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Abstract

The goal of object navigation is to reach the expected
objects according to visual information in the unseen envi-
ronments. Previous works usually implement deep models
to train an agent to predict actions in real-time. However,
in the unseen environment, when the target object is not in
egocentric view, the agent may not be able to make wise
decisions due to the lack of guidance. In this paper, we pro-
pose a hierarchical object-to-zone (HOZ) graph to guide the
agent in a coarse-to-fine manner, and an online-learning
mechanism is also proposed to update HOZ according to
the real-time observation in new environments. In particu-
lar, the HOZ graph is composed of scene nodes, zone nodes
and object nodes. With the pre-learned HOZ graph, the
real-time observation and the target goal, the agent can
constantly plan an optimal path from zone to zone. In the
estimated path, the next potential zone is regarded as sub-
goal, which is also fed into the deep reinforcement learning
model for action prediction. Our methods are evaluated on
the AI2-Thor simulator. In addition to widely used evalu-
ation metrics SR and SPL, we also propose a new evalua-
tion metric of SAE that focuses on the effective action rate.
Experimental results demonstrate the effectiveness and ef-
ficiency of our proposed method. The code is available at
https://github.com/sx-zhang/HOZ.git.

1. Introduction
Visual navigation task requires the agent to reach a speci-

fied goal. Conventional methods usually require spatial lay-
out information, such as maps of the environments, which
can be easily obtained in seen environments while unavail-
able in unseen environments. Therefore, how to efficiently
navigate to the target in unseen environments is typically
challenging.
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Figure 1. Overview of object navigation with HOZ graph. At the
beginning, agent locates at the Current Zone (zone6, blue) and the
goal FloorLamp belongs to Target Zone (zone4, red). The HOZ
graph plans a real-time optimal path (zone6 − zone1 − zone2 −
zone4). Then agent’s next sub-goal is zone1 (green). In the same
way, the agent keeps updating sub-goal until it arrives at the target.
Note that each color implies specific location and direction where
agent can observe similar views.

With the visual input of egocentric observation, previous
works [29, 27, 28] learn a deep reinforcement learning pol-
icy by maximizing the reward. The key challenge in those
works is the generalization to unseen environments [38],
especially when the target is not in the sight. Therefore,
more recent works [40, 9] attempt to embed prior knowl-
edge, such as object graph and relation graph, to improve
the navigation model’s generalization ability. In particular,
Yang et al. [40] construct an object-to-object graph, which
provides correlated objects as auxiliary information to lo-
cate the target object. Their object graph is too general to fit
into specific environments. Additionally, Du et al. [9] pro-
pose to learn object relation graph, which fits the testing en-
vironments better than the general object graph. The above
approaches focus on constructing object-oriented graph to
provide some clues to the navigation when the target is not
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in the view. However, since object relations and spatial lay-
out are usually inconsistent in different environments, the
generalization ability of the above methods are still limited.

Motivated by enhancing the generalization ability of the
navigation model, we carry out this study from two aspects:
1) learning an adaptive spatial knowledge representation
that is applicable to various environments; 2) adapting the
learned knowledge to guide navigation in the unseen envi-
ronments. Besides, regions in larger area are considered
in our knowledge, which are denoted as zones. Compared
with objects, larger zones are more likely to be observed by
agent. Thus our core idea for navigation guidance is zone.

In this paper we propose the hierarchical object-to-zone
(HOZ) graph to capture the prior knowledge of scene layout
for object navigation (see Figure 1). During training, we
construct a general HOZ graph from all scenes, as rooms
in the same scene category have same spatial structures.
Each scene node corresponds to a scene-wise HOZ graph,
whose zone nodes are obtained by matching and merging
the room-wise HOZ graphs. For each room-wise HOZ
graph, each zone node represents a group of relevant ob-
jects and each zone edge models the adjacent probability
of two zones. Then we train a zone-to-action LSTM pol-
icy via deep reinforcement learning in the photo-realistic
simulator AI2-Thor [19]. For each episode, the pre-learned
HOZ graph helps to plan an optimal path from current zone
to target zone, thus deducing the next potential zone on the
path as a sub-goal. The sub-goal is embedded with graph
convolutional network (GCN) to predict actions. Consider-
ing that different environments have diverse zone layouts,
we also propose an online-learning mechanism to update
the general learned HOZ graph according to current un-
seen environment. In this way, the initial HOZ graph will
evolve towards current environment’s specific layout and
help agent to navigate successfully. Note that the update
only holds for an episode and each episode starts from the
initial HOZ graph. In addition to widely used evaluation
metrics Success Rate (SR) and Success weighted by Path
Length (SPL), we also propose a new evaluation metric of
Success weighted by Action Efficiency (SAE) that consid-
ers the efficiency of the navigation action into SR. Our ex-
periments show that the HOZ graph outperforms the base-
line by a large margin. In summary, our contributions are as
follows:

• We propose to learn the hierarchical object-to-zone
(HOZ) graph that captures prior knowledge to guide
object navigation agent with easier sub-goals.

• We propose a new evaluation metric named Success
weighted by Action Efficiency (SAE).

• By integrating HOZ graph into a zone-to-action pol-
icy, the navigation performance can be significantly
improved in SR, SPL and SAE metrics.

2. Related Work
Geometry-based navigation: Conventional navigation

methods typically use a map as reference, whether it is con-
structed in advance or built simultaneously during visual
navigation. [16, 3] utilize the metric-based map to perceive
the environment and [10] keeps updating a probabilistic
chessboard representation during agent’s locomotion. Com-
paratively, [34, 5, 4] adopt coarse-grained topological map,
with nodes showing semantic features and edges reasoning
spatial relationships. [35, 36] both integrate metric-based
map and topological map to improve mobile robot naviga-
tion. [23] constructs an experience graph to deal with long-
term appearance changes. In addition, [12] adopts a belief
map as spatial memory. Rather than relying on a specific
map, our HOZ graph acts as prior knowledge to aid naviga-
tion in unseen environments.

Learning-based navigation: Deep learning has gained
popularity in end-to-end localization, exploration and so on
[12, 34]. As an early try, [25] takes neural networks to
build a hallway follower model in indoor navigation. Nowa-
days, many researches turn to reinforcement learning (RL)
to help agents make action decisions [33, 3, 15]. To im-
prove generalization, [41, 40, 39] all employ Actor-Critic
model [28]. Moreover, [6] learns exploration policies us-
ing an intrinsic coverage reward in imitation learning. [22]
trains a task generator and a meta-learner to learn transfer-
able meta-skills. [7] uses a generative model with prob-
abilistic framework to benefit the similarity calculation of
two observations. [34, 2] propose a waypoint navigation to
find simpler sub-goals. [30] utilizes semantic information
to boost deeper understanding. Meanwhile, [11] puts for-
ward a memory-based policy. They embed each observation
into a memory and perform this spatial-temporal memory
on three visual navigation tasks. [26] proposes a reachabil-
ity estimator that provides the navigator a sequence of target
observations to follow. This line of works mostly treat the
policy network as a black box and train it via RL, whereas
our HOZ graph includes coarse-to-fine inputs of object, re-
gion, and scene, which allows for interpretable navigation.

Goal-driven navigation: This kind of navigation is car-
ried out for subjective purposes, mainly conducted by natu-
ral language instructions or target images. It can be distin-
guished into PointGoal navigation [12, 3] and ObjectGoal
navigation [27, 11, 38, 30, 40, 39]. In particular, some-
times the target may be presented as an image [4, 41]. Our
work focuses on object navigation in unseen indoor en-
vironments. [38] proposes a self-adaptive visual naviga-
tion method to help agent learn to learn in an unseen en-
vironment via meta-reinforcement learning. [9] proposes
an object representation graph to learn the spatial corre-
lations among different object categories, and uses imi-
tation learning to train the agent. A memory-augmented
tentative policy network is used to detect deadlock condi-
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Figure 2. Model Overview. Our model is composed of the hierarchical object-to-zone (HOZ) graph and the zone-to-action LSTM. Given
the target object and current observations, the agent first recognizes the scene category, locates the current zone, and deduces the next sub-
goal zone according to the HOZ graph. The HOZ graph is updated at each timestamp based on the observations of the unseen environment.
The zone-to-action LSTM learns to predict efficient actions based on the concatenated information provided by the HOZ graph.

tions and provides additional action guidance during test-
ing. Recent works have applied knowledge graphs to image
classification [24], segmentation [42], zero-shot recognition
[37] and navigation [40, 39]. [39] proposes Bayesian Rela-
tional Memory that captures the room-to-room prior layout
of environments during training to produce sub-goals for
semantic-goal visual navigation. [40] establishes an object-
to-object graph by extracting the relationships among ob-
ject categories in Visual Genome [20]. While in our work,
we conduct the online-learning hierarchical object-to-zone
(HOZ) graph to serve as prior knowledge for object naviga-
tion, which provides more general regional information.

3. Preliminary Notation

Considering a set of environments Q and objects P , in
each navigation episode, agent is initialized to a random lo-
cation l = {x, z, θyaw, θpitch} in an environment q ∈ Q.
x, z represent the plane coordinate and θyaw, θpitch repre-
sent the yaw and pitch angle (of the agent). At each times-
tamp t, agent learns a policy function π (at|ot, p), which
predicts an action at ∈ A based on first-person view ot and
the target object p ∈ P . The discrete action space A =
{MoveAhead,RotateLeft,RotateRight, LookDown,
LookUp,Done}. Note that the action Done is judged by
the agent itself rather than informed by the environment.
The success of object navigation task requires agent finally
capturing and getting close to the target object (less than a
threshold).

4. Hierarchical Object-to-Zone (HOZ) Graph

Our goal is to navigate agent to the given target with-
out a precise map in the unseen environment. Thus, a great
challenge in such task is to locate objects. Previous works
[9, 38, 40] directly take the target object embedding as the
goal to guide action prediction. However, it’s typically diffi-
cult to plan an efficient path without prior knowledge about
the unknown environment. The agent in those works might
not find the path at the beginning, leading to some meaning-
less actions, such as frequently spinning around and back-
ing. In order to provide stronger guidance, our navigation
model considers a wider range region where the target ob-
ject may be located, which is denoted as zone.

Each zone usually consists of a group of relevant objects.
For instance, microwave, cooker and sink usually appear in
the same zone. Thus, navigating to microwave may first re-
quire locating such zone. Since precise map information is
not available in the unseen environment, how to collect suit-
able zones information and construct a hierarchical object-
to-zone (HOZ) graph remains challenging. Therefore, we
start from seen scenes to construct HOZ graph (Section 4.1)
and later adaptively update it when navigating in the unseen
scenes (Section 4.2).

We consider the zones from the following hierarchical
structure. Our environments consist of several scenes, such
as bedroom, living room, and kitchen, etc, and each scene
contains several rooms. In each room i ∈ {1, 2, . . . , n} , we
get room-wise HOZ graph Ωi (Vi, Ei), whose zone nodes
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Algorithm 1 Scene-wise HOZ graph construction
Input: K: zone number
Input: (Room1, . . . , Roomn) of same scene category

1: Create room-wise HOZ graphs set Ω
2: for i← 1 to n do
3: Get features and locations [(f1, l1), · · · , (fd, ld)]

in Roomi by agent with random exploring
4: Create a graph Gr(Vr, Er)
5: (C1, · · · , CK)← K-Means(f1, · · · , fd,K)
6: Vr ← cluster centers (C1, · · · , CK)
7: Er ← calculate edges with Equation 1
8: Add room-wise HOZ graph to Ωi ← Gr(Vr, Er)
9: end for

10: Create scene-wise HOZ graph Gs(Vs, Es)
11: Initialize Gs(Vs, Es)← Ω1

12: for i← 2 to n do
13: Create weighted bipartite graph Gb(V b, Eb)
14: V b ← Vs (all nodes of Gs), Vi (all nodes of Ωi)
15: ω(Eb)← calculate similarity by Equation 2
16: Perfect matching Ψ∗ ← Kuhn-Munkres( ω(Eb) )
17: Update Gs ← Avg(Gs,Ωi, Ψ

∗) refer to Figure 3
18: end for
Output: scene-wise HOZ graph Gs(Vs, Es)

are obtained by clustering the egocentric observation fea-
tures and edges are defined as the adjacent probability of
two zones (traced back to co-occurrence probability of each
contained objects). Then we fuse these room-wise HOZ
graphs grouped by scene to obtain scene-wise HOZ graphs
Gs (Vs, Es). All scene-wise HOZ graphs have the same
structure and constitute our final HOZ graph (Section 4.1).

4.1. HOZ Graph Construction

4.1.1 Room-wise HOZ graph

Similar scenes (e.g. “living room”) may consist of common
objects and object layouts [14, 43]. For instance, when re-
ferring to the living room, an area composed of sofa, pillow
and table, or an area composed of TV set and TV cabinet
may appear in our mind. When searching for an object, hu-
mans tend to first locate the typical area where the object
most likely to appear. In our work, we denote such areas
as zones and embed zones to guide agent. In order to ob-
tain those representative zones, we sample visual features
around the room and make a clustering on them.

In a specific room i, we first let the agent explore the
room to collect a set of visual tuple features (f, l), where
f ∈ RN×1 is a bag-of-objects vector obtained by Faster-
RCNN [32], representing the objects that appear in the
current view. It should be noticed that we use the bag-
of-objects vector composed of 0 and 1 to represent the
object category. If the current view contains many ob-

jects belonging to the same category, we only record them
once. N denotes the number of object categories, and
l = {x, z, θyaw, θpitch} denotes the observation location
defined in Section 3. Then we make K-Means clustering
on features f to get K zones, forming the zone nodes in
room-wise HOZ graph Ωi (Vi, Ei). We use vk and δ (vk)
to represent the k-th zone node and its embedded feature.
The embedded feature represents the cluster center, which
is calculated by δ (vk) =

1
|zonek|

∑
(fγ ,lγ)∈zonek

fγ , where
zonek is a group of clustered visual tuple features (f, l) af-
ter K-Means, and |zonek| is the element number. Each di-
mension’s value of δ (vk) shows the connection relationship
between the zones layer and objects layer (Figure 2), repre-
senting the co-occurrence frequency of objects belonging to
the zonek.

The edge e (vk, vj) in the zones layer, represents the
probability that two zones are adjacent to each other, which
can be calculated as follows:

e (vk, vj) =

∑
(fγ,lγ)∈zonek

∑
(fζ,lζ)∈zonej

η(lγ ,lζ)

|zonek|×|zonej |

η (lγ , lζ) =

{
1 |xγ − xζ |+ |yγ − yζ | ≤ ε

0 otherwise

(1)

where ε is a hyper-parameter threshold. Then we use
all node features to recognize the scene category. For each
room i, we construct a room-wise HOZ graph Ωi (Vi, Ei).

4.1.2 Scene-wise HOZ graph

To obtain scene-wise HOZ graph, we group all room-
wise HOZ graphs by scene category. Take one scene
as an example, we can obtain the room-wise set Ω =
{Ω1 (V1, E1) , . . . ,Ωn (Vn, En)}. Since the zones num-
ber K is fixed, each room-wise HOZ graph has the same
structure for later matching and merging. Considering that
directly computing the maximum matching of all room-
wise HOZ nodes is expensive, we propose pairwise per-
fect matching and merging on two graphs each time un-
til all graphs merge into the final one. The matching be-
tween Ωi (Vi, Ei) and Ωi+1 (Vi+1, Ei+1) graphs can be re-
garded as the weighted bipartite graph matching. We con-
struct a bipartite graph Gb =

(
Vi ∪ Vi+1, E

b
)
, where Vi

is the nodes set in Ωi, |Vi| = |Vi+1|, and Eb represents
all fully connected edges. A perfect matching is to find
a subset Ψ ⊆ Eb, where each node has exactly one edge
incident on it. The maximum perfect matching satisfies
Ψ∗ = argmax

Ψ

∑
eb∈Ψ ω

(
eb
)
, where eb ≡ eb (vk, vj)

represents the edge matching nodes vk and vj , vk ∈ Vi,
vj ∈ Vi+1. The weight function ω(eb) calculates the simi-
larity of two nodes as

ω
(
eb (vk, vj)

)
= 1/d (δk, δj) (2)
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Figure 3. Matching and Merging. The left part shows the per-
fect maximum matching on weighted bipartite graph with Kuhn–
Munkres algorithm. The right part shows the average calculation
of merging two matched room-wise HOZ graphs into a new graph.
For instance, two nodes (in red) are matched, and merged with av-
erage pooling (written as Avg). Correspondingly, edges between
these nodes are merged with average pooling.

and d (δk, δj) is defined as

d (δk, δj) =

√
(δk − δj)

T
(δk − δj) +

1

δTk δj + α
(3)

where δk ≡ δ (vk), δj ≡ δ (vj). α is a parameter to
balance the two distances. We utilize the Kuhn–Munkres
algorithm [21, 31] to solve this perfect maximum match-
ing problem. Once getting the perfect matching, we av-
eragely merge the matched nodes and edges as shown in
Figure 3. The newly generated edge is the average of orig-
inal edges between nodes involved by the new nodes. In
this way, we can fuse room-wise HOZ graphs two-by-two
each time and finally get the compositive graph, which is
defined as scene-wise HOZ graph Gs (Vs, Es). Algorithm
1 summarizes the construction of scene-wise HOZ graph.
All scene-wise HOZ graphs constitute our final HOZ graph.

4.2. HOZ Graph Updating and Embedding

4.2.1 Zone Updating and Embedding

With all training data, we can obtain a general HOZ graph
G (V,E) for the seen environments. Since different envi-
ronments have various layouts, especially in the new unseen
environment, it is difficult to construct a precise graph from
scratch. Therefore, we first learn a general HOZ graph, and
then propose an online-learning method to update current
zone node according to agent’s real-time view. In this way,
the initial HOZ graph will evolve towards current environ-
ment. Note that the zone update only holds for an episode
and each episode starts from the initial HOZ graph.

Through object detection, the agent obtains a bag-of-
objects feature ft ∈ RN×1 for object categories appear-

ing in the egocentric view ot at timestamp t. According to
the visual feature ft, target object p ∈ P and HOZ graph
G (V,E), the agent calculates the current zone Zc, target
zone Zt and sub-goal zone Zsub, which will be detailed in
Section 5.1. These zone indicator vectors Zc, Zt, Zsub ∈
RK×1 are one-hot vectors that only activate representative
zones. The proposed HOZ graph G (V,E) is embedded
with GCN. At time t = 0, the input matrix δ

(
V 0

)
∈ RK×N

represents embedded features for all zone nodes V . Then
δ (V t) will be updated based on ft, which can be formu-
lated as

δ
(
V t

)
= λZcf

T
t +

(
I − λZcZ

T
c

)
δ
(
V t−1

)
(4)

where λ is a learnable parameter that determines the cur-
rent observation’s impact on the general HOZ graph. Fol-
lowing [18], we perform normalization on edges E and ob-
tain Ê. With updated zone nodes δ (V t), adjacent rela-
tionship Ê, our GCN outputs a node-level representation
Hz ∈ RK×N as the zones embedding

Hz = σ
(
Êδ

(
V t

)
Wz

)
(5)

where σ (·) denotes the ReLU activation function, and
Wz ∈ RN×N is the parameter of GCN layers. Then we take
the encoded vector HT

z Zsub as the output of zones layer,
which informs agent about the next sub-goal zone and its
relative position to other zones.

4.2.2 Object Embedding

Following [9], we set up objects layer with objects as nodes
and relations between objects as edges, and encode them
with GCN. For current egocentric view, we can get the de-
tection feature Ft =

{
f b
t , f

s
t , f

v
t

}
, where f b

t ∈ RN×4 is
bounding box position, fs

t ∈ RN×1 is confidence score and
fv
t ∈ RN×512 is the visual feature of objects. If multiple

instances belonging to the same category appear simultane-
ously, the one with the highest confidence score provided
by the detector will be selected. Define Xo =

[
f b
t , f

s
t , p

]
∈

RN×6 as the input of GCN, where p ∈ RN×1 is a one-hot
vector representing the target object. The GCN outputs

Ho = σ (AXoWo) (6)

Both the adjacency matrix A and the GCN network pa-
rameter Wo ∈ R6×N need to be learned. Then we integrate
Hof

v
t as the objects embedding, which provides object-

level information.

5. Navigation Policy
5.1. Zone Localization and Navigation Planning

Current zone We compare current view bag-of-objects
vector ft with the nodes in the pre-learned HOZ graph
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Figure 4. Visualization in testing environments. Black arrows represent rotations. The trajectory of the agent is illustrated with green
and blue arrows, where green is the beginning and blue is the end.

G (V,E), and take the most similar node as the current
zone, which can be formulated as

Zc = χK

(
argmin

k
(d (ft, δ (vk)))

)
, vk ∈ V (7)

where χK (·) is an indicator that produces a one-hot vec-
tor χK (i) = [x1, . . . xK ]

T , where xi = 1, xj ̸=i = 0. d (·)
is defined in Equation 3. Then the HOZ graph is updated by
the current zone Zc and the real-time feature ft (Equation
4).

Target zone We take the node with the highest occurrence
probability of the target object as the target zone.

Zt = χK

(
argmax

k

(
δ (vk)

T
p
))

, vk ∈ V (8)

Sub-goal zone To navigate agent from current zone to tar-
get zone, we search for a path with the maximum connec-
tion probability. If an edge has a higher value, the two re-
lated zones are more likely to be adjacent so that agent can
easily arrive. Besides, when the target zone is far away from
the current zone or is not visible in the current view, the
agent may not be well guided. Therefore, we take the sec-
ond child zone starting from the current zone on this path as
the sub-goal zone, which provides information about where
to go next. Our goal is to find an optimal maximum connec-
tivity path Γ = {vτ0 , vτ1 , . . . , vτT }, where τi ∈ {1, . . . ,K}
denotes the node index and vτ0 represents the current zone
and vτT represents the target zone, so that the connection
probability along the path is maximized as:

Γ ∗ = argmax
Γ

ΠT
i=1e

(
vτi−1

, vτi
)

(9)

After obtaining Γ ∗, we can get the sub-goal zone Zsub =
χK (τ∗1 ). Whenever the current zone changes, the network
will adaptively replan an optimal path and a sub-goal zone.

5.2. Policy Learning

Action policy The conventional works [38, 9, 40, 41]
learn a policy π (at|ot, p) based on current observation.
While in our work, we learn a zone-to-action LSTM ac-
tion policy πz (at|St, p), where St is the joint representa-
tion of current observation ot, the sub-goal zone embedding
HT

z Zsub and object embedding Hof
v
t . Following [41, 27]

formulating this task as a reinforcement learning problem,
we optimize the LSTM via the Asynchronous Advantage
Actor-Critic (A3C) algorithm [28] that learns policy func-
tion and value function by minimizing navigation loss Lnav

to maximize the reward. The policy function outputs at,
representing actions probability at each time, and the value
function is used to train the policy network.

Done reminder To remind agent to stop in time when it
encounters the target object, we propose the done reminder.
Combining objects detection confidence fs

t and the target
object p, we weight at with βpT fs

t to represent the effect
of done action (β is a learnable parameter). In this way, we
can get the final action output ât.

6. Experiments
6.1. Experiment Setup

We evaluate our methods on AI2-Thor simulator [19],
which provides near photo-realistic observation in 3D in-
door scenes. AI2-Thor contains a total of 120 scenes in 4
types: living room, kitchen, bedroom, and bathroom, where
spatial layout, object types and appearance are all different.
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Table 1. Comparisons with sub-goal zone and target zone (%). The input of zone-to-action LSTM during training and testing is set to
the sub-goal zone (S) or target zone (T) respectively.

Method Training Testing ALL L ≥ 5
S T S T SR SPL SAE SR SPL SAE

Baseline 57.35±1.92 33.78±1.33 19.02±1.36 45.77±2.17 30.65±1.01 20.04±1.87

HOZ
√ √

70.57±1.11 40.84±1.12 27.19±1.96 61.52±1.47 40.46±0.63 29.61±1.08

HOZ
√ √

69.04±1.07 40.07±1.04 26.19±0.95 59.27±1.33 39.12±0.83 28.34±1.24

HOZ
√ √

69.16±1.15 39.05±0.88 26.04±0.91 60.28±1.42 38.61±0.86 29.08±0.98

Figure 5. Ablation results of zone number. We evaluate the im-
pact of the zone number (cluster number) on navigation metrics
such as SR, SPL, and SAE.

Following the setting in [38], a subset of 22 types of objects
is considered, ensuring that each scene contains at least four
objects. For each scene type, we choose 20 rooms for train-
ing, 5 for validation, and 5 for test.

6.2. Implementation Details

The baseline is the A3C [28] navigation policy with a
simple visual embedding layer to encode inputs. We train
our models with 12 asynchronous workers, in a total of
6M navigation episodes. In policy learning, the agent re-
ceives a−0.01 penalty for each step and a reward of 5 if the
episode is successful. We use Adam optimizer [17] to up-
date our network parameters with a learning rate of 10−4.
ResNet18 [13] pretrained on ImageNet [8] is used as our
backbone to extract the features of each egocentric view. In
the HOZ graph construction, we finetune Faster-RCNN [32]
architecture on 50% training data of AI2-Thor. The hyper-
parameters in our model are initialized to ε = 0.25, α = 0.1
and β = 0.6.

For evaluation, we randomly select agent’s initial start-
ing position and the target object, and repeatedly run 5 tri-
als. We report results (with average and variance) for all
targets (All) and a subset of targets (L ≥ 5) whose optimal
trajectory length is longer than 5.

6.3. Evaluation Metrics

We use Success Rate (SR), Success Weighted by Path
Length (SPL) [1], and Success Weighted by Action effi-
ciency (SAE) metrics to evaluate our model. SR refers to
the success rate of agent in finding the target object, which
is formulated as SR = 1

N

∑N
n=1 Sucn, where N is the to-

tal number of episodes and Sucn is an indicator function
to indicate whether the n-th episode succeeds. SPL con-

siders both the success rate and the path length. It is de-
fined as SPL = 1

N

∑N
i=1 Suci

L∗
i

max(Li,L∗
i )

, where Li is

the actual path length and L∗
i represents the shortest path

provided by the simulator. Although SPL calculates the
proximity between the path and the optimal path, it ignores
the efficiency of action sequence. For instance, unneces-
sary rotations take time and reduce efficiency, which are not
considered in SPL. Therefore, we propose the SAE metric
to measure the efficiency of all actions. It is formulated

as SAE = 1
N

∑N
i=1 Suci

∑T
t=0 I(ai

t∈Achange)∑T
t=0 I(ai

t∈Aall)
, where I (·)

is the indicator function, ait is agent’s action at time t in
episode i,Aall is the set of all action categories andAchange

refers to those actions that can change agent’s location. In
our settings Achange = {MoveAhead}.

6.4. Ablation Study

Effectiveness of sub-goal zones As discussed in Section
5.1, besides the target zone, we also consider the sub-goal
zone. The ablation study respectively trains the policy net-
work with the sub-goal zone and the target zone as illus-
trated in Table 1 line2 and line4. Compared to the tar-
get zone, sub-goal zone can better guide agent efficiently.
Training with the embedding of sub-goal zone outperforms
target zone by 1.41/1.24, 1.79/1.85 and 1.15/0.53 in SR,
SPL and SAE (ALL/L ≥ 5, %) respectively.

Impacts of the number of zones The cluster number is a
hyper-parameter that specifies the zone number in a scene.
Figure 5 indicates that performance is reduced when the
number of zones is either too large or too small. Besides, a
large zone number requires significant computing resources
when planning the path. The results suggest that the opti-
mal number of zones is 8. Therefore, the number of zones
is set to 8 in the remaining evaluations.

Other ablation studies We dissect the proposed HOZ
graph into different components. The ablation study in Ta-
ble 2 demonstrates the efficacy of each component of our
method. Specifically, it is observed that the object layer
significantly improves the baseline performance. Addition-
ally, scene and zone layers can considerably increase the
performance on SPL and SAE metrics. Although the done
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Table 2. The ablation study of different components (%). We evaluate the effect of various modules. These modules include the scene
layer (Scene), the zone layer (Zone), the object layer (Object) in Section 4.2 and the done reminder (Reminder) in Section 5.2.

Baseline Scene Zone Object Reminder All L ≥ 5
SR SPL SAE SR SPL SAE

√
57.35±1.92 33.78±1.33 19.02±1.36 45.77±2.17 30.65±1.01 20.04±1.87√ √
65.12±1.03 37.86±0.93 24.36±0.91 53.42±1.43 35.37±0.71 25.32±1.04√ √ √
65.81±1.11 38.83±0.59 22.45±0.99 57.23±0.93 36.25±0.65 25.53±0.87√ √ √
66.73±1.01 37.82±0.83 24.81±0.84 57.55±1.19 36.48±0.52 27.79±1.07√ √ √ √
70.57±1.11 40.84±1.12 27.19±1.96 61.52±1.47 40.46±0.63 29.61±1.08√ √ √ √ √
70.62±1.70 40.02±1.25 27.97±2.01 62.75±1.73 39.24±0.56 30.14±1.34

Table 3. Comparisons with the related works (%). Constrained
by space, variance is detailed in supplementary materials.

Method All L ≥ 5
SR SPL SAE SR SPL SAE

Non-adaptive method
Random 3.56 1.73 0.41 0.27 0.07 0.06

A3C (baseline) 57.35 33.78 19.02 45.77 30.65 20.04
SP [40] 62.16 37.01 23.39 50.86 34.17 24.35
ORG [9] 66.38 38.42 25.36 55.55 36.26 27.53

Ours (HOZ) 70.62 40.02 27.97 62.75 39.24 30.14
Self-supervised method

SAVN [38] 63.32 37.62 21.97 52.38 35.31 24.64
ORG-TPN [9] 67.31 39.53 23.07 57.41 38.27 26.37

Ours (HOZ-TPN) 73.15 39.22 29.49 64.58 39.80 30.92

reminder decreases the SPL metric, it increases the SR
and SAE metrics, indicating that adding the done reminder
lengthens the episodes. Overall, our method outperforms
the baseline model with the gains of 13.27/16.98, 6.24/8.59
and 8.95/10.10 in SR, SPL and SAE (ALL/L ≥ 5, %). The
experimental results indicate that our method is capable of
effectively guiding navigation in the unseen environments.

In addition, considering that the construction of the
scene-wise HOZ graph may be inconsistent due to differ-
ent merging order of room-wise HOZ graph. We test 20
different merging orders to get the variance of 0.83/0.81,
0.78/0.81, 0.81/0.82 in SR, SPL and SAE (ALL/L ≥ 5, %).
These results indicate that the merging-related potential in-
consistency has little effect on the navigation performance.

6.5. Comparisons to the State-of-the-art

Related works can be categorized into non-adaptive
models [9, 40] and self-supervised models [38, 9]. Com-
pared with the non-adaptive methods in Table 3, our method
outperforms the state-of-the-art by a large margin in SR,
SPL and SAE metrics. Particularly, we obtain the gains
of 4.24/7.20, 1.60/2.98, 2.61/2.61 in SR, SPL and SAE
(ALL/L ≥ 5, %) over the state-of-the-art model [9].

Compared to the non-adaptive models, the self-
supervised models are updated with self-supervision in test.
This self-supervision can somehow improve performance,

but also consume additional computing resources. We also
implement our methods with self-supervision (denoted as
HOZ-TPN). In comparison to HOZ, HOZ-TPN improves
SR but achieves equivalent results in SPL and SAE, which
are more indicative of navigation efficiency. The compar-
ison between HOZ and HOZ-TPN (as well as ORG and
ORG-TPN) demonstrates that while self-supervision may
aid in successfully navigating to target objects, it also in-
troduces additional actions. More experimental results are
detailed in supplementary materials.

Case study Figure 4 qualitatively compares our HOZ
with the baseline model. In these scenarios, the agent is
placed at an initial position where the target object cannot be
seen. The baseline model often falls into rotations when the
target object is not in the view. However, our HOZ method
helps the agent locate the current zone and offers guidance
from the current zone to the target zone, thus the agent has
better performance. Notably, with the guidance of sub-goal
zone , the agent equipped with our HOZ graph can choose
a better rotation direction than the baseline method.

7. Conclusions
We propose the hierarchical object-to-zone (HOZ) graph

that captures the prior knowledge of objects in typical
zones. The agent equipped with HOZ is capable of up-
dating prior knowledge, locating the target zone and plan-
ning the zone-to-zone path. We also propose a new evalu-
ation metric named Success weighted by Action Efficiency
(SAE) that measures the efficiency of actions. Experimen-
tal results show that our approach outperforms baseline by
a large margin in SR, SPL and SAE metrics.
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