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Abstract

In this paper, we propose a novel deep learning frame-
work to reconstruct 3D hand poses and shapes of two
interacting hands from a single color image. Previous
methods designed for single hand cannot be easily ap-
plied for the two hand scenario because of the heavy
inter-hand occlusion and larger solution space. In or-
der to address the occlusion and similar appearance be-
tween hands that may confuse the network, we design a
hand pose-aware attention module to extract features asso-
ciated to each individual hand respectively. We then lever-
age the two hand context presented in interaction to pro-
pose a context-aware cascaded refinement that improves
the hand pose and shape accuracy of each hand condi-
tioned on the context between interacting hands. Exten-
sive experiments on the main benchmark datasets demon-
strate that our method predicts accurate 3D hand pose and
shape from single color image, and achieves the state-of-
the-art performance. Code is available in project webpage
https://baowenz.github.io/Intershape/.

1. Introduction
3D hand pose and shape reconstruction plays an im-

portant role in many applications, such as AR/VR [8] and
robotics [9]. While most of the previous hand pose and
shape reconstruction works [3, 41] are proposed for sin-
gle hand, we study the problem of hand reconstruction for
two interacting hand from single color image, as it is more
desirable to express delicate body language [39] and per-
form complex tasks [18, 25, 36]. However, the prior art
on this topic is barely missing. Existing methods usually
rely on depth sensor [19], multi-view camera system [8] or
optimization over tracked motion sequence [19, 8], which
however are either relative expensive, energy consuming,
or sensitive to the tracking quality and initialization. Com-
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Figure 1. Illustration of interacting hand shape reconstruction from
single color image. Our method can get high-quality reconstruc-
tion under heavy interhand occlusions.

paratively, single color camera setup is more cost and com-
putation friendly, and it is also widely available. Therefore,
we focus on conducting interacting two-hand reconstruction
from single color image (See Fig. 1).

Reusing similar hand reconstruction techniques designed
for single hand for the two-hand scenario is non-trivial.
First, compared to the case with a single complete hand,
two hands are usually heavily occluded and tightly con-
tacting with each other due to the interaction, which are
much harder to parse. Two hands also share similar tex-
tures, which can easily confuse the network to extract fea-
ture from correct regions in the image. Second, the ill-pose
nature of the problem is exacerbated with the degree of the
freedom of the solution space doubled. The model is error-
prone and may produce two hands in unreasonable pose and
shape that people would rarely or be infeasible to present.

Recently, Moon et al. [18] propose a large-scale inter-
acting hand dataset named InterHand2.6M, and present an
interacting hand pose estimation method. However, less
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special design is conducted to handle the characteristic of
two-hand pose estimation problem, and more fine-grained
hand shape reconstruction is also not explored in [18].

To address the above mentioned issues, we propose a
novel deep learning architecture for interacting hand pose
and shape estimation (See Fig. 2). Our network consists of
an encoder that extracts multi-scale features, and a decoder
to gradually refine the prediction with feature at each level.
In the encoder, a per-hand heatmap is estimated and used
to mask the image features, which is particularly effective
to extract the features from correct image regions and pro-
duce accurate prediction for each individual hand. On the
other hand, the decoder is designed to leverage the context
between interacting hands. Instead of optimizing each hand
separately, we refine each hand conditioned on the current
estimation two hands. Our network generates attention map
to reduce feature ambiguity between two hands. Different
from traditional methods that generate attention map from
features in a network, we propose to generate attention map
directly from estimated hand shape. In order to jointly re-
cover hand skeleton pose and shape, we adopt the popular
hand statistical model MANO [27] and predict the MANO
parameters of two hands respectively.

Our main contributions are summarized as follows:

1. We propose a novel deep learning architecture, which
can estimate 3D hand pose as well as fine-grained hand
shapes of the interacting hands from single color im-
age. Our work can also inspire several related re-
searches such multiple person reconstruction, hand-
object interaction reconstruction etc;

2. In order to address the feature ambiguity between two
hands, we propose pose-aware attention modules to
extract the key features for each hand;

3. We leverage the two-hand context presented in interac-
tion and propose a cascaded refinement stage improv-
ing the hand pose and shape accuracy of each hand
conditioned on context of interacting hands;

4. Extensive experiments shows that our method achieves
state-of-the-art performance on the main datasets.

2. Related Work
Single Hand Pose and Shape Reconstruction from Color
Due to the advantage of ubiquity and low power consump-
tion of color image, it is highly desired to recover 3D hand
pose from color images. Prior art works on 3D hand pose
estimation include [42, 31, 11, 38, 30, 4, 5]. Most of the
hand pose and shape reconstruction methods from color
use a parametric model such as MANO [27] to represent
hand shape, and learn the hand shape model parameters
from image. Boukhayma et al. [3] use 2D pose, 3D pose

and hand mask as supervisions to train the hand shape net-
work. Zhang et al. [40] also design a hand reconstruction
network to learn MANO parameters using the predicts 2D
heatmap and the image feature. Zhou et al. [41] estimate
MANO shape parameter from predicted 3D pose. Moon et
al. [17] propose a weakly-supervised model to reconstruct
hand shape, which does not require any ground truth hand
meshes. Different to these methods using MANO model,
Ge et al. [7] present a graph neural network for hand shape
reconstruction, which can capture local geometry details
well. Han et al. [8] propose a tracking-based approach to es-
timate 3D hand poses using four fisheye monochrome cam-
eras. In order to address the lack of large-scale hand recon-
struction dataset, Zimmermann et al. [43] present a multi-
view single hand dataset with both 3D hand pose and shape
annotations. Kulon et al. [14] annotate a hand shape dataset
using model fitting. However, these hand reconstruction
methods are proposed for single hand, and they does not
explicitly address overlapping or interacting hands.

Interacting Hand and Object Shape Reconstruction
Hand shape reconstruction is related to the hand-object
shape reconstruction. Prior art works include [10, 9, 21,
6, 1]. Compared to hand-object shape reconstruction, inter-
acting two-hand reconstruction is more difficult, because it
aims to reconstruct two interacting articulated hands, which
leads to more inter-occlusions, deformations, and motions
of degree-of-freedom. Moreover, for hand-object interac-
tion, the hand and object have additional contact constraints
to model the hand-object relationship. However, for inter-
acting hand reconstruction, two hands may not have con-
tacts and result in larger solution space.

Interacting Hand Pose and Shape Estimation Most of
existing works conduct two-hand reconstruction by multi-
ple cameras [2, 8], a single depth camera [19, 22, 33, 15, 32]
and tracking strategy [22, 15, 35, 29]. Due to the ubiquitous
characteristic of single color image, the methods using sin-
gle color image are more preferable than tracking methods,
methods using multi-cameras and depth camera. Moon et
al. [18] propose the InterHand2.6M dataset for single and
interacting hand pose estimation, and use the dataset to train
a network to predict 2.5D hand poses for two hands. Lin et
al. [16] use a synthetic dataset to learn two-hand pose from
single color image. However, these methods can not achieve
satisfactory two-hand pose estimation results or reconstruct
fine-grained geometry – hand shapes.

Full Body Reconstruction Full body reconstruction
methods [39, 13, 24, 28] implicitly handle two-hand re-
construction. However, these methods require that most of
body parts are visible. Existing full body methods do not
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Figure 2. Illustration of our interacting hand shape reconstruction network. Our network first predict 2.5D heatmap for the joints of the two
hands. Then use three branches to recover MANO model parameters of each hand and the relative transformation of two hands. Finally,
refine the hand shape parameters jointly in a cascaded manner to respect the correlation context between the interacting hands.

contain special modules to handle the distinct characteris-
tics of close hand interaction. Interacting hand reconstruc-
tion is more challenging than full body reconstruction, be-
cause less context of body parts is available to reduce the
reconstruction ambiguity due to interhand occlusions.

Different to these methods, our method presents a novel
deep learning method to predict interacting two-hand pose
and shape from single color image. We adopt a pose-aware
attention module to help the network to learn the features
relevant to each hand. In order to resolve the ambiguity
due to the interhand occlusions, we leverage the context be-
tween interacting hands to refine the pose and shape of two
hands using a cascaded network.

3. Method

In this section, we introduce our model for interacting
two-hand pose and shape reconstruction from a single color
image. An overview of our model is shown in Fig. 2. Our
model starts from a multi-scale feature extractor built upon
ResNet-50 architecture. Inspired by InterHand [18], we pre-
dict a per-joint heatmap for both hands, and inject it to the
encoder for feature extraction. The feature in the lowest res-
olution is then fed into a network to produce an initial esti-
mation for the shape and pose of two hands and their relative
transformation. The shape and pose of two hands are then
jointly refined in a cascaded manner by leveraging features
in high resolutions. This refinement stage learns context be-
tween interacting hands and is effective to improve the hand
reconstruction quality.

3.1. Interacting Hand Representation

We use the statistical hand model MANO [27] to repre-
sent the hand shape and hand pose of two hands. The hand

surface mesh M can be deformed with hand shape parame-
ter β ∈ R10 and hand pose parameter θ ∈ R16×3

M = W (T(β, θ),J(β),W) (1)

where W (·) is skinning function, T is a parametric hand
template shape, J(β) is the hand joint position at the rest
pose, and W is a skinning weight matrix.

For our two-hand interacting scenario, the goal is to pre-
dict MANO parameters including the pose parameters and
shape parameters for both hands, i.e. (βleft, θleft) and
(βright, θright), and the relative translation ∆ and the scale
s between two hands. The output MANO models of our
method are aligned with the root joint of each individual
hand, and the root rotations of both hands are in the camera
coordinate system. We use the output relative translation ∆
and the scale s of our model to merge the hand pose results
from hand reconstruction network of two hands as follows

Jrightleft,i = s(Jleftleft,i + ∆) (2)

where Jrightleft,i and Jleftleft,i are the left hand joints in the right
hand coordinate system and the left hand joints in the left
hand coordinate system, respectively. The hand shape re-
construction results can be also merged in a similar way.

3.2. Pose-aware Feature Extractor

Particularly for interacting hand scenario, it is impor-
tant to provide features for each individual hand to ensure
accurate reconstruction respectively. Traditional methods
generate attention map from features in network. 2D/2.5D
heatmap estimation network, e.g stacked hourglass [20] and
SRNet [37], can directly obtain 2D attention map. How-
ever, these methods cannot be used in 3D shape estimation
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Figure 3. Illustration of our feature extraction module using atten-
tion map. The feature map is multiplied with attention map and is
down-sampled using convolutional layer and average pooling.

scenario. To this end, we perform a pose-aware feature ex-
tractor using an attention map, which identifies region of in-
terests for each hand. The attention map is multiplied with
each channel of the feature maps, and is down-sampled via
multiple convolutional layers. The low-resolution feature is
fed into a global average pooling to extract per-hand feature
vector, which will be used for hand reconstruction. Fig. 3
illustrates the feature extraction process.

Instead of learning in a black-box, we resort to per-joint
heatmap to produce the attention map for each individual
hand. The value on each pixel of the attention map measures
the probability of the existence of any hand joints:

Ah = 1−
K∏
i=1

(1−Hhi
), h ∈ {right, left}, (3)

whereHhi
is the heatmap for joint i in hand h, and K is the

total number of hand joints.

3.3. Interacting Hand Reconstruction

We then introduce how to predict pose and shape for in-
teracting hands using extracted feature maps from the en-
coder. Our method starts from an initial estimation followed
by a context-aware model to jointly refine the results.

Initial Estimation To predict an initial estimation of the
interacting hands, we take the feature map in the lowest
resolution, and extract pose-aware feature vectors for each
hand. In order to get the attention map, we use the pre-
dicted 2.5D heatmap as [18], concatenate the 2.5D heatmap
of each joint in depth dimension, and conduct max-pooling
along the channel dimension. We also generate a feature for
the relative transformation by directly applying an average
pooling since it requires information from both hands. The
feature vectors are then fed into separate MLP to predict
the MANO parameter for each hand respectively, and the
relative translation and scale.

Context-Aware Refinement We then refine the initial es-
timation with high-resolution features provided by the en-
coder, which contains more spatial information that may

(a) Paired hand poses (b) Unpaired hand poses
Figure 4. Visual analysis of 2D manifold of paired (a) and unpaired
(b) two hand poses. The paired hand poses show clear correlation
in 2D space, but the distribution of unpaired hand poses is almost
random. The paired hand poses are sampled from InterHand2.6M
[18], and the unpaired poses are permuted from the paired ones.

benefit the network to recover details. While the pose-aware
feature extractor resolves the two-hand ambiguity and pro-
vides more specific feature for each hand, it loses the chance
to jointly optimize two hands leveraging the context.

In fact, left and right hands show strong correlation when
interacting with each other. To show this, we conduct visual
analysis of paired and unpaired two hand poses (Fig. 4). The
paired hand poses are sampled from InterHand2.6M [18],
and the unpaired poses are permuted from the paired ones.
Inspired by [26], we use 2D manifold representation, where
the hand pose (without root rotation) of each hand is pro-
jected to 1D manifold by t-SNE [34] and used as x, y co-
ordinates, respectively. We find that the paired hand poses
show clear correlation in 2D space, but the distribution of
unpaired hand poses is almost random.

Inspired by this, we design a cascaded refinement stage
that jointly optimizes two hands. For a particular hand,
we first render the hand joints heatmaps according to the
estimated MANO parameters in the previous stage. Each
joint is projected onto the input image and rendered as a
2D Gaussian map with variance as 1.5. In order to ren-
der the hand joint heatmap, we obtain the weak perspec-
tive camera parameters by aligning the 3D joint positions
from the predicted MANO parameters and the predicted
2.5D heatmap. We then extract the pose-aware feature us-
ing these heatmaps, concatenate it with the MANO param-
eters estimated for both hands in the last stage, and feed
them into an MLP to produce updated MANO parameters.
To gradually bring in detailed spatial information, the later
refinement stage uses features in higher resolution coming
from early layers in the encoder.

3.4. Loss Functions

We add loss functions to supervise intermediate and fi-
nal network outputs. Specifically, we add losses for atten-
tion map, and the MANO parameters for left and right hand
before and after context-aware refinement.
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3.4.1 Two Hand Loss

Joint Offset Loss In order to enforce the relative position
of the corresponding joints of both hands, we supervise the
offsets of the corresponding joints of two hands

Lo =

K∑
i=1

||(Jright ,i − Jleft ,i)− (J∗right ,i − J∗left ,i)||22

(4)
where Jright ,i and Jleft ,i are the estimated i-th joints of
two hands, J∗right ,i and J∗left ,i are the ground truth.

Shape Consistence Loss Due to the symmetry of two hands
of a subject, the hand shape parameters of two hands should
be close. Thus, we use L2 distance of βleft, βright to en-
force the hand shape consistency of two hands

Lc = ||βright − βleft||22 (5)

3.4.2 Single Hand Loss

Joint Loss We use L1 distance between the ground truth
hand joints and the predicted hand joints

LJ =
∑

h∈{left,right}

K∑
i=1

||Jh,i − J∗h,i||1 (6)

where Jh,i and J∗h,i are the predicted and ground truth po-
sitions of the i-th joint, and K is the number of hand joints.

Bone Length Loss We use L2 loss to supervise the pre-
dicted bone length. Since we predict scale-normalized hand
pose and bone length (relative to the length of a reference
bone lref connecting the MCP joint of the middle finger
and the wrist joint), we use the Euclidean distance between
the normalized ground truth bone lengths and the predicted
bone lengths to calculate the bone length loss

Ll =
∑

h∈{left,right}

∑
b

||
l∗h,b
l∗h,ref

− lh,b||22 (7)

where l∗h,b and l∗h,ref are the ground truth bone lengths for
the b-th bone and the reference bone, respectively.

Shape Loss We use shape loss to enforce the hand shape
parameters

LM =
∑

h∈{left,right}

1||βh − β∗h||22 (8)

which aims to enforce the predicted MANO shape parame-
ters close to the ground truth. 1 is an indicator function that
is 1 if ground truth MANO shape parameters are labeled
and 0 otherwise, and β∗right and β∗left are the ground truth
of the hand shape parameters.

Regularizer Loss We use regular terms to enforce predicted
MANO parameters remaining reasonable

Lreg =
∑

h∈{left,right}

λβ ||βh||22 + ||θh||22 (9)

where the shape regularizer ||βh||22 enforces the recon-
structed shapes to be close to the mean shape (i.e. β=0),
and the pose regularizer ||θh||22 [27] helps eliminate joint
twist. The loss weight λβ is set to 0.1.

The total loss function of our network is defined as fol-
lows:

Ltotal =λoLo + λcLc + λJLJ

+ λlLl + λMLM + λregLreg
(10)

where λo, λc, λJ , λl, λM , λreg are the loss weights, and
they are set to 1, 0.01, 10, 100, 0.1, and 0.05, respectively.

3.5. Implementation Details

We implement our network with Pytorch [23]. We use
Adam optimizer to train our network. The learning rate is
set to 5 × 10−5, the mini-batch size is set to 20, and the
training iteration is set to 500K.

We follow prior art [18] to crop hand region with the
annotated bounding box in the training and testing dataset.
The images are resized to 256 × 256. To achieve scale-
invariant shape estimation, we normalize the distance from
the middle finger MCP joint to the wrist joint to 1. During
the testing stage, we used the ground truth bone lengths of
the two hands to recover their scales. During the training
stage, we do not give direct supervisions to ∆ and s, but use
offset loss and joint loss to enforce them (See Sec. 3.4).

4. Experiment
We conduct experiments on two main benchmark

datasets to verify the performance of our method. We
compare our method to the state-of-the-art methods (See
Sec. 4.2), and adopt the ablation study to evaluate the ef-
fect of each component of our method (See Sec. 4.3).

4.1. Datasets and Evaluation Metrics

We evaluate the performance of our method on the pop-
ular two-hand reconstruction benchmark datasets, Inter-
Hand2.6M [18] and Haggling [12]. Other recently pro-
posed two-hand datasets with relatively less high-quality
data, such as RGB2Hands (a dataset containing unrealis-
tic data without background) [35] and Ego3DHands (a syn-
thetic dataset with domain gap to real data) [16] do not sat-
isfy the requirements of hand reconstruction evaluation.
InterHand2.6M [18] consists of 2.6M labeled single and
interacting hand frames under different poses from multiple
subjects. We adopt the interacting hand frames (IH) in the
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(a) Comparison on InterHand2.6M dataset (b) Comparison on Haggling dataset
Figure 5. Quantitative comparison of our method to the state-of-the-art methods.

dataset for training and evaluation. The training and testing
dataset contain 141,497 and 125,689 frames, respectively.

Haggling Dataset [12] This dataset contains multiple sets
of videos of haggling games. People’s gestures in the videos
contain a lot of semantic information. We keep two-hand in-
teracting frames that are accurately labeled as training and
testing data. The dataset is divided into training set and test-
ing set according to [12]. The training and testing dataset
contain 80,953 and 24,363 frames, respectively.

Evaluation Metrics To evaluate the accuracy of 3D hand
pose estimation, we follow the prior art [18] to use the mean
per joint position error (MPJPE) in millimeters, and also
adopt the Percentage of Correct Keypoints (PCK), both af-
ter root joint alignment. The root joint alignment is per-
formed for left and right hand separately as [18]. We also
evaluate the hand pose performance using Area Under the
Curve (AUC) (0-50) mm of PCK curve over different error
thresholds. To evaluate the accuracy of 3D shape recon-
struction, we use the mean error between the corresponding
vertices of ground truth and predicted hand shapes as evalu-
ation metric, named shape-err, after root joint alignment of
each hand. In the qualitative results, we align the root joint
of each hand with the ground truth in camera coordinate for
visualization.

4.2. Comparison to State-of-the-art Methods

Firstly, we compare the hand pose performance to the
state-of-the-art two-hand pose estimation method InterHand
[18], and single hand reconstruction methods, including
Zimmermann et al. [42], Spurr et al. [31], Boukhayma et
al. [3], and Zhou et al. [41]. For the two-hand approach In-
terHand [18], we directly use their output 3D pose for eval-
uation on InterHand2.6M, but we re-train and test the model
on Haggling. For the single hand approaches, we crop each
individual hand from the dataset using the provided ground

InterHand2.6M [18] Haggling [12]
MPJPE shape-err MPJPE

Zimmermann et al. [42] 36.364 - 22.735
Zhou et al. [41] 23.478 23.892 13.203

Boukhayma et al. [3] 16.925 17.984 42.924
Moon et al. [18] 16.888 - 22.735
Spurr et al. [31] 15.402 - 14.430

Ours 13.071 10.398 11.419
Table 1. Comparison of hand pose error (MPJPE) and shape error
(shape-err) on InterHand2.6M and Haggling. Our method outper-
forms all the other methods. Since Haggling does not provide hand
shape annotation, we do not compare the shape error on it.

truth bounding box for re-training and testing.
Table 1 and Fig. 5 show the comparison on Inter-

Hand2.6M and Haggling. Our methods significantly out-
perform all the single hand approaches, presumably because
they do not handle heavy hand occlusions. Compared to
Moon et al. [18], our method also reduces hand MPJPE.

Secondly, we compare the hand shape performance to
the state-of-the-art single hand shape reconstruction meth-
ods including Boukhayma et al. [3] and Zhou et al. [41].
Since the Haggling dataset does not contain the hand shape
annotations, we only conduct the comparison of hand shape
performance on the InterHand2.6M dataset. Our method
also outperforms the compared single hand reconstruction
methods by a huge margin on shape accuracy (See Table 1).

Fig. 6 further shows the qualitative comparison on Inter-
Hand2.6M [18]. Again, our method recovers significantly
better hand pose and shape than the other methods. Fig. 7
shows qualitative results of interacting hand reconstruction
with our network on InterHand2.6M and Haggling. More
results can be found in the supplementary material.

4.3. Ablation Study

In order to investigate the contribution of the key com-
ponents of our method, we conduct ablation study on Inter-
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OursZhou et al.Boukhayma et al.Ground truth
Figure 6. Qualitative comparison of the interacting hand reconstruction with our method and the state-of-the-art single hand reconstruction
methods Boukhayma et al. [3] and Zhou et al. [41] on InterHand2.6M.

Input image Mesh overlay Different views Input image Mesh overlay Different views
Figure 7. Qualitative results of interacting hand reconstruction with our network on InterHand2.6M (row1-row2) and Haggling (row3).
Our method can achieve high-quality reconstruction performance under a variety of viewpoints and different levels of interhand occlusion.

Hand2.6M. By default, our full model means the full net-
work in Fig. 2 with all loss functions and the complete net-
work architecture. We compare with other methods to ob-
tain the attention map, and investigate the effect of context-
aware refinement and different inputs of the cascaded block.

Effect of Pose-aware Feature In our method, the pre-
dicted MANO parameters by the cascaded module is used
to generate the attention map, and then extract pose-aware
features. We compared different attention map generation
approaches and show results in Fig. 8. 1) “Predicted 2.5D
heatmap”: Use predicted 2.5D heatmap [18] to generate at-
tention map; 2) “Fit camera parameters”: Use predicted the
MANO parameters to generate 3D joints, render the joints
to generate the heatmap, and generate the attention map
with Eq. (3). 3) “No attention”: Use the network archi-
tecture with cascaded blocks but without attention modules.
4) “Baseline”: Use network architecture without cascaded
blocks and attention modules.

We conduct comparison by removing the attention mod-

ule in the cascaded refinement (Fig. 8, “no attention”). Ex-
periments show that this method is inferior to the methods
with attention using rendered heatmap or using predicted
2.5D attention map.

Experiments demonstrate that using attention map gen-
erated by rendering predicted joints is conducive to the im-
provement of accuracy, and the alignment method to calcu-
late the camera parameters for rendering 3D joints (Fig. 8,
“fit camera parameters”) is more effective than the camera
parameters predicted by a network (Fig. 8, “predict camera
parameters”). However, the use of 2.5D heatmap to gener-
ate the attention map (Fig. 8, “predicted 2.5D heatmap”)
leads to a decrease in accuracy compared to our atten-
tion map. The main reason might be that the initial 2.5D
heatmap prediction accuracy is not great, and the generated
attention map cannot extract effective features for the cas-
caded blocks.

Effect of Context-aware Refinement To investigate the
effectiveness of the context-aware refinement, we modify
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Figure 8. Comparison of different attention map generation meth-
ods. ”Baseline”: the network without cascaded block or attention
module. ”No attention”: the network with cascaded block but no
attention module. ”Predicted 2.5D heatmap”: the network that
generates attention map from the predicted 2.5D heatmap. ”Ren-
der heatmap”: the network that renders the predicted 3D joints on
the image to a heatmap and use it as an attention map. The weak
perspective camera parameters to render 3D joints are obtained
through alignment (“fit camera parameters”) in our full model or
network prediction (“predict camera parameters”), respectively.

Input image Mesh overlay 
(full model)

w/o context-aware 
refinement

Our full model

Figure 9. Qualitative study of context-aware refinement. We com-
pare our full model and the model consisting cascaded blocks us-
ing MANO parameters of single hand as input.

the input of the cascaded blocks of our full model. Specif-
ically, we use the predict MANO from the single hand that
will be refined, instead of both hands, and the other inputs

MPJPE AUC(0-50mm)
baseline 14.218 0.734

no attention 14.095 0.735
predicted 2.5D heatmap 13.464 0.746

predict camera parameters 14.040 0.737
high level feature 13.986 0.737

cascaded single MANO parameters 13.170 0.752
our full model 13.071 0.754

Table 2. Ablation study of our network on InterHand2.6M. “High
level feature” means that the attention map generated by the cas-
caded block always acts on the top feature of ResNet. “Cascaded
single MANO parameters” means that the cascaded block for one
hand only inputs the MANO parameters of this hand, which is
predicted by the previous cascaded block, and the image feature
of this hand. The other notations have the same meaning as Fig. 8.

of the cascaded blocks are all remained. Table 2 shows that
using the MANO parameters of two hands is better than
just using one hand (“our full model” vs. “cascade single
MANO parameters”). Although performance gain is rela-
tively small, it is important for many applications. For ex-
ample, tiny finger movement of interacting hands may lead
to different interaction meanings, i.e. contact or separation
of hands. Fig. 9 shows qualitative comparisons, and we find
that our context-aware refinement can significantly improve
the interacting two-hand reconstruction results.

Effect of Network Architecture To investigate the effect
of different network architectures, we compare the perfor-
mance of network architecture using the feature of the high-
est layer at the end of the encoder (Table 2, “high level fea-
ture”) with our network using multi-scale features of lower
layers of the encoder. We can observe that using multi-scale
features is better than using high-level features (“our full
model” vs. “high level feature”).

5. Conclusion

In this work, we propose a novel solution to interacting
hand pose and shape reconstruction. In order to address the
key challenges of two-hand reconstruction, we propose a
pose-aware attention module and context-aware cascaded
refinement using two-hand correlation. The experiments
demonstrate that our method can achieve the state-of-the-
art interacting two-hand reconstruction performance on the
main benchmark datasets. Our work can inspire related re-
searches such as interacting hand reconstruction from video
or depth, and whole-body reconstruction.

Acknowledgments This work was supported in part by Na-
tional Natural Science Foundation of China (No. 62076061,
No. 61473276, No. 61872346), Beijing Natural Science
Foundation (4212029, L182052), and Newton Prize 2019
China Award (NP2PB/100047).

11361



References
[1] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim.

Weakly-supervised domain adaptation via gan and mesh
model for estimating 3d hand poses interacting objects. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2020. 2

[2] Luca Ballan, Aparna Taneja, Juergen Gall, Luc Van Gool,
and Marc Pollefeys. Motion capture of hands in action using
discriminative salient points. In Proceedings of the European
Conference on Computer Vision, 2012. 2

[3] Adnane Boukhayma, Rodrigo de Bem, and P. Torr. 3d hand
shape and pose from images in the wild. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10835–10844, 2019. 1, 2, 6, 7

[4] Yujun Cai, Liuhao Ge, Jianfei Cai, and Junsong Yuan.
Weakly-supervised 3d hand pose estimation from monocu-
lar rgb images. Proceedings of the European Conference on
Computer Vision, 2018. 2

[5] Xiaoming Deng, Yinda Zhang, Jian Shi, Yuying Zhu,
Dachuan Cheng, Dexin Zuo, Zhaopeng Cui, Ping Tan, Liang
Chang, and Hongan Wang. Hand pose understanding with
large-scale photo-realistic rendering dataset. IEEE Transac-
tions on Image Processing, 30:4275–4290, 2021. 2

[6] Bardia Doosti, Shujon Naha, Majid Mirbagheri, and David
Crandall. Hope-net: A graph-based model for hand-object
pose estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020. 2

[7] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue, Yingying
Wang, Jianfei Cai, and Junsong Yuan. 3d hand shape and
pose estimation from a single rgb image. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019. 2

[8] Shangchen Han, B. Liu, R. Cabezas, Christopher D. Twigg,
P. Zhang, Jeff Petkau, Tsz-Ho Yu, Chun-Jung Tai, Muzaf-
fer Akbay, Z. Wang, Asaf Nitzan, G. Dong, Yuting Ye, Lin-
gling Tao, Chengde Wan, and Robert Wang. Megatrack:
monochrome egocentric articulated hand-tracking for virtual
reality. ACM Transactions on Graphics, 39:87, 2020. 1, 2

[9] Yana Hasson, Bugra Tekin, Federica Bogo, Ivan Laptev,
Marc Pollefeys, and Cordelia Schmid. Leveraging photomet-
ric consistency over time for sparsely supervised hand-object
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020. 1, 2

[10] Yana Hasson, Gül Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning joint reconstruction of hands and manipulated ob-
jects. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019. 2

[11] Umar Iqbal, Pavlo Molchanov, Thomas Breuel, Juergen Gall,
and Jan Kautz. Hand pose estimation via latent 2.5 d heatmap
regression. Proceedings of the European Conference on
Computer Vision, 2018. 2

[12] Hanbyul Joo, Tomas Simon, Mina Cikara, and Yaser Sheikh.
Towards social artificial intelligence: Nonverbal social sig-
nal prediction in a triadic interaction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019. 5, 6

[13] H. Joo, T. Simon, and Y. Sheikh. Total capture: A 3d de-
formation model for tracking faces, hands, and bodies. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8320–8329, 2018. 2

[14] Dominik Kulon, Riza Alp Güler, I. Kokkinos, M. Bron-
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