CIFAR-10.

Method P,.. P
cgl(w/) 63.07+2.93 3.65
cgl(w/o) 65.01+3.45 8.56
uad+cgl(w/) 66.56+0.81 3.53
uad+cgl(w/o)  66.30+1.63 4.21
all(w/) 67.45+0.81 3.54
all(w/o) 67.804+0.87 7.42

Table 5. Performance and fairness comparison with (w/) and with-
out (w/0) dynamic sampling strategy on CIFAR10.

the training of discriminator, the uad+cgr and uad+cgl
yields better performance than cgr and cgl, and they im-
prove the performance of uad as well. Besides, we notice
that the addition of any of the UAD, CGR and CGL losses
will lead to performance improvement.

FedUFO with CGL loss and CGR loss always achieve
comparable performance in Table. 3, while CGR loss brings
in extra transmission cost than CGL loss and FedAVG algo-
rithm. In practice, if the network bandwidth is limited, only
using the CGL loss can produce a decent model as well.

4.2.2 Performance Fairness

Table. 4 compares the performance fairness among differ-
ent variations of FedUFO. From this table, we can draw the
following conclusions.

1) The performance fairness can be improved by every
module and their combinations.

2) Among three proposed losses, UAD loss achieves the
fairest performance distribution. Besides, after combining
with UAD loss, uad+cgr and uad+cgl yields lower Pg;gq
than before (cgr and cgl). These verify the importance of
feature-level alignment across clients.

3) uad+cgl achieves the best Py and P,. This ver-
ifies that CGL loss improves the performance of clients in
group without sacrificing others.

4) Appending cgr may hurt the fairness, as all yields
higher Ps;4 than uad+cgl on both datasets.

4.2.3 Effect of Dynamic Sampling Strategy

Table. 5 compares the performance and fairness with and
without dynamic sampling strategy on CIFAR10. In Ta-
ble. 5, dynamic sampling strategy yields lower performance

than without it, but it improves the fairness inversely. This
indicates that the emphasis on fairness will damage the
model performance, as the training will put more on lo-
cal model training with low local performance. In practice,
a fair FL model that achieves similar performance on all
clients will motivate more data providers join the federa-
tion, which further facilitates the development of FL.

4.2.4 Convergence Rate

Fig. 3 illustrates the model performance changes during the
first 100 iterations on MNIST. We can find that the methods
with CGL loss(cgl, uad+cgl and all) converges slower
than the other methods. cgr, uad and uad+cgr have sim-
ilar performance trends as FedAVG, which means applying
UAD loss and CGR loss will not influence the original con-
vergence rate.

Fig. 4 displays the effect of A on the convergence rate.
When )\ > 3, the model converges quite slow, even be con-
stant. A=1, 2 and 3 yield a similar convergence rate. In our
experiments, A = 3 achieves the best performance.

Note that the learning curve in Fig. 3 and Fig. 4 are after
fitted for better illustration. And the cgl are used together
with dynamic sampling strategy.

4.3. Experiments on More Challenging Scenarios

In this section, we test FedUFO on more challenging
real-world tasks - vehicle reID (VeRI776[17]), person relD
(MSMT17[33] and Market1501[27]) and fine-grained clas-
sification (CUB200[25]), which are also important applica-
tions of FL. Similar as in Section. 4.1.1, each dataset is par-
titioned into 100 clients. We adopt Resnet50 as the network
architecture and three fc layer with ReLU activation as dis-
criminator. The other settings are the same as CIFAR10 in
Section. 4.1.1. Note that for datasets VeRI1776, MSMT17
and Market1501, the model performance is evaluated with
mean average precision (mAP, denoted as P;,,;,), and the
feature is L2-normalized before retrieval. The experiment
results are illustrated in Table. 6.

From the table, we find that FedUAD and FedUFO con-
sistently outperform the other methods on model perfor-
mance (Ppqp or Pyc.), which verifies the effects of the pro-
posed method on real-world FL applications. FedRetile is
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VeRI776 [17] MSMTI17 [27] Market1501 [33] CUB200 [25]
Pmap Pstd Pmap Pstd Pmap Pstd Pacc Pstd
centralized 65.34+0.12  1.75e-3 34.20£0.26  1.23e-3 57.91£1.93  2.72¢-3 89.49+£0.21  1.22e¢-1
FedAVG [20] 58.51+0.89  6.13e-3 25.834+1.45 1.93e-3 49.82+1.80 1.3le-1 55.124+1.41 1.58e-1
FedRetile [5] 59.69+0.14  4.36e-3 29.07+0.13  1.87e-3 50.16+0.13  1.26e-1 55.74+0.34  1.43e-1
FML [22] 58.85+1.94 5.72e-3 26.561+0.68 1.96e-3 49.90+£1.51  5.00e-2 46.65+2.42  1.85e-1
FedUAD(ours) 60.294+0.15  1.95e-3 29.98+0.78 1.87e-3 51.05+0.58 5.97e-2 59.20+1.33  1.6le-1
FedUFO(ours)  60.91+£0.20 1.92e-3 30.22+0.16 1.77e-3 51.68+0.42 4.65e-2 60.57+0.53  1.36e-1

Table 6. Performance (Ppqp 0r Pycc) and fairness (Ps¢q) comparison on VeRI776, MSMT17, Market1501, CUB200.
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Figure 3. Model performance changes of different methods in the
first 100 iterations on MNIST.
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Figure 4. Model performance changes of cgl with different A in
the first 100 iterations on MNIST.

inferior to FedUAD and FedUFO in all cases, as it only
changes the weights of models during aggregation, but
does not alleviate the model divergence derived from differ-
ent data distributions. Besides, FedUFO yields the lowest
P4 on four datasets, which means the established model
achieves the fairest performance across different datasets.
Ps.q of FedUAD exceeds the counterparts in some datasets.
This is because UAD loss does not directly act on the opti-
mization objective, but on the feature representation, thus its
effect on reducing performance unfairness is limited. Com-
paring the centralized training (‘“centralized”) with other
methods in Table. 1 and Table. 6, we notice that the data het-
erogeneity seems to influence more on classification tasks
than re-ID tasks. This may be due to the discrepancy of
training target (classification error) and test target (retrieval
performance) in re-ID. Moreover, FedUFO in classification
tasks achieves more performance improvement than re-ID
tasks, of which reason is not clarified currently.

5. Discussion

Application scope. The proposed FedUFO contains three
modules - UAD loss, CGR loss, CGL loss. Among them,
UAD loss and CGR loss are accomplished with additional
communication cost and/or storage. Considering the two
FL applications proposed by Kariouz et al. [10] FedUFO

is more applicable to the cross-silo FL, where the clients
are 2~100 organizations with sufficient communication and
storage resources. For the cross-device FL, the clients are
massive mobile or IoT devices, thus communication and
storage are often the bottlenecks. In this scenario, the pro-
posed CGL loss can be adopted solely with no extra com-
munication cost and little extra storage. Comparing Table. 3
and Table. 4, we can find that CGL loss already exceeds the
baselines.

Model Extension. The proposed FedUFO explores a new
FL model training scheme, which is especially effective in
non-I1ID FL scenarios. Apart from the model training, the
establishment of a complete FL framework requires a series
of auxiliary mechanisms, such as incentive mechanism [28],
model compression [ 1, 2], backdoor defense [24, 30, 23],
communication protocol [1, 8], etc., which will guarantee
the healthy development of FL ecosystem. We have found
that FedUFO can be seamlessly embedded into most of the
existing methods on these topics, as FedUFO only changes
the local model training procedure and maintains the overall
training pipeline.

6. Conclusion

In this paper, we analyze the reason for the low model
performance and unfair performance distribution under the
non-I1ID federated learning (FL) scenario, and propose a
novel FedUFO algorithm that simultaneously aligns the fea-
ture representation and optimization objective across clients
under the data-preserving constraint. For the feature repre-
sentation, an unified adversarial loss is designed to enable
the model learning cross-client features. In regard to the op-
timization objective, two consensus losses are designed to
mitigate the optimization inconsistency on local, group and
global levels. Extensive experiments on various computa-
tion vision tasks demonstrate effectiveness of the proposed
FedUFO compared with the state-of-the-art FL. approaches.
In the future, we intend to design more sophisticated strate-
gies to align the group and global optimization objectives.
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