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Abstract

Siamese tracking has achieved groundbreaking perfor-
mance in recent years, where the essence is the efficient
matching operator cross-correlation and its variants. Be-
sides the remarkable success, it is important to note that
the heuristic matching network design relies heavily on ex-
pert experience. Moreover, we experimentally find that one
sole matching operator is difficult to guarantee stable track-
ing in all challenging environments. Thus, in this work, we
introduce six novel matching operators from the perspec-
tive of feature fusion instead of explicit similarity learn-
ing, namely Concatenation, Pointwise-Addition, Pairwise-
Relation, FiLM, Simple-Transformer and Transductive-
Guidance, to explore more feasibility on matching oper-
ator selection. The analyses reveal these operators’ se-
lective adaptability on different environment degradation
types, which inspires us to combine them to explore comple-
mentary features. To this end, we propose binary channel
manipulation (BCM) to search for the optimal combination
of these operators. BCM determines to retrain or discard
one operator by learning its contribution to other track-
ing steps. By inserting the learned matching networks to a
strong baseline tracker Ocean [47], our model achieves fa-
vorable gains by 67.2 → 71.4, 52.6 → 58.3, 70.3 → 76.0
success on OTB100, LaSOT, and TrackingNet, respectively.
Notably, Our tracker, dubbed AutoMatch, uses less than
half of training data/time than the baseline tracker, and runs
at 50 FPS using PyTorch. Code and model are released at
https://github.com/JudasDie/SOTS.

1. Introduction

Generic object tracking, aiming to infer the location and

scale of an arbitrary object in a video sequence, is one of the

fundamental problems in computer vision [16, 21, 25, 33].

The recent prevailing Siamese methods [3, 6, 11, 18, 41, 42,
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Ours SiamRPN++ Ocean

Figure 1: Comparisons of our approach with depth-

wise cross-correlation based trackers SiamRPN++ [18] and

Ocean [47]. Our model, employing the automatically

searched matching networks, can better handle different

challenging factors, e.g., distractor in the first video, occlu-

sion and scale change of the second one, background clutter

and fast motion of the third sequence.

47], decompose the tracking problem into a relation learn-
ing task and a state estimation task. In the former case, the

goal is to measure the similarity between exemplar and can-

didate (search) images. The second task, which is normally

comprised of foreground classification and scale regression

[8, 18, 47], is followed to estimate the target state.

Fuelled by the emergence of object detection that fa-

cilitates bounding box regression, the network design for

state estimation has substantially advanced in recent years

[6, 8, 19, 41, 47]. However, the advancements in relation

learning have been limited. Previous works generally per-

form relation learning with heuristically designed matching

operators. Concretely, the seminal work SiamFC [3] em-

ploys cross-correlation to model the relation between exem-

plar and candidate images. The follow-ups propose upchan-

nel cross-correlation [19] and depthwise cross-correlation

[18] to learn fine-grained feature similarities. Besides their

great success, it is important to note that the heuristic
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matching network design requires substantial effort of hu-

man experts, and it is extremely difficult to guarantee ro-

bustness in all challenging environments, as experimentally

verified in Fig. 1 and Tab. 1. One straightforward solution is

to find the optimal matching operator under various circum-

stances, which is however obviously tedious and impracti-

cal. Hence, it is natural to throw a question: can we search
for a general matching network for Siamese tracking?

In this work, we show the answer is affirmative by

proposing a search algorithm for automatic matching net-

work design. Instead of adopting the conventional cross-

correlation and its variants, we explore more feasibil-

ity of matching operator selection. Specifically, besides

cross-correlation, we introduce six novel matching opera-

tors to Siamese tracking, namely Concatenation, Pointwise-

Addition, Pairwise-Relation, FiLM, Simple-Transformer

and Transductive-Guidance. We shed light on the intrin-

sic differences of these operators by comparing their per-

formances under different environment degradation types.

Surprisingly, by simply replacing the cross-correlation

to concatenation, the strong baseline tracker Ocean [47]

achieves 1.2 points gains on success score of OTB100 [40]

(see Tab. 1). Moreover, we observed that the matching op-

erators show different resilience on various challenging fac-

tors and image contents. This inspires us to combine them

to exploit complementary informative features.

To this end, we propose a search algorithm, namely Bi-

nary Channel Manipulation (BCM), to automatically select

and combine matching operators. Firstly, we construct a

search space with the aforementioned seven operators. The

exemplar and candidate images pass through all matching

operators to generate the corresponding response maps. For

each response channel, we assign it with a learnable manip-

ulator to indicate its contribution for other tracking steps.

Gumbel-Softmax [37] is applied to discretize the manipu-

lators as binary decision, as well as guarantee the differ-

entiable training. Then, we aggregate manipulators of all

channels to identify the operator’s potential for adapting to

the baseline tracker. Our search algorithm aims to find the

matching networks with better generalization on different

tracking environments. Thus, the performance on the val-

idation set is treated as the reward or fitness. Concretely,

we solve the search algorithm using bilevel optimization,

which finds the optimal manipulators on the validation set

with the weight of other layers (e.g., convolution kernels)

learned on the training data. Notably, we simultaneously

predict matching networks for both the classification and re-

gression branches in state estimation. The different search
results for classification and regression demonstrate that
our method is capable of finding task-dependent match-
ing networks. Finally, we integrate the learned matching

networks into the baseline tracker [47] and train it follow-

ing the standard Siamese procedure.

The effectiveness of the proposed framework is verified

on OTB100 [40], LaSOT [10], GOT10K [14], TrackingNet

[27] and TNL2K [39]. Our approach surpasses the baseline

tracker [47] on all five benchmarks. It is worth noting that

the proposed tracker also outperforms the recent online up-

dating methods DiMP [4] and KYS [5] on all criteria of the

evaluated datasets.

The main contributions of this work are twofold.

• We introduce six novel matching operators for Siamese

tracking. A systematic analysis reveals that the

commonly-used (depthwise) cross-correlation is not a

requisite, and an appropriate matching operator can fur-

ther bring remarkable performance gains.

• A conceptually simple algorithm, namely Binary Chan-

nel Manipulation (BCM), is proposed for automatic

matching networks design with the introduced opera-

tors. By integrating the learned matching networks into

the baseline tracker, it achieves remarkable performance

gains with neglectable overhead on tracking speed.

2. Related Work

In this section, we review the related work on matching

based tracking, as well as briefly describe recent thriving

Siamese trackers, where the baseline tracker belongs to.

2.1. Tracking via Heuristic Matching

In the context of visual tracking, it usually corresponds

to the process of predicting foreground probability as a

one-shot matching problem. SINT [36] proposes to learn

a matching function to identify candidate image locations

that match with the initial object appearance. The matching

function is simply defined as dot product operation. Held et

al. introduce GOTURN [13], which predicts target location

by directly regressing the concatenation feature of the ex-

emplar and candidate images. Global Track [15] and ATOM

[8] inject the target information into the region proposal

network by applying hadamard product to exemplar and

candidate embeddings. Recent prominent Siamese track-

ers [3, 19, 18] achieve groundbreaking results on all bench-

marks, which is mostly attributed to the effective cross-
correlation module and its variants. We observed that when

choosing matching functions for a tracking method, exper-

tise and massive experiments are inevitably required. More-

over, the heuristic matching network may not be an optimal

architecture design. In this work, we propose a differen-

tiable search algorithm to automatically determine which

matching functions to use and how to combine them in vi-

sual tracking. Since the proposed search algorithm is ap-

plied to the Siamese framework, in the following, we briefly

retrospect the development of Siamese tracking.
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Figure 2: Matching operators: (a) Concatenation (b) Pointwise-Addition (c) Pairwise-Relation (d) FiLM (see Sec. 3.1).

2.2. Siamese Tracking

Siamese tracking has drawn attention because of its bal-

anced accuracy and speed. The pioneering work of Siamese

trackers, i.e., SiamFC [3], introduces the cross-correlation
layer as a similarity metric for target matching, which sig-

nificantly boosts tracking efficiency. SiamRPN [19] ensues

to improve SiamFC by advocating a region proposal net-

work for scale estimation. The follow-up works unleash the

capability of deeper backbone networks in Siamese track-

ing by alleviating position bias [18] and perceptual incon-

sistency [46]. The estimation network evolves from anchor-

based to anchor-free mechanism recently [6, 11, 47, 41].

Whilst deeper backbone and advanced estimation network

significantly enhance the transferability of tracking models,

the feasibility of matching network design remains less in-

vestigated. In this work, we narrow this gap by introducing

new matching operators and searching their optimal combi-

nation for Siamese tracking.

3. Analysis of Matching Operators

3.1. Instantiations

The standard Siamese tracker takes an exemplar image

z and a candidate image x as input. The image z repre-

sents object of interest in the first frame, while x is typically

larger and represents the search area in subsequent video

frames. The two images are first fed into a shared back-

bone network to generate two corresponding feature maps

Fz ∈ R
Hz×Wz×C and Fx ∈ R

Hx×Wx×C . Then a matcing

network ϕ is applied to inject the information of exemplar

Fz to Fx, which outputs a correlation feature R,

R = ϕ(Fz,Fx). (1)

Recent top-ranked Siamese trackers define ϕ as depth-
wise cross-correlation [18, 42, 6, 11, 41, 47]. No-

tably, when the spatial size of Fz is 1 × 1 (fz), the

depthwise cross-correlation resembles hadamard product

[15]. Besides depthwise cross-correlation, in this work,

we explore other matching operators, namely Concatena-
tion, Pointwise-Addition, Pairwise-Relation, FiLM, Simple-
Transformer and Transductive-Guidance. The concatena-

tion operator has been exploited in previous work [13],

while others have not, to the best of our knowledge. We

detail each of them in the following.

Concatenation is used by the pairwise function in Rela-

tion Networks [35] for visual reasoning. We also explore a

concatenation form of ϕ, as shown in Fig. 2 (a):

R = Conv([fz,Fx]), (2)

here fz ∈ R
1×1×C is the pooled features on Fz (inside the

bounding box). [·, ·] denotes concatenation and Conv is a

1× 1 convolution layer with output channel of C.

Pointwise-Addition is similar to the hadamard product,

but changes “multiplication” to “addition” (see Fig. 2 (b)):

R = fz + Fx, (3)

where + denotes elementwise addition.

Pairwise-Relation is widely used in video object seg-

mentation [44]. It is a variant of non-local attention [43],

and is defined as,

R = matmul(S(Fx), S(Fz)), (4)

where S reshapes Fx and Fz to the size of HxWx × C and

C × HzWz , respectively (see Fig. 2 (c)). Here, matmul
denotes matrix multiplication. The pairwise-relation mea-

sures the affinity of each cell in the exemplar feature to all

that in the candidate feature.

FiLM is firstly introduced in visual reasoning [30]. It

learns to adaptively influence the output of a neural network

by applying an affine transformation to the network’s “inter-

mediate features”, based on some “input”. For visual track-

ing, we consider the exemplar feature fz as the “input”, and

the candidate feature Fx as “intermediate features”. More

formally,

γ = Conv(fz),

β = Conv(fz),

R = γFx + β,

(5)
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Table 1: Performance (Success Rate) of different operators on OTB100 [40]. Illumination Variation (IV), Scale Variation

(SV), Occlusion (OCC), Deformation (DEF), Motion Blur (MB), Fast Motion (FM), In-Plane Rotation (IPR), Out-of-Plane

Rotation (OPR), Out-of-View (OV), Background Clutters (BC) and Low Resolution (LR) are 11 challenging attributes.

# NUM # Operators Overall IV SV OCC DEF MB FM IPR OPR OV BC LR

� Depthwise Cross-correlation 67.2 69.3 67.7 62.8 65.2 68.3 67.5 67.8 66.6 63.9 62.6 67.9

� Concatenation 68.4 71.5 67.3 65.2 66.5 70.0 69.0 69.8 67.2 62.7 65.3 65.6

� Pointwise-Addition 67.1 66.6 66.2 61.5 61.8 65.6 66.8 67.7 65.9 52.2 58.1 69.7
� Pairwise-Relation 67.8 67.0 66.5 63.7 65.1 68.0 66.6 66.7 68.2 57.2 63.6 59.8

� FiLM 67.4 69.4 66.9 60.4 63.7 66.9 67.3 66.8 65.2 53.7 58.5 66.8

� Simple-Transformer 65.8 67.3 65.8 60.1 62.1 65.9 65.7 66.8 66.0 55.4 60.7 64.8

� Transductive-Guidance 65.0 64.8 68.3 61.6 61.2 67.2 65.0 64.9 65.0 57.6 56.0 64.2
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Figure 3: Matching operators: (a) Simple-Transformer (b)

Transductive-Guidance. Details are described in Sec. 3.1.

where the coefficient γ and bias β are two tensors with size

of 1× 1× C, as shown in Fig. 2 (d).

Simple-Transformer is motivated by recent booming

visual transformer [12],

R = Att(query, key, value), (6)

where query = Conv(Fx), key = Conv(Fz), value =
Conv(Fz). Att is a multi-head attention layer

in visual transformer [12], and is implemented by

“nn.multiheadAttention” in PyTorch [29]. More details are

presented in Fig. 3 (a).

Transductive-Guidance is originated from mask prop-

agation mechanism in video object segmentation [44, 45],

where the segmentation masks of previous frames guide the

prediction of the current frame. In our work, we specifically

modify it for Siamese tracking. First, the affinity between

examplar and candidate feature is predicted by,

A = matmul(S(Fx), S(Fz)). (7)

This step is the same as the computation of the pairwise-

relation. With the affinity, the spatial guidance is learned by

propagating the pseudo mask of the first frame,

G = matmul(A, S(Mz)), (8)

a b c

d e f g

Figure 4: Activation maps of different matching opera-

tors. (a) Depthwise Cross-correlation (b) Concatenation

(c) Pointwise-Addition (d) Pairwise-Relation (e) FiLM (f)

Simple-Transformer (g) Transductive-Guidance.

where Mz is the pseudo mask of the first frame. Specifi-

cally, the pixels inside and outside the bounding box are set

to 1 and 0, respectively, as shown in Fig. 3 (b). G serves

as the spatial guidance for target localization, in which

each pixel indicates the foreground probability of a location.

Then the spatial guidance is fused with the visual feature by,

R = G+ Fx. (9)

3.2. Analysis

In Sec. 3.1, we introduce six novel matching operators

for Siamese tracking, besides the conventional depthwise

cross-correlation. It is natural to ask: How do these new
operators perform, and could the conventional depthwise
cross-correlation be replaced by these proposed operators?
We answer the questions in this section.

Performance of Individual Operators. To investi-

gate the impact of each operator on Siamese tracking, we

apply them to a recent tracker Ocean [47], and evaluate

the performance on OTB100 [40]. As shown in Tab. 1,

the vanilla Ocean [47] with depthwise cross-correlation

(�) achieves overall success of 67.2. When replacing

the depthwise cross-correlation by Simple-Transformer (�)

13342



1

2

3

4

m

5

Matching Network Search via Binary Channel Manipulation 
CNN

CNN

31*31*256

31*31*256*K 31*31*256*K

15*15*256

Sh
ar

ed
 

B
ac

kb
on

e

m Matching Operators Chopped Edges/Operators Kept Edges/Operators 

Figure 5: Overview of the proposed framework AutoMatch. The matching operators in search space explore the relation

between exemplar and candidate features. The crosses and dashed arrows indicate the discarded operators after searching

with binary channel manipulation. And operators linked with the green arrows constructs the searched matching network.

The search algorithm is applied to both classification and regression, and only one of that is illustrated here for simplicity.

and Transductive-Guidance (�), the overall score drops to

65.8 and 65.0, respectively. The performance degradation

illustrates that randomly choosing a matching operator may

bring negative impacts to a tracking framework. But sur-

prisingly, the results of all other four operators (�∼�)

are favorably comparable to or even better than depthwise

cross-correlation. The comparisons inspire us that the clas-

sical depthwise cross-correlation is not the optimal choice

for Siamese tracking, and an appropriate matching operator

can lead to better tracking accuracy.

Potential of Complementarity. Although one well-

designed matching operator may surpass classical depth-

wise cross-correlation under certain circumstances, the im-

provements cannot be guaranteed for all challenging cases.

As shown in Tab. 1, although the concatenation operator

(�) exhibits superiority over most challenging factors, it

is inferior to Transductive-Guidance (�) on Scale Varia-

tion (SV), Pairwise-Relation (�) on Out-of-Plane Rotation

(OPR), Depthwise Cross-correlation (�) on Out-of-View

(OV) and Point-Addition (�) on Low Resolution (LR). We

further visualize the activation map of matching outputs in

Fig. 4. It shows that the depthwise cross-correlation (a),

Pairwise-relation (d), and Transductive-Guidance (g) tend

to filter out the context features and focus on the target itself.

Conversely, the concatenation (b), Pointwise-Addition (c),

Simple-Transformer (e), and FiLM (e) exploit more context

information. The possible reason is that the hard negative

examples introduced by the context help prevent overfitting

to the easy background.

In a nutshell, the quantitative comparison in Tab. 1

and qualitative analysis in Fig. 4 demonstrate that differ-

ent matching operators show different resilience on various

challenging factors and image contents. This inspires us to

combine them to exploit complementary informative fea-

tures. Instead of searching for the best matching operators

under various circumstances, which is obviously impracti-

cal, we propose an automatic method that can adaptively

learn to choose and combine the matching functions.

4. Methodology
4.1. Overview of AutoMatch

The proposed framework AutoMatch is illustrated in the

Fig. 5. Typical Siamese tracking framework contains three

main steps, i.e., feature extraction, matching, and target lo-

calization. Given an exemplar image z and a candidate im-

age x, a backbone network is first applied to extract vi-

sual features Fz and Fx. Fz and Fx then pass through

a matching network ϕ to learn their relation. ϕ is gener-

ally defined as depthwise cross-correlation in recent works

[18, 47]. In our study, the matching network design evolves

from heuristic selection to automatic search. Concretely,

Fz and Fx are fed to matching operators in the search space

(see Sec. 3.1), which obtains m multi-channel response fea-

tures {r1, r2, ..., rm}. Each channel of a response feature

is assigned with a learnable manipulator wj
i , indicating a

feature channel’s contribution to other tracking steps. We

introduce the binary Gumbel-Softmax [37] to discretize the

manipulators for binary decision, as well as guarantee the

differentiable training. The learning of manipulators is for-

mulated as bilevel optimization (see Sec. 4.3). Two opera-

tors are finally retained based on the guidance of the learned

manipulators, and their response maps are concatenated as

the input of the following steps. With the learned match-

ing networks, the classification and regression networks are

followed to predict the target state (see Sec. 5.1).

4.2. Binary Channel Manipulation

Let O = {o1, o2, ..., om} be the search space consisting

of optional matching operators oi(·) to be applied to exem-

plar and candidate features. The response set R is got by,
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R = {o1(z,x), ..., om(z,x)}. (10)

The search algorithm aims to find the optimal combination

of operators based on the response set R. We propose bi-

nary channel manipulation (BCM) to decide the contribu-

tion of an operator for target state prediction. Each element

rji in R is a tensor with size of Hx ×Wx × C. We assign

each feature channel with a learnable manipulator wj
i , and

then aggregates the weighted maps in R by concatenation,

E = [σ(w1
1)r

1
1, ..., σ(w

j
i )r

j
i , ..., σ(w

C
m)rCm], (11)

where rji indicates the jth channel of the ith response fea-

ture. σ is sigmoid. E ∈ R
Hx×Wx×C|O| denotes the aggre-

gated feature, which is used as the input of subsequent target

estimation network. The manipulator defines the channel’s

contribution to target location. For each operator, we define

the summation of channel manipulators as the potential pi
of an operator for adapting to the baseline tracker,

pi =

C∑
j=1

σ(wj
i ). (12)

Inspired by channel pruning [1] and differentiable net-

work architecture search [7, 23], we translate the continu-

ous solution wj
i to discrete one for final decision. These

discrete decisions are trained end-to-end using the Gumbel-

Softmax [37]. Concretely, given a distribution with (two)

class probabilities π = {π1 = σ(wj
i ), π2 = 1 − σ(wj

i )},

the discrete samples d can be drawn using,

d = onehot(argmin
k

[log(πk) + gk]), (13)

where gk is noise sample drawn from Gumbel distribution.

k ∈ {1, 2} denotes binary classification. The Gumbel-

Softmax defines a continuous, differentiable approximation

by replacing the argmax with a softmax,

yk =
exp((log(πk) + gk)/τ)∑2
c=1 exp((log(πc) + gc)/τ)

. (14)

Substituting π1 = σ(wj
i ), π2 = 1 − σ(wj

i ), Eq. 14 is sim-

plified to (k = 1 for binary case),

y1 = σ(
wj

i + g1 − g2
τ

). (15)

We attach the derivation in supplementary materials due to

space limit. The τ is set to 1, gk to 0 following [2, 37]. For

the discrete sample d, a hard value is used during the for-

ward pass and gradients are obtained from soft value during

the backward pass:

d =

{
y1 > 0.5 ≡ wj

i+g1−g2
τ = wj

i > 0, forward
y1, backward.

(16)

4.3. Bilevel Optimization

With binary channel manipulation, our goal is to jointly

learn the manipulators w and the weights θ of other layers

(e.g., convolution layers in operators). Analogous to differ-

entiable architecture search [23], where the validation set

performance is treated as the reward or fitness, we aim to

optimize the validation loss. Let Ltrain and Lval denote

the training and validation loss, respectively. The goal for

matching network search is to find w∗ that minimizes the

validation loss Lval(θ
∗;w∗), where the network parameters

θ∗ associated with the architecture are obtained by minimiz-

ing the training loss θ∗ = argminw Ltrain(θ, w
∗). This

implies a bilevel optimization problem [23, 7] with w as the

upper-level variable and θ as the lower-level variable,

minw Lval(θ
∗(w);w), (17)

s.t. θ∗(w) = argminθ Ltrain(θ, w). (18)

To speed up the bilevel optimization during training, Liu et

al. propose a simple approximation in [23],

∇wLval(θ
∗(w);w) (19)

≈ ∇wLval(θ − ε∇θLtrain(θ, w), w), (20)

where ε is the learning rate for a step of inner optimization.

The derivation is beyond the scope of this work. We refer

the reader to [23] for more details about the approximation.

In summary, we propose binary channel manipulation to

identify the contribution of a matching operator. Then we

learn the manipulators by bilevel optimization. We simul-

taneously apply the search algorithm on the classification

and regression branches in state estimation to learn task-

dependent matching networks. After training, the first two

operators with the maximum potential pi are retained (see

green arrows in Fig. 5). Finally, we follow the procedure of

the baseline tracker [47] to train the searched architecture.

5. Experiments
5.1. Implementation Details

Network Architecture. We adopt the recent Siamese

tracker Ocean [47] as the baseline model. The backbone

network is the modified ResNet50 [26]. The target local-

ization network consists of a classification branch and a re-

gression branch. Though the updating branch of Ocean [47]

is not used in our work, our tracker remarkably outperforms

its online updating version. We refer the readers to [47] for

more details about the baseline tracker. In this work, we si-

multaneously search for the target-dependent matching net-

works for the classification and regression branches.

Training Procedure. The training procedure consists of

two stages, i.e., matching network search and new tracker

13344



Table 2: Result comparisons on five tracking benchmarks. The red, green and blue indicate performances ranked at the first,

second, and third places. Ocean [47] is our baseline model, and we apply the proposed search algorithm on it.

Methods Year
OTB100 LaSOT TrackingNet TNL2K GOT10K

Succ. Prec. Succ. Prec. Succ. Prec. Succ. Prec. AO SR0.5 SR0.75

SiamFC [3] 2016 58.7 77.2 33.6 33.9 57.1 66.3 29.5 28.6 34.8 35.3 9.8
MDNet [28] 2016 67.8 90.9 39.7 37.3 60.6 56.5 31.0 32.2 29.9 30.3 9.9
ECO [9] 2017 69.1 91.0 32.4 30.1 55.4 49.2 32.6 31.7 31.6 30.9 11.1
VITAL [34] 2018 69.1 91.7 39.0 36.0 - - 36.6 35.3 35.0 36.0 9.0
GradNet [20] 2019 63.9 86.1 36.5 35.1 - - 31.7 31.8 - - -
SiamDW [46] 2019 67.4 90.5 38.4 35.6 - - 32.3 32.6 41.6 47.5 14.4
SiamRPN++ [18] 2019 69.6 92.3 49.6 49.1 73.3 69.4 41.3 41.2 51.7 61.6 32.5
ATOM [8] 2019 66.7 87.9 51.5 50.5 70.3 64.8 40.1 39.2 55.6 63.4 40.2
DiMP [4] 2019 68.6 89.9 56.9 56.7 74.0 68.7 44.7 43.4 61.1 71.7 49.2
SiamFC++ [41] 2020 68.3 91.2 54.3 54.7 75.4 70.5 38.6 36.9 59.5 69.5 47.9
D3S [24] 2020 - - - - 72.8 66.4 38.8 39.3 59.7 67.6 46.2
MAMLTrack [38] 2020 71.2 92.6 52.3 53.1 75.7 72.5 28.4 29.5 - - -
SiamAttn [42] 2020 71.2 92.6 56.0 - 75.2 - - - - - -
SiamCAR [11] 2020 - - 50.7 51.0 - - 35.3 38.4 56.9 67.0 41.5
SiamBAN [6] 2020 69.6 91.0 51.4 52.1 - - 41.0 41.7 - - -
KYS [5] 2020 69.5 91.0 55.4 55.8 74.0 68.8 44.9 43.5 63.6 75.1 51.5
Ocean [47] 2020 67.2 90.2 52.6 52.6 70.3 68.8 38.4 37.7 59.2 69.5 46.5

AutoMatch Ours 71.4 92.6 58.3 59.9 76.0 72.6 47.2 43.5 65.2 76.6 54.3

training. In the first stage, we search for the matching

networks using methods in Sec. 4 and determine the best

cell based on the validation performance. In the second

stage, we use the optimized matching networks to construct

a new tracker on the baseline approach Ocean [47]. Both

stages are trained with Youtube-BB [31], ImageNet-VID

[32], ImageNet-DET [32], GOT10K [14] and COCO [22]

(including training and validation sets). The search algo-

rithm’s training takes 5 epochs, with each containing 6×105

pairs. The learning rate exponentially decays from 10−3 to

10−4. The training of the new tracker follows the baseline

model [47]. Notably, we simplify Ocean [47] by reducing
the training epochs from 50 to 20 to expedite the learn-
ing process. For the first 5 epochs, we start with a warmup

learning rate of 10−3. For the remaining epochs, the learn-

ing rate exponentially decays from 5 × 10−3 to 5 × 10−5.

Both stages are trained with synchronized SGD [17] on 4

GTX2080 Ti GPUs, with each hosting 32 images.

5.2. State-of-the-art Comparison

The search algorithm determines different matching net-

works for the classification and regression branches. After
the first stage training, Simple-Transformer and FiLM
are retrained for the classification branch, meanwhile,
FiLM and Pairwise-Relation are preserved for the re-
gression branch. We compare the new tracker with state-

of-the-art models on five benchmarks. Our tracker achieves

compelling performance while running at over 50 FPS.

Notably, it only takes less than 24 hours for the second

stage training (with 4 GTX2080Ti GPUs), which provides

a strong but efficient baseline for further research.

OTB100 [40]. OTB100 is a classical tracking benchmark

consisting of 100 sequences. Methods are ranked by the

area under the success curve (AUC) and precision (Prec.).

As shown in Tab. 2, our model achieves the top-ranked AUC

score, which outperforms the previous best result by Sia-

mAttn [42], i.e., 71.4 vs 71.2. When equipping the base-

line tracker Ocean [47] with our searched matching net-

work, it brings favorabale 4.2 points gains, i.e., 71.4 vs 67.2.

The proposed model also surpasses online updating models

ATOM [8]/DiMP[4] for 4.5/2.6 points, respectively.

LaSOT [10]. LaSOT is a tracking benchmark designed for

long-term tracking. Tab. 2 shows the comparison results on

280 testing videos. Our method achieves the best AUC and

precision score, outperforming Ocean [47] for 5.7 and 7.3

points, respectively. Compared with DiMP [4], our method

achieves improvements of 1.4 points on success score. No-

tably, the proposed tracker runs at 50 FPS, which is compa-

rable to 58 FPS of Ocean, and faster than 43 FPS of DiMP.

The comparisons demonstrate that the proposed method

brings significant performance gains with small overhead.

TrackingNet [27]. TrackingNet is a large-scale tracking

dataset consisting of 511 sequences for testing. The evalua-

tion is performed on the online server. We report the results

in Tab. 2. Compared with the baseline tracker Ocean [47],

it achieves 5.7 points gains on success score. Our model

also surpasses the meta-learning based MAMLTrack [38]

on TrackingNet, i.e., success score of 76.0 vs 75.7.

GOT10K [14]. The evaluation of GOT10K is on the online

server. We report the average overlap (AO), success rate

(SR0.5, SR0.75) in Tab. 2. Comparing the proposed model

13345



Figure 6: Visualization of results comparison on LaSOT.

with the baseline Ocean [47], we achieve gains of 6 points,

7.1 points, and 7.8 points on AO, SR0.5, and SR0.75, respec-

tively. Notably, our model outperforms SiamBAN [6] for

1.6 points on AO, while running faster (50FPS vs. 40FPS).

TNL2K [39]. TNL2K is a new dataset which consists

of 2000 high diversity videos for natural language guided

tracking. Adversarial samples and thermal images are in-

troduced to improve the generality of tracking evaluation.

Besides tracking by natural language, it also provides the

results of tracking by bounding boxes. In Tab. 2, we present

the results on 700 testing sequences. It shows that our

model achieves the best success and precision scores among

the compared trackers.

5.3. Ablation and Analysis

One or Many Manipulators. We link each channel in an

operator with a manipulator. Differently, in differentiable

neural network search [23], an operator is identified by a

scalar. We also try this strategy, i.e., assigning a match-

ing operator with a scalar during the search. We achieves

a final success score of 69.5 on OTB100 [40] and 54.7 on

LaSOT [10]. The results are inferior to our model, which

demonstrates the superiority of our search algorithm. We

conjecture that the aggregation of channel information can

provide finer guidance for operator selecting.

Random Search. To demonstrate the efficacy of the search

algorithm, we evaluate the performance of random search.

Two operators are randomly retained for classification and

regression branches, respectively. We report the average

performance of the three-time random search and training.

The average success score on OTB100 and LaSOT are 69.1

and 53.2. The results manifest that the introduced search

method is effective in finding better operators combination.

NAS-like Matching Cell. In differentiable neural network

search [23], it represents the basic operating cell as a Di-

rected Acyclic Graph (DAG). Each cell contains multiple

nodes, and each node aggregates the outputs of multiple ba-

sic operators (e.g., 3 × 3 convolution layer). One intuitive

idea is directly replacing the operators in NAS with our

designed matching functions and then searching a match-

ing network. As shown in Fig. 7, we use DARTS [23] to
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Concatenation

1
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Figure 7: top: NAS-like Matching Network for classifica-

tion. bottom: NAS-like Matching Network for regression.

search a matching cell, which looks like that in NAS. Sur-

prisingly, though the searched cell is much complex than

ours, it does not show superiority. Concretely, the NAS-like

cell achieves an success score of 55.7 on LaSOT and runs at

35 FPS. Both the performance and inference speed is infe-

rior to the proposed model. The comparison proclaims that

directly borrowing NAS to matching network search may

not be an optimal choice. We present more details about the

DARTS-like structure search and the related work in sup-

plementary materials, due to space limit.

6. Conclusion

In this work, we introduce six novel operations to ex-

plore more feasibility on matching operator selection in

Siamese tracking. Quantitative and quantitative analyses

demonstrate that the classical (depthwise) cross-correlation

is not the optimal choice for Siamese tracking. We simulta-

neously find the optimal matching networks for both classi-

fication and regression branches in state estimation with the

proposed binary channel manipulation (BCM). The learned

matching networks are applied to a baseline tracker, and the

experimental result shows the robustness of our approach

on both short-term and long-term benchmarks. In the future

work, we will apply our method to other matching based

frameworks, e.g., ATOM.
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