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Abstract

In many computer vision problems, it is desired to learn
the effective visual data similarity such that the prediction
accuracy can be enhanced. Deep Metric Learning (DML)
methods have been actively studied to measure the data
similarity. Pair-based and proxy-based losses are the two
major paradigms in DML. However, pair-wise methods in-
volve expensive training costs, while proxy-based methods
are less accurate in characterizing the relationships be-
tween data points. In this paper, we provide a hybrid grou-
plet paradigm, which inherits the accurate pair-wise rela-
tionship in pair-based methods and the efficient training
in proxy-based methods. Our method also equips a non-
Euclidean space to DML, which employs a hierarchical rep-
resentation manifold. More specifically, we propose a uni-
fied graph perspective — different DML methods learn dif-
ferent local connecting patterns between data points. Based
on the graph interpretation, we construct a flexible subset
of data points, dubbed grouplet. Our grouplet doesn’t re-
quire explicit pair-wise relationships, instead, we encode
the data relationships in an optimal transport problem re-
garding the proxies, and solve this problem via a differen-
tiable implicit layer to automatically determine the relation-
ships. Extensive experimental results show that our method
significantly outperforms state-of-the-art baselines on sev-
eral benchmarks. The ablation studies also verify the effec-
tiveness of our method.

1. Introduction

Learning the semantic similarity between visual data
is important for many machine vision tasks, includ-
ing clustering [49], image retrieval [25, 34], person re-
identification [48, 8], and few-shot learning [36, 33]. Con-
ventionally, the Mahalanobis distance [24, 46] defined on
hand-crafted features are exploited to characterize the data

*This work was partially supported by NSF IIS 1845666, 1852606,
1838627, 1837956, 1956002, IIA 2040588.

Figure 1: Top: Bounds of different colors indicate images
from different clusters. Our method employs grouplet (yel-
low shaded), which can be viewed as randomly split of im-
ages in a batch. Bottom: Inside a grouplet, we determine
the data-wise relationships dynamically via optimal trans-
port. Different colors indicate different clusters. All pairs of
data (circles with numbers) and proxy (circles with letters)
are evaluated via jointly considering the data-wise relation-
ships (e.g. automatically determine that (1, 2) is a positive
pair, and (2, 3) is negative). Data embeddings are pulled
(inner arrow) or pushed (outer arrow) harder to/away from
the proxies if mismatched, e.g. (3, a) is well distributed,
and the push is weak (thin line); (4, c) is badly distributed,
which leads to a harsh push (thick line).

similarity. Boosted by the emerging advance of deep rep-
resentation learning, refined distance metrics [17, 39] are
proposed in recent works to accurately capture the geomet-
ric structure of data embeddings.

Existing supervised DML methods can be categorized
into two paradigms, pair-based methods and proxy-based
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methods. Pair-based methods, e.g. contrastive loss [9, 4]
and triplet loss [43, 32], consider pairwise relationships
between data points. In detail, a pair of data with the
same label is positive, otherwise negative. Pair-based losses
then define some rules to select the tuples of pairs and
learn the data relationships inside these pairs. To acceler-
ate the training, sampling techniques detecting informative
tuples are frequently utilized in pair-based methods. Alter-
natively, proxy-based methods, e.g. Proxy NCA [25] and
soft triplet [31] introduce proxies to summarize subsets of
training data and learn the data-wise relationship indirectly,
through the data-proxy relationship. Proxy-based methods
resolve the complexity issue in pair-based methods.

Though pair-based and proxy-based paradigms each
have their own merits, both paradigms, however, have some
intrinsic drawbacks. In pair-based methods, the training re-
quires explicit pair relationships. An obvious advantage is
that the local structures are evaluated more accurately. Nev-
ertheless, in pair-based losses, the candidate training sam-
ples are composed of all valid combinations of data points
(e.g. the number of training samples in contrastive loss [9]
is the square of total data numbers), which substantially in-
creases the training time. On the other hand, the training of
proxy-based methods is based on individual data samples,
which enjoys significantly better computational efficiency
compared to pair-based methods. However, the data rela-
tionships learned in proxy-based methods are estimated and
bounded through proxies. This indicates encoding may re-
sult in sub-optimal embedding manifolds.

To address the above problems, in this paper we propose
a hybrid grouplet paradigm for non-Euclidean deep metric
learning, which can be viewed as evaluating enlarged bipar-
tite subgraphs consisting of multiple data points (dubbed
grouplet) and proxies (Fig. 1). Our grouplet is free of ex-
plicit pair construction and doesn’t require exhausting all
combinations of data points. The data-wise relationships
are dynamically determined via a constrained optimal trans-
port layer. To further exploit the hierarchical structure of
proxies and data points, we resort to a non-Euclidean em-
bedding space and the associated similarity. Our contribu-
tions can be summarized as follows,

• We provide a graph perspective for deep metric learning,
which generalizes two major DML paradigms, pair-based
and proxy-based methods (Fig. 2).

• We formulate a grouplet deep metric learning method,
which inherits the accurate estimation for pair-wise rela-
tionship from pair-based methods, and the efficient com-
putation from proxy-based methods.

• We propose to learn non-Euclidean embeddings and the
associated embedding-proxy similarity.

• The experimental results show significant improvement
over state-of-the-art methods on several benchmarks.

The ablation study demonstrates the effectiveness of our
method.

Notations: Throughout the paper, the bold capital and bold
lowercase symbols are used to represent matrices and vec-
tors, respectively. A ≥ 0 denotes that elements of a matrix
A are greater than or equal to 0. G = {V,E} represents
a graph with node set V and edge set E. A n × n-identity
matrix is denoted by In, 1n is a n-dimension one vector,
and 0 denotes a zero matrix.

2. Related Works
2.1. Non-Euclidean Representation Learning

Representation learning learns ubiquitous high-
dimensional embeddings which can be utilized by various
tasks. Based on the representations, classification or
clustering models usually learn the hyper-planes to indicate
the class boundaries. Conventionally, the embeddings
learned by the models live the Euclidean space. Recently,
non-Euclidean space has been an emerging research
area [23], where space is parameterized by the curvature
and the hyper-planes are defined as geodesics. For example,
spherical embeddings are used in few-shot learning [40]
and person re-identification [41]. Hyperbolic space also
finds important applications, particularly in graph-related
tasks [27, 6]. For example, trees can be embedded with
arbitrary accuracy into the Poincarè ball. Hyperbolic neural
networks [11] are used in natural language processing and
image retrieval [16].

2.2. Deep Metric Learning

Pair-Based Losses: Pair-based methods define their losses
on explicit positive or negative pairs. Among these meth-
ods, contrastive loss [9, 4] and triplet loss [43, 32] are two
seminal examples. Generalized triplet losses, for example,
N-pair loss [34] and lifted structure loss [29], associate mul-
tiple positive or negative data points to an anchor. Based on
these works, General Pair Weighting (GPW) [44] proposed
a framework unifying the pair weighting.
Proxy-Based Losses: The initial proxy-based work is
Proxy-NCA [25], an approximated version of Neighbor-
hood Component Analysis, via computing the distances be-
tween the embeddings and the cluster-wise proxies. Sev-
eral extensions are developed recently, including SoftTriplet
loss [31], Proxy Anchor [17], and ProxyNCA++ [39].
Proxy-based methods are efficient at the cost of coarsened
capturing of data-to-data relationship.

Recently, there is also a unified benchmark for a com-
prehensive view of deep metric learning approaches [26].

2.3. Deep Implicit Layers

Deep neural networks are heavily dependent on the
gradient-based optimization, e.g. Momentum Stochastic
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Figure 2: Illustration of DML. Left: embeddings (solid-line
circles) for data points and proxies (dashed-line circles).
Different colors indicate different clusters. Middle: three
representative DML losses and the associated subgraphs.
Colored solid lines between nodes indicate positive pairs,
and black dashed lines indicate negative pairs. Right: a
grouplet and the associated subgraph. The edges (weights
computed by the optimal transport) represent the relation-
ships between the grouplet to the proxies.

Gradient Descent [37] and Adam [19]. However, con-
strained optimization is seldom integrated into deep neural
networks due to the difficulty of the automatic differenti-
ation concerning the boundary. Recently, neural ordinary
differential equations [7] provide a new interpretation for
the residual neural layers, which states that each residual
layer can be viewed as one differential operation. Inspired
by this perspective, it is shown that deep neural networks
can be utilized to solve convex constrained problems, re-
ferred to as differentiable optimization [1]. For example,
OptNet [2] designs a special deep layer to solve quadratic
programming problems.

3. Method

In this section, we first propose a unified graph perspec-
tive towards deep metric learning in §3.1. From this per-
spective, we describe our grouplet DML paradigm in §3.2,
and introduce our non-Euclidean embeddings in §3.3. A
differentiable optimal transport layer is discussed in §3.4
which makes our method end-to-end trainable.

3.1. Unifying DML from A Graph Perspective

DML methods learn the embeddings of data points via
constraining the distances between them. Before introduc-
ing our grouplet non-euclidean approach, we first present a
graph perspective towards understanding deep metric learn-
ing, illustrated in Fig. 2. From a graph perspective, we con-
sider a weighted graph where the embeddings are viewed
as node representations encoding the data points. We define
f : R → R mapping the node-wise distances to the edge
weights. Under this formulation, popular DML paradigms
can be interpreted as learning the constrained local struc-

tures for the data distribution. Pair-based losses explicitly
consider the relationship between data points sampled from
different clusters. For example, triplet loss considers all
valid subgraphs induced by an anchor, a positive sample,
and a negative sample. Specifically, the triplet loss attempts
to embed the data to the manifold such that the anchor is
strongly connected to the positive sample, and weakly con-
nected to the negative sample. Alternatively, proxy-based
methods introduce auxiliary proxies to summarize differ-
ent clusters, which can be interpreted as a hierarchical em-
bedding structure. Proxies-based losses characterize the re-
lationship between proxies and data points, which can be
viewed as weighted bipartite graphs. Parallel to pair-based
losses, the local connectivity patterns of the bipartite sub-
graphs are optimized to fit into the data relationships.

Compared to proxy-based losses, pair-based losses can
learn a more accurate local structure as a consequence of
directly evaluating the subgraphs. However, they involve
substantially expensive training costs concerning the com-
bination number of subgraphs. Proxy-based losses are effi-
cient as that their training is point estimation defined on the
bipartite data-proxy subgraphs.

3.2. Grouplet Deep Metric Learning

In this paper, we propose a hybrid paradigm — the hi-
erarchical subgraphs composed of multiple data points (re-
ferred to as grouplet) and proxies. Compared to pair-based
methods, our grouplet is more flexible — neither the pre-
cise number nor the clusters for data points are specified.
Instead, we explicitly learn the structure of the bipartite sub-
graphs by solving the optimal transport from the grouplets
to proxies. Of note, our hybrid method inherits the compu-
tational efficiency of proxy-based methods, meanwhile pre-
serves the pair-wise relationship via the flexible grouplets
because the data relationships are encoded in the constraints
of the optimal transport problem. In the next part, we will
detail the choice of the non-Euclidean embeddings and the
associated similarity.

We consider cluster-wise proxies for c clusters, which is
a standard step in proxies-based methods. A k-grouplet is
defined as k randomly sampled data points. Our grouplet
loss is defined on the bipartite subgraphs, consisting of a
k-grouplet and the proxies. Of note, our grouplet is free of
cluster considerations, i.e. the numbers of positive pairs and
negative pairs are not specified. Instead, we characterize the
bipartite subgraphs via the optimal transport cost, in which
the positive pairs and negative pairs are identified automat-
ically. Formally, the embeddings for a k-grouplet are de-
noted by Y ∈ Rn×k and the proxies P ∈ Rn×c. yi ∈ Rn

and pj ∈ Rn are the i-th data embedding and j-th proxy,
respectively. Assume we have dp : Y × P → R defin-
ing the similarity between the embedding space Y ⊆ Rn

and the proxies space P ⊆ Rn. Let the transport cost be
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Figure 3: The outputs of backbone h′ are transformed to non-Euclidean embeddings y. The proxies p and the decision
hyper-planes are in the same non-Euclidean space. The data representations in Poincaré ball are scattered and hierarchical.
Colored lines denote the decision hyper-planes for different clusters. Similar to the Euclidean case, the margin between
different hyper-planes — characterized by geodesics in non-Euclidean space — are constrained.

cij = 1 − f(dp(yi,pj)), i.e. the edge weights indicat-
ing the data similarity. We have the optimal transport cost
W (Y ,P ) concerning the embeddings and proxies,

W (Y ,P ) = min
xij

k∑
i=1

c∑
j=1

cijxij , (1)

s.t. xij ≥ 0,

k∑
i=1

xij = sj ,

c∑
j=1

xij = di,∀i, j

here xij is the flow encoding the relationship between data
point yi and proxy pj . During the training stage, we have
the data labels, denoted as ti. As such, xiti encodes the pos-
itive relationship between yi and pti , and xij when j ̸= ti
encodes the negative relationship. Compared to hard-coded
pairs, the optimal transport problem explicitly considers the
data-wise — via

∑k
i=1 xij = sj — and proxy-wise— via∑c

j=1 xij = di — relations in the constraints, which in-
herits the accurate local structure estimation in pair-based
methods. We interpret xij as the probability that data i is
with cluster j. As such, di is naturally set to 1 for all i. We
let sj =

∑k
i=1 I(ti = j) where I is an indicator function,

which corresponds to the ideal match of positive proxies
and data labels. (1) can be solved via a differentiable layer,
and we reserve the discussion to §3.4.

Given i, {xij |j ∈ {1, . . . , c}} represents the relationship
between data point i and all proxies. The intra-grouplet (i.e.
data-wise) relationship is decomposed by the constrained
optimal transport. We can safely insert xij into proxies-
based losses. In this paper, we adopt the Proxy-Anchor
loss [17], and our grouplet loss can be written as,

ℓ(X,P ) =
1

|C+
p |

∑
j∈C+

p

f0({d+ij}, {xij})+ (2)

1

|Cp|
∑
j∈Cp

f0({d−ij}, {xij}),

here C+
p = {j|∃i, ti = j}, d+ij = −α(dp(xi,pj)− δ), Cp =

{1, . . . , c}, d−ij = α(dp(xi,pj) + δ), f0({dij}, {xij}) =

log
(
1 +

∑
{i|ti=j}(1 + xij) exp (dij)

)
and |·| on set de-

notes the cardinality. α and δ are parameters introduced
by proxy anchor, and we follow the default settings in the
original paper. Note that compared to the naive Proxy-
Anchor loss, we substitute the positive proxy-embedding
pairs with the computed xiti , and insert the negative pairs
for unmatched xij .

Our grouplet paradigm explicitly and automatically de-
termines the data-wise relationships via the constrained op-
timal transport problem. Moreover, our method is based on
randomly selected data points. The construction of grou-
plets doesn’t require specific positive or negative pairs se-
lection, nor iterate all possible combinations of grouplets.
The flow computed from the optimal transport also al-
lows our method to benefit from the accelerated training of
proxy-based methods.

3.3. Non-Euclidean Data Embeddings

To inherit a tree-like hierarchical data structure from
proxies-based methods, we propose to employ non-
Euclidean embeddings, which boosts the model perfor-
mances empirically. In prior works, the data embed-
dings and proxies are in Euclidean spaces. Recently, non-
Euclidean spaces are shown to be suitable for hierarchi-
cal data. For example, hyperbolic embeddings for im-
ages [16] can be effectively exploited by few-shot learning
tasks. Motivated by the success of non-Euclidean represen-
tation learning, we propose to learn the data embeddings
and proxies and define the similarity dp(·) in non-Euclidean
spaces. Specifically, we use the Poincaré ball model which
is proven to be successful in image embeddings, which
also empirically works well in our model. Poincaré ball
model is derived from the Riemann manifold. Poincaré
ball can be characterized by Möbius gyrovector space, in
which the parallel operations to Euclidean space are de-
fined, including exponential/logarithmic maps, Möbius ad-
dition, etc.. A comprehensive evaluation regarding several
different geometric structures is summarized in the ablation
studies §4.3.2. For more details, we refer the readers to re-
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lated literature [11, 22].
The detailed structure of our non-Euclidean embeddings

is illustrated in Fig. 3. For a fair comparison, minimal
modification towards the structure in prior works is in-
volved. We only substitute the Euclidean layer with a non-
Euclidean layer of the same size and leave the rest part
untouched. The only additional hyperparameter is the ra-
dius of the Poincaré ball. Of note, the backbone struc-
ture yields Euclidean representations. As such, the inter-
mediate representations should be transformed before be-
ing fed to the non-Euclidean layer. For simplicity, given a
Poincaré ball Dc of radius c, we assume the intermediate
representations y′ is in the tangent space of the Poincaré
ball at the origin, T c

0 . The transformation can be writ-
ten as y = projc (expc0 (y

′)). Here, expc0(·) is the expo-
nential map to T c

0 , projc(·) projects the the point in T c
0 to

Dc. After the non-Euclidean layer, the embeddings are also
non-Euclidean. For consistency, the proxies are also repre-
sented in the same Poincaré ball, and we define dp(y,p) :
T0Dc × T0Dc → R in (2) as the non-Euclidean cosine sim-
ilarity dp(y,p) = gD0 (log

c
0 (y) , log

c
0 (p)). Here, logc0(·)

is the logarithmic map to T c
0 , and gD0 (·) is the Riemannian

metric on Dc. It should be also stressed that for either the
transformation or the non-Euclidean cosine similarity com-
putation, no additional parameters are required.

Via the non-Euclidean representation learning and the
associated similarity, we can take advantage of the hierar-
chical structure of data distributions. Specifically, there is
only one single additional hyper-parameter introduced by
our non-Euclidean DML, which allows a minimal effort for
tuning our model.

3.4. Differentiable Optimal Transport Layer

Directly integrating (1) in our deep model will lead to in-
tractable gradients. To solve this challenging problem, we
resort to a deep implicit layer encoding the optimal transport
computation. (1) is a linear programming problem comput-
ing the 1-Wasserstein distance between the grouplet and the
proxies. cij , sj and di are parameters related to the embed-
dings, which can be viewed as functions defined on some
input θ. In our case, θ can be interpreted as the intermedi-
ate embeddings of the backbone model and other involved
model parameters. A deep implicit layer exploits the KKT
(Karush–Kuhn–Tucker) conditions to solve a convex prob-
lem with the parameters fixed and computes the gradients
w.r.t. θ using the implicit function theorem. As such, we
can build an end-to-end trainable deep neural network by
inserting the implicit optimal transport layer to compute xij

in (1). For self-containedness, the detailed derivation of the
deep implicit layer encoding the optimal transport is given
in the following.

We first re-write (1) in a compact form,

W = min
x

f(x,θ), s.t. G(θ)x ≤ 0, h(x,θ) = 0, (3)

here, N = c × k, f(x,θ) = c⊺x, x ∈ RN , and the
k-th entry is xij with i = ⌊k/n⌋ and j = k mod n.
c : Θ → RN is the vectorized form of the transport cost.
G(θ) = diag (−1N ), where diag (·) maps the given vector
to a diagonal matrix. Note that G(θ) is usually a function
on θ, and in our problem we take a a constant function. Let
s ∈ Rm and d ∈ Rn be the vectorized sj(θ) and di(θ).
h(x,θ) = Ax− [s,d], where [s,d] is the concatenation of
s and d. A ∈ RM×N , where M = c+ k, is defined as,

A =


1⊺
k

. . .
1⊺
k

diag (1k) · · · diag (1k)

 . (4)

(3) is a constrained convex problem and its Lagrangian is,

L (x,v,λ,θ) = c⊺x+ λ⊺G(θ)x+ v⊺h(x,θ), (5)

here v and λ are the dual variables for the equalities and
inequalities in the constraints, respectively.

It is easy to verify that (3) satisfies the Slater’s condition
and the twice differentiability. As such, the KKT conditions
of (5) are the necessary and sufficient optimality conditions
for (3). More specifically, let z = (x,v,λ), we define

g (z,θ) =
[
∇xL(z,θ), diag(λ)G(θ)x, h(x,θ)

]⊺
. (6)

If g(z̃,θ) = 0 for some z̃ = (x̃, ṽ, λ̃) where x̃ and ṽ are
both feasible, then the KKT conditions are satisfied and x̃
is optimal. The partial Jacobian regarding z is,

Dzg(z̃,θ) =

Dx∇xL(z̃,θ) G(θ)⊺ Dxh(x̃,θ)
⊺

diag(λ̃)G(θ) G(θ)x̃ 0
Dxh(x̃,θ) 0 0

 ,

(7)

and the partial Jacobian regarding θ is,

Dθg(z̃,θ) = [Dθ∇xL(z̃,θ), 0, Dθh(x̃,θ)]
⊺
. (8)

The following theorem characterizes the differentiability
of convex optimization.

Theorem 1. (Differentiable Convex Optimization [3])
Given a convex problem, assume (1) Slater condition holds,
(2) all derivative exists, (3) {i|λi = 0 and fi(x,θ)} = ∅,
and (4) Dxg(x,v,λ,θ) is non-singular. If g(x̃, ṽ, λ̃,θ) =
0, the solution mapping has a single-valued localization s
around x̃, ṽ, λ̃ that is continuously differentiable in a neigh-
borhood Q of θ with Jacobian satisfying,

Dθs(θ) = −Dzg(z̃,θ)
−1Dθg(z̃,θ),∀θ ∈ Q. (9)
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Remark. Theorem 1 is an immediate result from the Im-
plicit Function Theorem [20]. Recall that in our problem,
θ are the embeddings of subgraphs. Theorem 1 states that
the gradient w.r.t. θ can be computed via combining (7)
and (8). In other words, backward propagation is feasible.

The advantage of our optimal transport problem is that
the data-wise relationships are explicitly considered in the
constraints. Meanwhile, the above results allow the differ-
entiable optimal transport problem to be formulated as a
trainable layer inserted into our grouplet loss, which makes
our paradigm end-to-end trainable.

4. Experimental Results
4.1. Experimental Settings

Datasets The experiments are conducted as image retrieval
task on CUB-200-2011 [42], Cars196 [21], and Stanford
Online Products [29] datasets. We split the training and test
sets following the conventional protocol [29].

CUB-200-2011 [42] contains 200 species of birds with
11,788 images. The first 100 species (5864 images) are
used for training and the rest 100 species (5924 images) for
testing.

Cars196 [21] contains 196 classes with 16,185 car im-
ages. The first 98 classes (8054 images) are used for train-
ing and the rest 98 classes (8131 images) for testing.

Stanford Online Products [29] contains 22,634 classes
with 120,053 product images. The first 11,318 classes
(59,551 images) are used for training and the rest 11,316
classes (60,502 images) are used for testing.
Evaluation Metrics We calculate Recall@n for the im-
age retrieval task. For each query image, top-n most simi-
lar images are returned identified, and the retrieved images
sharing the label with the query are positive, with the rest
be negative. Additionally, we evaluate the clustering per-
formance using the Normalized Mutual Information (NMI)
based on the K-means algorithms.
Implementation Details: We use ResNet-50 as the back-
bone model initialized with an unsupervised pre-trained
model on ImageNet dataset [5]. The non-Euclidean layer
is adopted from the implementation of Hyperbolic Graph
Convolutional Networks [6] using a Poincaré ball manifold
with c = 4. We adopt the default setting in ProxyAn-
chor [17], α = 32 and δ = 0.1, without any tuning. The
grouplet size is 4. The training batch is of the same mean-
ing in regular proxy-based methods. For example, a batch
size of 64 means we sample 64 images from the training set.
The images are then split into 16 grouplets. We emphasize
that our approach doesn’t require constructing all combina-
tions of grouplets, instead, it only inserts a re-grouping step
concerning the data in each batch. We adopt the OptNet [2]
to solve the optimal transport problem. OptNet is designed
for solving quadratic programming (QP) problems. The

backward propagation is accomplished via automatic dif-
ferentiation through a customized QP solver 1. To tailor our
problem to fit into OptNet, we only need to insert a small
quadratic term 10−4 (x⊺x) into the objective function. The
optimal transport can be viewed as part of the objective,
which is not involved in the test stage. The class numbers of
CUB-200-2011 [42] and Cars196 [21] are moderate, which
can be efficient solved using the proposed scheme. The
class number of Stanford Online Products [29] is signifi-
cantly larger, which may result in the out-of-memory prob-
lem. As such, for each batch, we only compute the optimal
transport using the proxies sharing the labels with the batch,
and the rest are excluded from the computation.

Our approach is implemented in PyTorch and trained
with an NVIDIA P40 GPU. The input image sizes for the
training and the testing are both in 224 × 224. During the
training, we use random cropping and horizontal mirroring
for data augmentation. For the test phase, we resize images
to 256 × 256 then compute the embeddings based on the
center cropping. We use Adam optimizer with a learning
rate of 0.0001 for the backbone model. The learning rate
for the proxies is multiplied by 100 to accelerate the train-
ing. We train the models using batch size 64 for 60 epochs.
We use a cosine annealing scheduler with 5 steps warm-up.
Besides, we use 5 epochs warm-up for the proxies, which
can stabilize the training.

4.2. Comparison with State-of-the-Art Methods

Table 1 summarizes the comparison of our approach with
state-of-the-art DML methods. The image size has a sig-
nificant influence on the model performance, therefore, we
only include those methods with crop size 224×224. On all
datasets, our method is superior to previous arts for various
embedding sizes.

The results of our approach are substantially superior to
all previous methods on CUB-200-2011 and Cars-196. For
example, on CUB-200-2011 our method (embedding size of
512) outperforms the second-best method by 5.7% in R@1.
Cars-196 is a relatively simple dataset compared to CUB-
200-2011. On this dataset, our method also yields an im-
provement of 3.8% compared to the second-best method.
Note that the results of our approach are computed on a
small batch size of 64, while the best performance of Proxy-
Anchor is obtained on a large batch size of 160, which
requires large memory. Therefore, our method not only
achieves the best performance for different embedding sizes
but also has lower hardware requirements for training.

The data statistics of SOP are significantly different from
CUB-200-2011 and Cars-196. There are about 5 images for
each class in SOP by average, while CUB-200-2011 and
Cars-196 have more than 50 images. The difference may

1https://github.com/locuslab/qpth
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CUB-200-2011 Cars196 Stanford Online Products

NMI R@1 R@2 R@4 NMI R@1 R@2 R@4 NMI R@1 R@10 R@100

LiftedStruct64 [29] G 56.6 43.6 56.6 68.6 56.9 53.0 65.7 76.0 88.7 62.5 80.8 91.9
Clustering64 [28] I 59.2 48.2 61.4 71.8 53.4 51.5 63.8 73.5 89.5 66.7 82.4 91.9
ProxyNCA64 [25] I 59.5 49.2 61.9 67.9 64.9 73.2 82.4 86.4 90.6 73.7 − −

SmartMining64 [13] G 59.9 49.8 62.3 74.1 59.5 64.7 76.2 84.2 − − − −
SoftTriplet64 [31] I 66.2 60.1 71.9 81.2 69.3 65.4 76.4 84.5 91.7 76.3 89.1 95.3
ProxyGML64 [53] I 65.1 59.4 70.1 80.4 67.9 78.9 87.5 91.9 89.8 76.2 89.4 95.4

ProxyAnchor64 [17] I − 61.7 73.0 81.8 − 78.8 87.0 92.2 − 76.5 89.0 95.1
Proposed64 R 71.5 66.5 77.3 85.2 73.8 83.9 90.4 94.1 90.7 79.1 90.8 96.2

Margin128 [47] R 69.0 63.6 74.4 83.1 69.1 79.6 86.5 91.9 90.7 72.7 86.2 93.8
Proposed128 R 73.5 70.0 79.9 87.0 75.6 87.8 92.5 95.5 90.9 80.8 91.9 96.7

HDC384 [51] G − 53.6 65.7 77.0 − 73.7 83.2 89.5 − 69.5 84.4 92.8
ProxyGML384 [53] I 68.4 65.2 76.4 84.3 70.9 84.5 90.4 94.5 90.1 77.9 90.0 96.0

Proposed384 R 75.7 74.0 82.8 89.2 78.7 91.0 94.5 96.8 90.9 82.1 92.8 97.2

HDML512 [52] G 62.6 53.7 65.7 76.7 69.7 79.1 87.1 92.1 89.3 68.7 83.2 92.4
HTL512 [12] I − 57.1 68.8 78.7 − 81.4 88.0 92.7 − 74.8 88.3 94.8

RLL-H512 [45] I − 57.4 69.7 79.2 − 74.0 83.6 90.1 − 76.1 89.1 95.4
A-BIER512 [30] G − 57.5 68.7 78.3 − 82.0 89.0 93.2 − 74.2 86.9 94.0

ABE512 [18] G − 60.6 71.5 79.8 − 85.2 90.5 94.0 − 76.3 88.4 94.8
SoftTriplet512 [31] I 69.3 65.4 76.4 84.5 70.1 84.5 90.7 94.5 92.0 78.3 90.3 95.9

MS512 [44] I − 65.7 77.0 86.3 − 84.1 90.4 94.0 − 78.2 90.5 96.0
TML512 [50] R − 62.5 73.9 83.0 − 86.3 92.3 95.4 − 78.0 91.2 96.7

CircleLoss512 [35] I − 66.7 77.4 86.2 − 83.4 89.8 94.1 − 78.3 90.5 96.1
GL512∗ [10] G 69.0 65.5 77.0 85.0 72.7 85.6 91.2 94.9 91.1 75.7 88.2 94.8

ProxyGML512 [53] I 69.8 66.6 77.6 86.4 72.4 85.5 91.8 95.3 90.2 78.0 90.6 96.2
ProxyAnchor512 [17] I − 68.4 79.2 86.8 − 86.1 91.7 95.0 − 79.1 90.8 96.2
ProxyAnchor512 [17] R − 69.7 80.0 88.1 − 87.7 93.0 96.1 − − − −

Proposed512 R 76.4 75.4 83.4 90.1 77.6 91.5 94.8 96.9 91.1 82.0 92.7 97.2

Table 1: Comparison with the state-of-the-art methods. Superscript denotes embedding dimension. The best results are
boldfaced, and the runner-ups are underlined. If the results are unavailable from the original paper, the cell is filled with “-”.
The backbone networks is denoted by abbreviations next to the baselines: I — Inception with batch normalization [15], G —
GoogleNet [38], and R — ResNet-50 [14]. Note that GL512∗ [10] uses 227× 227 images instead of 224× 224.

result in the performance improvement gap between differ-
ent datasets. Nevertheless, our approach has a better perfor-
mance compared to most of the state-of-the-art methods.

Of note, TML [50] and GL [10] are two related methods
that also use randomly generated groups of data to com-
puting data-wise similarity. However, TML [50] requires
iterating all combinations of tuplets and specialized mining
techniques, which is far less efficient nor scalable compared
to our method. Compared to GL [10], our method auto-
matically computes the data-wise relationships and learns
non-Euclidean embeddings. Moreover, our model performs
significantly better than TML [50] (12.9% higher R@1 on
CUB-200-2011) and GL [10] (9.9% higher R@1 on CUB-
200-2011).

To further demonstrate the performance of our approach,
we present some qualitative results in Fig. 4. The embed-
dings of our approach can accurately retrieve the similar in-
stances under various challenges, including the pose vari-

ation and background clutter in CUB-200-2011 and Cars-
196, and the view-point changes in SOP.

4.3. Ablation Study

4.3.1 Model Sensitivity and Efficiency

As aforementioned, our method inherits the computational
efficiency of proxy-based methods. Moreover, compared
to the base method Proxy-Anchor, our method doesn’t re-
quire a large batch to achieve the best results, which reduces
the memory requirement. Table 2 compares the computa-
tional resources for Proxy-Anchor and our approach. For
Proxy-Anchor, we include two settings. The batch size has
an enormous influence on the model performance, and to
achieve the best performance, up to 16 G memory is re-
quired. Compared to Proxy-Anchor, our method has com-
parable per-epoch training time and consumes significantly
less memory. For example, Proposed 16 × 4 (equal to
batch size 64) performs much better and consumes only
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Query Top-4 Retrievals

(a)

(b)

(c)

Figure 4: Qualitative results on (a) CUB-200-2011, (b)
Cars-196, and (c) SOP. We present the top 4 retrievals
for each query image. The retrievals with green boundary
are positive cases, and those with red boundary are failure
cases. Even for failed retrievals, substantially similar visual
appearances are shared with queries.

Batch Mem. Time R@1

ProxyAnchor512 [17] 64 6.0 43 67.1
ProxyAnchor512 [17] 180 16.1 40 69.0

Proposed512 8× 4 3.2 81 73.6
Proposed512 16× 4 6.1 65 75.4
Proposed512 32× 4 11.9 63 75.5
Proposed512 8× 8 6.1 74 74.9
Proposed512 12× 6 6.8 70 74.7

Table 2: The resource requirements on CUB-200-2011. For
the proposed method, Batch is denoted by number of grou-
plet × grouplet size, and their product is actual batch size of
the same sense in Proxy-Anchor. Mem. is the max memory
for training in Gigabytes, and Time is the per-epoch training
time in seconds.

30% memory compared to ProxyAnchor 64.
The sensitivity of the size of grouplet k is also included in
Table 2. For similar batch size (16 × 4, 8 × 8 and 12 × 6),
the model performance is not very sensitive to k.

4.3.2 Choice of Embedding Manifold

To demonstrate the impact of the non-Euclidean layer, in
this section we consider two important questions and pro-

vide the empirical answers on CUB-200-2011.
First, whether non-Euclidean layer improves the embed-

ding learning. To demonstrate the impact of integrating a
non-euclidean layer, in Table 3 we examine the model per-
formance of two state-of-the-art methods, ProxyGML and
ProxyAnchor, under different embedding manifolds. We
use the original implementation provided by the authors and
alter the embedding layers. Here, Euclidean refers to the
original models, Hyperboboid and Poincarè Ball are two
different non-Euclidean manifolds. The results show that
non-Euclidean layers lead to better embeddings regardless
of the specific types of losses.

Euc. Hyper. P. Ball
proxyGML512 [53] 66.6 65.9 67.1

ProxyAnchor512 [17] 68.4 68.1 68.8

Proposed512 74.8 73.6 75.4

Table 3: Comparison of embedding layers with different
manifolds. Euc.: Euclidean; Hyper.: Hyperboboid; P. Ball:
Poincarè ball. Euc. is identical to the standard setting.

Second, how sensible the performance is concerning the
manifold parameters. Non-Euclidean layers introduce an
additional hyperparameters, the radius c of Poincarè ball.
In Fig. 5, we illustrate the model performance v.s. c. With
confidence we believe that the model performance is not
sensitive if c ≥ 2.
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Figure 5: Model performance v.s. c on CUB-200-2011.

Based on the above results, we justify that deep metric
learning presumably benefits from a properly defined non-
euclidean layer. Particularly, we recommend the Poincarè
ball model with c = 4 for general DML tasks.

5. Conclusion
In this paper, we proposed a new DML paradigm, inher-

ing the accurate pair-wise relationship of pair-based meth-
ods, and the computational efficiency of proxy-based meth-
ods. Our method utilizes the hierarchical structure of data
embedding via non-Euclidean representation learning and
the associated similarity, and employs a differentiable opti-
mal transport layer to learn the data relationships automat-
ically. The experimental results demonstrate our method
significantly outperforms previous arts on several standard
benchmark datasets, and the ablation study also shows the
effectiveness of our design.
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Säckinger, and Roopak Shah. Signature verification using
a” siamese” time delay neural network. Advances in neural
information processing systems, pages 737–737, 1994. 2

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. arXiv
preprint arXiv:2006.09882, 2020. 6

[6] Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec.
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