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Abstract

Analyzing and understanding hand information from
multimedia materials like images or videos is important
for many real world applications and remains active in re-
search community. There are various works focusing on re-
covering hand information from single image, however, they
usually solve a single task, for example, hand mask segmen-
tation, 2D/3D hand pose estimation, or hand mesh recon-
struction and perform not well in challenging scenarios. To
further improve the performance of these tasks, we propose
a novel Hand Image Understanding (HIU) framework to ex-
tract comprehensive information of the hand object from a
single RGB image, by jointly considering the relationships
between these tasks. To achieve this goal, a cascaded multi-
task learning (MTL) backbone is designed to estimate the
2D heat maps, to learn the segmentation mask, and to gen-
erate the intermediate 3D information encoding, followed
by a coarse-to-fine learning paradigm and a self-supervised
learning strategy. Qualitative experiments demonstrate that
our approach can recover reasonable mesh representations
even in challenging situations. Quantitatively, our method
significantly outperforms the state-of-the-art approaches on
various widely-used datasets, in terms of diverse evaluation
metrics https://github.com/MandyMo/HIU-DMTL.

1. Introduction

Hand image understanding (HIU) keeps active in both
computer vision and graphics communities, aiming to re-
cover the spatial configurations from RGB/depth images,
including 2D/3D hand pose estimation, hand mask segmen-
tation and hand mesh reconstruction, which have been em-
ployed in various domains [23, 25, 30, 33, 49, 52]. Recov-
ering the spatial configurations is still challenging, due to
the inherent depth and scale ambiguity, diverse appearance
variation, and complicated articulations. While a bunch
of existing works have considered markerless HIU, most
of whom require depth camera [37, 62, 51, 41, 26, 15,
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Figure 1. Hand Image Understanding. The figure illustrates the
fundamental idea of this work. We derive the 2D hand pose, hand
mask, hand mesh (including 3D hand pose) representation simul-
taneous from a monocular RGB image of the hand object in a
coarse-to-fine manner.

67, 28, 32, 14, 22, 21] or synchronized multi-view im-
ages [3, 18, 46, 51, 59] to deal with the aforementioned
challenges. As a consequence, most of those methods are
impractical in real-world situations where only monocular
RGB images are available.

For the monocular RGB scenario, the main obstacles re-
side in three-folds. Firstly, the lack of high-quality large-
scale datasets with precise annotations. Existing datasets
are either synthesized using software [73, 19, 35], or labeled
in a semi-automated manner [74, 27], or collected in a con-
trolled experimental environment [66, 68, 50]. Secondly,
the incapability of the current datasets makes the trained
models not generalize well to various wild images, espe-
cially under self occlusions and complex configurations,
which may hinder its applications. Thirdly, contemporary
approaches fail to exploit unlabeled images, which is more
widely distributed than those with annotations.

The above obstacles motivate us to bring out two ques-
tions: Can the existing multi-modality data be harnessed
comprehensively to tackle the aforementioned difficulties?
Can the tremendous wild images without labels be exploited
well enough to favor the HIU?

In this work, we demonstrate the answers to be yes, and
the fundamental idea is illustrated in Figure 1. Specifically,
an innovative multi-task learning (MTL) framework is de-
signed to tackle the HIU problem, which follows the cas-
cade coarse-to-fine design manner. Concretely, the frame-
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work consists of a backbone and several regressor heads
corresponding to different tasks. The backbone aims to
learn the various elementary representations from hand im-
ages, including 2D pose estimation, hand mask segmenta-
tion, and 3D part orientation field (POF) encoding. To re-
construct the whole hand mesh efficiently, we exploit the
generative hand model MANO [44], and employ the regres-
sor heads to regress MANO’s parameters based on the se-
mantic features of the elementary tasks. To efficiently fuse
beneficial semantic-features among various tasks, we con-
ceive the task attention module (TAM) to aggregate the se-
mantic features across individual tasks and derive compact
high-level representations by removing redundant features.
Note that the 3D hand joints can be achieved as a side out-
put in MANO. With these designs together, one can obtain
the 2D/3D hand pose, hand mask, and hand mesh from a
RGB image simultaneously.

It is clear that the whole framework can be trained with
generic supervised learning by leveraging existing multi-
modality datasets. The self-supervised learning strategies
can be adopted by leveraging the implicit relationship con-
straints maintained among the reasonable predictions from
each task. For instance, the mask rendered from the hand
mesh with proper camera parameters, shall match the one
that is estimated by the backbone; the coordinates of the
re-projected 2D hand pose shall be close to the integral of
locations encoded in the heat-maps. The self-supervised
learning make it possible to exploit enormous wild images,
which can improve the accuracy of the framework, and en-
hance the generalization capability. Additionally, consid-
ering the absence of a large-scale hand dataset with well-
labeled hand mask and 2D pose, we collect a high-quality
dataset with manually labeled 2D hand pose and hand mask.

To summarize, our main contributions are as bellows:

• We design an innovative cascade multi task learning
(MTL) framework, dubbed HIU-DMTL, for hand image
understanding, which can exploit existing multi-modality
hand datasets effectively.

• The self-supervised learning (SSL) was firstly introduced
to alleviate the insufficient data problem for HIU, and the
effectiveness of which has been verified through exten-
sive experiments comprehensively.

• We propose a simple while effective task attention mod-
ule (TAM), targeting to aggregate semantic features
across various tasks, which proves to be instrumental for
MTL on the HIU tasks.

• Our HIU-DMTL framework outperforms contemporary
hand mesh recovery approaches [19, 16, 4, 70, 72, 34],
and demonstrates new state-of-the-art performances on
widely used benchmarks [68, 73, 50, 74, 46], in terms of
various evaluation metrics.

2. Related Work
Due to the extensive scope of related works, it is hard to

summarize all of them comprehensively. We only discuss
works that are strongly related with our framework settings.

3D Hand Pose Estimation. The pioneering work [73]
firstly applies the deep learning technique to estimate the
3D hand pose from a single RGB image. Since then, 3D
hand pose estimation draws a great deal of attention from
the community [38, 35, 5, 24, 48, 65, 6, 55, 71, 47, 13].
Those methods either target to solve the perspective ambi-
guity problem by introducing geometry-constraints of hand
articulation [73, 38, 35, 47], to investigate intricate learn-
ing strategies to achieve better performance [48, 24, 5, 65,
6, 55, 13], or to tackle the challenge of lacking sufficient
high-quality hand data [73, 35, 65, 71]. Despite the signifi-
cant progress have been achieved, estimating 3D hand pose
from a monocular RGB image remains to be challenging,
and the lacking of sufficient well-labeled data is still one of
the main obstacles.

Hand Mesh Recovery. Besides the hand pose estima-
tion, hand mesh recovery is another essential and active
research topic. One line of works focus on reconstructing
the hand mesh representation in a general situation. For
instance, some works [4, 1, 70, 74, 27, 72, 63] capture
the hand mesh representation by regressing the generative
hand model MANO’s parameters, while others [16, 34, 8]
instead turn to estimate the 3D mesh vertices directly in
order to learn nonlinear hand shape variations. Another
line of works [19, 2, 22] attempt to reconstruct the hand
mesh in the hand-object interaction environment, in which
the hand and object are reconstructed jointly by introduc-
ing interactive relationship constraints. Though the above
approaches can recover reasonable hand mesh in experi-
mental benchmarks, in practice, we find that approaches
[4, 19, 34, 16, 70, 72, 10], with the publicly released code
and pre-trained model, do not work well across different
datasets or generalize well to the real-world situations.

Multi-Task Learning. Multi-task learning (MTL) is
one methodology to improve the performance of tasks by
utilizing the limited training samples and sharing the ben-
eficial information among all tasks, which has been suc-
cessfully adopted in many domains [11, 17, 45]. One
broadly employed MTL method is hard-parameter shar-
ing, which trains one shared encoder, followed by multi-
ple task-specific decoders for different tasks. Some of them
also further design a decoder-fusing module to distill infor-
mation of different tasks to refine the final tasks’ predic-
tion. Recent works [43, 39, 31, 56, 58, 12, 9] have applied
such multi-task framework into pose estimation tasks and
achieved state-of-the-art performance. Our approach fol-
lows general settings of previous multi-task learning meth-
ods, which makes use of an encoder, several certain task-
specific decoders, and a features fusing module. Solving
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Figure 2. Framework Architecture. The whole pipeline follows the classical cascade coarse-to-fine design paradigm, which consists of
two main components: (1) a novel multi-task learning backbone aiming to estimate heat-maps that encode the 2D hand pose, to learn
the hand segmentation mask, and to generate the POF encoding that covers 3D information, (2) the regressor heads aiming to regress 3D
parameters Θ = {θ, β,R, T}, based on the multi-task features, of the parametric hand model MANO [44] and the perspective camera.

HIU tasks under cascade multi-stack MTL framework still
remains less explored in community, our work demonstrates
such combination can achieve SOTA performance.

3. Framework
The primary goal of this work is to design a unified

framework to provide comprehensive information of the
hand object from a single RGB image, including 2D hand
pose, 3D hand joints, hand mask, and hand mesh represen-
tation. To achieve this goal, a multi-stacked multi-branch
backbone is designed to learn various elementary repre-
sentations of hand object, then the mesh reconstruction is
achieved by estimating parameters of the parametric model
MANO [44] based on the elementary representations. The
whole framework is illustrated in Figure 2.

3.1. Backbone

The backbone consists of a stem module and several
MTL blocks sharing the same structure. Each MTL block
consists of an encoder that is shared by all task-specified de-
coders in that block, several certain dedicated decoders that
aim to tackle individual primary task, and a TAM that ag-
gregating features across various tasks. In practice, we take
the 2D hand pose, the hand mask, and the POF encoding as
the learning target of the intermediate elementary tasks.

Stem Module. The stem module aims to extract low-
level semantic features that are shared by succeeding mod-
ules. To keep the stem module as simple as possible
while be capable of covering sufficient information, we
implement the stem module with two 7 × 7 convolution
layers with stride 2, which may quickly downsample the
feature-maps to reduce the computation while obtaining
wide enough receptive field.

Encoder. The encoder targets at generating high-level
features to support various individual tasks, which takes
the low-level features from the stem module and the aggre-

gated high-level representations from the preceding TAM
together as inputs. For the first MTL block (denoted as stack
1 in Figure 2), since no preceding MTL block exists, the
high-level semantic features remain 0 with a proper size.

Heat-Map Decoder. The purpose of heat-map decoder
branch is to perform 2D hand pose estimation. Similar
to recent methods [5, 16, 4, 70, 72, 34], we employ the
2D Gaussian-like heat-maps H ∈ RK×H×W to encode
the 2D hand pose, where K indicates the number of joints
and {H,W} are the resolution size. Each key point cor-
responds to a heat-map. The pixel value at (x, y) is de-
fined as exp{− (x−x̂)2+(y−ŷ)2

2σ2 }, where the (x̂, ŷ) refers to
the ground-truth location, corresponds to the confidence
score of the key point locating in this 2D position (x, y).
With this heat-map, one may derive the kth key point with
argmax{h,w} H(k,h,w), or in a differentiable form,

H∑
h=1

W∑
w=1

H(k,h,w)(h,w)/

H∑
h=1

W∑
w=1

H(k,h,w). (1)

Mask Decoder. The hand mask branch proves to be in-
dispensable in HIU tasks, because the segmentation mask
may further boost the performance of key point detection
and vice versa [57, 69, 20]. More importantly, the hand
mesh may deform to best fit joint locations and may ig-
nore hand geometrical properties, leading to an unreason-
able hand mesh representation when imposing supervision
over 2D/3D hand pose only [4, 70, 72]. Fortunately, the
mask branch not only exploits samples that are labeled with
masks which lead to better performance, but also refines the
hand mesh and camera parameters by penalizing the mis-
alignment errors between the rendered mask and the esti-
mated segmentation mask via self-supervised learning.

POF Decoder. To bridge the gap between the 2D se-
mantic features and the 3D information, we introduce the
part orientation field (POF) to encode the 3D orientation
of the articulated structure in 2D image space. In practice,
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Figure 3. Task Attention Module. The figure illustrates the data
flow of the task attention module, where Fgp and Ffc represents
the global average pooling and the fully connected layers.

we introduce the standard hand skeleton hierarchy S data
structure, which consists of a set of ‘(parent, child)’ pairs.
For a specific bone (A,B) ∈ S, where A and B are two
joints, and denote

−−−→
AB3d and

−−−→
AB2d as the normalized ori-

entation from joint A to joint B in 3D and 2D domain re-
spectively. Then, for the bone (A,B), its POF, represented
as L(a,b) ∈ R3×H×W , encodes the 3D semantic informa-
tion as a 3-channel feature-map, and the value of La,b at
location x is defined as,

L(a,b)(x) =

{
(
−−−→
AB2d,

−−−→
AB3d.z) x ∈ bone

0 otherwise.
(2)

We shall point out that, POF values are non-zero only for the
pixels belonging to the current target bone part, and we em-
ploy a different but more appropriate definition, comparing
with [61], because our POF encoding can exploit numerous
wild training samples with only 2D labels.

Task Attention Module. The TAM aims to bring to-
gether semantic features across individual tasks, which
can be formalized as a transformation, RN×C×H×W 7→
RC×H×W , where N refers to the number of tasks, and
{C,H,W} denotes the spatial resolution of the feature-
maps. Figure 3 demonstrates the structure of TAM (with
N = 2 for simplicity). Frankly speaking, our design is
motivated by SKNet [29], but with several meaningful and
reasonable modifications from original setting. The begin-
ning element-wise addition step is replaced by a global av-
erage pooling and a feature concatenation. Such modest
but necessary adjustments make the TAM more suitable to
select critical semantic features among various tasks at the
expense of additional but negligible computation burden.

3.2. Regressor Heads

The goal of the regressor heads is to reconstruct the hand
mesh surfaces. To achieve this goal, we exploit the gener-
ative hand model MANO[44], and estimate the parameters
of MANO that governs the mesh representation.

The mesh surface of MANO can be fully deformed and
posed by the shape parameters β ∈ R10 and pose param-
eters θ ∈ R15×3, where β models hand shape and θ rep-
resents joints rotation. Given a pair of parameter {β, θ},
the shape deformation BS(β) : R10 7→ RN×3 outputs the
blended shape to characterize the identity subject and pose

deformation BP (θ) : R15×3 7→ RN×3 is applied to the
mean template T̄. Then we can obtain final mesh by ro-
tating each bone part around joints J(β) with the standard
blend skinning function W (·):

M(β, θ) = W (T (β, θ), J(β), θ,W), (3)
T (β, θ) = T̄ +BS(β) +BP (θ), (4)

where W refers to the skinning weights.
In the skinning procedure, not only the hand mesh can

be obtained, but also the 3D hand joints can be achieved by
rotating joints J(β) with the pose parameters θ. Thus, an
alternative way to estimate 2D hand pose is to project 3D
hand joints with proper camera parameters. Particularly, in
this work, we assume an ideal pinhole camera setting, with
the projection matrix represented as,

Q =

 f 0 p0
0 f q0
0 0 1

 , (5)

where f is the focal length and (p0, q0) is at the image cen-
ter position, making f the only unknown variable.

Note that, instead of replicate K regressor heads with
stand-alone training parameters, we make the K regressors
share a global group of training parameters, similar to the
strategy adopted in [60].

3.3. Training Objective

The differentiable property of the backbone, regressor
heads and MANO makes our HIU-DMTL framework end-
to-end trainable. The overall loss function can be divided
into three categories, targeting at backbone training, the re-
gressor heads optimizing, and self-supervised learning (loss
weights are ignored in the following discussions).

Training the Backbone. The target of the backbone is
to derive certain kinds of instrumental representations from
the hand image, including the 2D heat-maps, hand mask,
and the POF encoding. To train the backbone, the outputs of
three branches in every MTL block are directly supervisely
trained. Specifically, the training objective is defined as:
Lbackbone = Lhm + Lpof + Lseg , where Lhm makes the
estimated heat-maps close to the ground truth, the Lpof as
well. And the Lseg makes use of the classical cross-entropy
loss often used in semantic image segmentation task.

Training the Regressor Heads. The regression mod-
ule aims to regress the camera parameters {R, T} and
mesh parameters {β, θ} of MANO. However, it is imprac-
ticable to obtain the ground-truth labels. Fortunately, the
regressors can be trained with widely-available samples
with 3D/2D annotations through weakly-supervised learn-
ing. Concretely, the loss function comprises three terms,
Lregressor = L3d+L2d+Lmask, where L3d measures the
orientation similarity between the estimated bones and the
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Figure 4. Qualitative Evaluation. The first column exhibits the RGB inputs that cover widely used benchmarks [68, 73, 74, 46] (2nd - 5th
rows) and wild situations (1st row). The following columns demonstrate the reconstruction results of ours, [34], [72], [70], [19], [4], and
[16] respectively. To make a fair comparison, all methods are evaluated on the public available pre-trained checkpoints.

ground-truth bones in aforementioned skeleton hierarchy S,
while L2d and Lmask refer to the re-projection loss of 2D
joints and hand mask, as in [4, 70, 16].

Achieving Self-Supervised Learning. For a well re-
constructed hand mesh, the projected mask shall be con-
sistent with the silhouette, and such constraint has been ex-
ploited when training the regressor heads. However, more
implicit constraints shall be maintained among the reason-
able predictions. For instance, the rendered hand mask shall
match the mask estimated by the backbone; the coordinates
of the re-projected hand pose shall be close to the one in-
ferred from the heat-maps of the backbone. Such consisten-
cies enable us to exploit unlabeled hand images to achieve
self-supervised learning. In practice, the re-projected differ-
entiable hand mask is obtained via differentiable renderers
contained in Pytorch3D [42], and Equation 1 is adopted to
derive the differentiable 2D pose from the heat-maps.

4. Experiments
To demonstrate the effectiveness of our HIU-DMTL

framework, we first present qualitative comparison over our
recovered hand mesh with the results from recent works.
We then quantitatively evaluate the superiority of HIU-
DMTL on 2D/3D hand pose estimation, hand mask segmen-

Figure 5. Comparisons between HIU-Data and FreiHAND
dataset. The first three columns demonstrate samples from the
HIU-Data, and the last three columns present examples in Frei-
HAND [74]. For each sample, the center cropped hand image, the
segmentation mask, and the 2D hand pose are visualized.

tation, and hand mesh reconstruction tasks over several pub-
licly available datasets. Finally, we perform several ablation
studies to evaluate the importance of different design strate-
gies and analyze the impact of the hyper-parameters. Due
to the limited space, the implementation details of exper-
iments are provided in the supplemental materials, please
refer it for more details.

4.1. Experiment Settings

Datasets. We mainly leverage two kinds of datasets,
i.e., publicly available benchmarks and our newly annotated
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Figure 6. Mesh Recovery Results. We demonstrate the perfor-
mance of our method under several typical challenging scenarios.
For each sample, the overlay results between reconstructed hand
and input image, and the side-view rendering results are presented.

Method DeepLab v3 [7] Fast-SCNN [40] HIU-DMTL
mIoU ↑ 96.6% 96.2% 97.5%

Table 1. Hand Segmentation. The table presents the mIoU of [7],
[40], and our HIU-DMTL on HIU-Data.

dataset. For public datasets, we evaluate our method on
CMU Panoptic Dataset (CMU) [46]; the Rendered Hand
dataset (RHD) [73]; the Stereo Hand Pose Tracking Bench-
mark (STB) [68]; the FreiHAND [74]; and the Dexter Ob-
ject (Dexter) [50] dataset. Since no accessible datasets con-
tain high-quality hand masks, making it difficult to perform
training directly on aforementioned HIU tasks.

HIU-Data. Regarding above concern, we manually col-
lect 33,000 hand images in challenging scenarios to be our
new dataset, namely HIU-data, For each sample, both the
2D hand pose and hand mask are manually annotated rather
than generating approximate labels automatically as did in
[74, 61, 66]. As Figure 5 demonstrates several samples
with the corresponding labels, one may observe that our
dataset achieves better annotation accuracy than the newest
released automatically annotated FreiHAND [74] dataset.

4.2. Qualitative Evaluation

To visually evaluate the quality of the recovered hand
mesh representation and the robustness of HIU-DMTL in
various cases, we illustrate several representative samples in
Figure 4 and Figure 6. As shown in Figure 4, the recovered
hand mesh of HIU-DMTL have better overlays with the in-
put image than the those reconstructed by other contempo-
rary approaches [34, 72, 70, 19, 4, 16]. Furthermore, HIU-
DMTL demonstrates superior robustness and generalization
capability on in-the-wild unseen images, which is infeasible
for previous existing methods. For example, Figure 6 shows
that our method is robust enough to conduct hand meshes
recovery in several challenging situations, such as exag-
gerated hand articulations, extremely unconstrained cam-
era views, the existence of image truncations, heavy self-
occlusions, and hand object interaction.

4.3. Quantitative Evaluation

We quantitatively evaluate the superiority of HIU-
DMTL on 2D/3D hand pose estimation, hand mask segmen-
tation, and hand mesh reconstruction tasks respectively.

Comparisons of 3D Hand Pose. To be consistent with
[4, 70, 19, 16, 72], 3D PCK is adopted to evaluate the per-
formance of 3D hand pose estimation. All the compari-
son methods are evaluated on STB, RHD, Dexter, and Frei-
HAND datasets, and Figure 7 reports the overall experimen-
tal results. On the STB dataset, the 3D PCK curves remain
intertwined because the STB dataset is relatively small and
lacks diversity. Our method achieves competitively results
among newly launched approaches [4, 70, 16, 65, 1, 61, 71],
which is reasonable when considering the saturated perfor-
mance on this dataset [70, 72, 61, 64, 24]. On the RHD
dataset, which is relatively complex and more diverse, our
method outperforms all existing approaches [27, 70, 1, 16,
65, 71] and achieves state-of-the-art performance. On the
Dexter Object dataset, our method dramatically outper-
forms existing works [2, 61, 1, 24, 35] and remains com-
parable with [50], which exploits additional depth infor-
mation to calibrate the joint locations. On the FreiHAND
benchmark, our approach outperforms contemporary meth-
ods [19, 4, 74] by a large margin, and obtains slightly better
performance comparing with [34], while [34] exploits the
additional ground truth hand mesh to fulfill mesh recovery.

Comparisons of Hand Mesh. We perform apple to ap-
ple comparison with these approaches [34, 72, 70, 16, 4,
19], containing accessible source code/checkpoint, which
are focused on hand mesh recovery task under various eval-
uation metrics. Specifically, we take the IoU PCK of the re-
projected mask, the 2D PCK of re-projected hand pose, and
the 3D PCK of per-vertex reconstruction error as the eval-
uation metrics, and evaluate the aforementioned methods
on the HIU-Data, CMU, and FreiHAND, as shown in Fig-
ure 8. Regarding the 2D PCK of the re-projected 2D hand
pose, our method outperforms [34, 72, 70, 16, 4, 19] by a
wide margin. Regarding the IOU PCK of the re-projected
hand mask, our approach retains a significantly higher PCK
score, which is also already demonstrated in Figure 4 that
our recovered hand mesh overlays with the input images
better. Regarding the 3D PCK of per-vertex reconstruction
error, our framework obtains the minimum misalignment,
comparing to [34, 74, 4, 19]. Note that the method [34]
additionally exploits the ground truth hand mesh in Frei-
HAND dataset for training.

Comparisons of Hand Mask. For the hand mask seg-
mentation, we compare our approach with general SOTA
segmentation methods [7, 40]. Table 1 reveals that our
method is more suitable than general sophisticated ap-
proaches for the task of hand mask segmentation. As the
certain representative samples shown in Figure 9, our ap-
proach can estimate a precise mask even in the texture area
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Figure 7. Quantitative Evaluation. The plots present the 3D PCK on the STB, RHD, Dexter, and FreiHAND datasets, respectively.
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Figure 8. Quantitative Evaluation. The figures demonstrate the 2D PCK of the re-projected hand pose on HIU-data, IOU PCK of the
re-projected hand mask on HIU-data, 2D PCK of the re-projected hand pose on CMU, 3D per-vertex PCK on FreiHAND, respectively.

Input Ours DeepLab
V3

Fast-SCNN GT

Figure 9. Hand Segmentation. The figure presents several results
of mask segmentation task from our HIU-DMTL, [7], and [40].

with high-frequency, which is incapable in [7, 40]. Besides,
[7, 40] may generate unreasonable hand masks that violates
the biomedical appearance of hand. However, our approach
can avoid such a dilemma by fully exploiting SSL and using
priors that are comprised in hand mesh.

4.4. Ablation Study

The superior performance of HIU-DMTL mainly at-
tributes to the cascaded design (CD) paradigm, the multi-
task learning (MTL) setup, the task-attention module
(TAM), and the self-supervised learning (SSL) strategy.
In this section, we perform ablation studies to better un-
derstand the importance of these different design choices.
Also, the ablation studies deeply analyze the impact of some
parameters related with network structure, such as the num-

2D Pose 2D Pose† Hand Mask Hand Mask† 3D Pose Hand Mesh
4-Stack 0.866 0.704 0.974 0.770 0.860 0.856
2-Stack 0.857 0.701 0.969 0.765 0.857 0.853
1-Stack 0.837 0.686 0.948 0.752 0.852 0.842

Table 2. Ablation of CD Paradigm. The table presents the ab-
lation results across different stacking arrangements under vari-
ous evaluation metrics, where † indicates inferring the pose/mask
by projecting the 3D pose/mesh with proper camera parameters.
The 3D hand pose/mesh are quantified on FreiHAND benchmark,
while the 2D pose/mask are evaluated on the HIU-Data, since the
quality of masks in FreiHAND benchmark is not good enough.

ber of the network stack in our framework.
Cascaded Design Paradigm. The CD paradigm has

been widely adopted in 2D pose estimation task [36, 60, 53,
54], while the multi-branched cascaded MTL design for
HIU tasks remains less explored. Similar to [36], we in-
vestigate the impact of the number of MTL blocks. Specif-
ically, we construct three models, which contain 1, 2, and
4 MTL blocks respectively. Meanwhile, the three models
are designed to have similar FLOPs for a fair comparison.
As shown in Table 2, changing from 1 stack to 4 stacks, the
performance of 2D hand pose and hand mask tasks can im-
prove substantially. We also investigate how performance
improves, according to the increases of MTL block. Table
3 presents the performance of each intermediate stack in a
8-stack HIU-DMTL framework, where we take same eval-
uation metrics as in Table 2. We can conclude that from
stack 1 to stack 4, the performance increases rapidly, and
then this growth trend gradually flattened in later stacks.
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Stack 2D Pose 2D Pose† Hand Mask Hand Mask† 3D Pose Hand Mesh
Stack-1 0.818 0.661 0.915 0.712 0.824 0.819
Stack-2 0.855 0.685 0.954 0.744 0.845 0.834
Stack-3 0.865 0.700 0.968 0.764 0.854 0.847
Stack-4 0.867 0.704 0.975 0.769 0.857 0.853
Stack-5 0.867 0.706 0.975 0.771 0.859 0.855
Stack-6 0.868 0.706 0.976 0.773 0.860 0.857
Stack-7 0.869 0.705 0.976 0.771 0.861 0.857
Stack-8 0.870 0.707 0.977 0.773 0.861 0.859

Table 3. Ablation of Intermediate Stacks. The table presents the
performance of the intermediate stacks under various evaluation
metrics, where † shares similar definition as in Table 2.

2D Pose Hand Mask Hand Mesh 2D Pose Hand Mask 3D Pose Hand Mesh

✓ ✗ ✗ 0.752 - - -
✗ ✓ ✗ - 0.863 - -
✗ ✗ ✓ - - 0.802 0.801
✓ ✓ ✗ 0.791 0.875 - -
✗ ✓ ✓ - 0.891 0.816 0.813
✓ ✗ ✓ 0.795 - 0.812 0.808
✓ ✓ ✓ 0.802 0.907 0.821 0.817

Table 4. Ablation of MTL Setup. The table presents the compar-
isons of different task combinations on FreiHAND dataset.

Multi-Task Learning Setup. Table 4 reports the in-
fluences of jointly learning the hand mask segmentation,
2D hand pose estimation, and hand mesh recovery tasks.
One may observe two conclusions: first, when jointly train-
ing of any two tasks together, each task’s performance is
better than training any stand-alone task; second, when
jointly learning the whole three tasks, each task’s perfor-
mance is better than when training in any other configura-
tions. This is because the aforementioned relationship con-
straints among elementary tasks can improve performance
with each other. For instance, the priors comprised in the
hand mesh can correct the unreasonable estimations of hand
mask/pose that violate the hand’s biomedical appearance.

Task Attention Module. To investigate the effective-
ness of the TAM, we conduct ablation experiments on 2D
hand pose estimation, hand mask segmentation tasks over
the HIU-Data, as well as 3D hand pose regression, hand
mesh recovery tasks on the FreiHAND benchmark. For the
baseline model without the TAM, we employ a concatena-
tion followed by a 3×3 convolution to aggregate the feature-
maps from individual tasks. As shown in Table 5, we com-
pare the baseline with and without TAM module in 1-stack
and 4-stacks setting. As we can see, the TAM significantly
improves the performance of individual tasks in both single-
stack mode and multi-stacks mode, which means TAM is
not only beneficial to the aggregation of feature representa-
tions for regressor branch but also helpful to the transition
of feature representation between cascaded stacks.

Self-Supervised Learning Strategy. To verify the ef-
fectiveness of the SSL paradigm, we take the AUC of 2D
hand pose and hand mask as the evaluation metric and com-
pare the performance of framework with and without SSL.
As plotted in Figure 10 (left), the 2D hand pose retrieved
from the backbone and 2D hand pose that derived from pro-

2D Pose 2D Pose† Hand Mask Hand Mask† 3D Pose Hand Mesh
4-stack 0.866 0.704 0.974 0.770 0.860 0.856
4-stack§ 0.793 0.662 0.957 0.739 0.813 0.808
1-stack 0.837 0.686 0.948 0.752 0.852 0.842
1-stack§ 0.821 0.648 0.935 0.739 0.841 0.826

Table 5. Ablation of TAM. The table presents the ablation results
of the TAM under various evaluation metrics, where § denotes to
not employ the TAM, and † shares similar definition as in Table 2.
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Figure 10. Ablation of SSL Strategy. The plots present the
comparison of with and without applying self-supervised learning
strategy over the various portions of samples that are used for su-
pervised learning, ‡ denotes to apply self-supervised training over
the remaining samples that are not chosen to do supervised learn-
ing, † shares the similar definition as in Table 2.

jecting the 3D hand joints are two factors evaluated in this
comparison. One may observe that: when no samples are
used for supervised training (x=0), the self-learning strategy
can improve baseline performance dramatically. As all sam-
ples are under supervised training mode (x=1), the vacancy
of self-supervised learning results in no influence over fi-
nal performance at all. Similarly, the right side of Figure
10 plots the comparisons of hand mask, which also demon-
strates that SSL strategy can significantly improve the per-
formance of hand mask. The above observations also ex-
plain the generalization capability of HIU-DMTL on un-
seen in the wild images (Figure 6) from another aspect.

5. Discussion
In this work, we proposed a novel cascaded multi-task

learning (MTL) framework, namely HIU-DMTL, to tackle
the hand image understanding tasks in the coarse-to-fine
manner. Our approach can efficiently exploit existing multi-
modality datasets due to the MTL tactics and can harness
enormous in-the-wild images through the self-supervised
learning strategy, making it more practicable than previous
methods. The performance of our HIU-DMTL framework
have been verified by extensive quantitative and qualitative
experiments. Besides, most of the components are well
explored and discussed in various ablation studies, which
make it straightforward to explain why our framework can
achieve good performance over HIU tasks. For further
work, we hope the core designs of our HIU-DMTL frame-
work can be adopted generally to other research domains.
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