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Figure 1: By leveraging data-driven motion priors learned from the large-scale mocap dataset AMASS [38], we reconstruct
high-quality human motions in complex 3D scenes from monocular RGB(D) input. Our proposed method (second row)
robustly deals with occlusions and achieves more accurate motion reconstructions compared with PROX [19] (first row).

Abstract

Recovering high-quality 3D human motion in complex
scenes from monocular videos is important for many appli-
cations, ranging from AR/VR to robotics. However, captur-
ing realistic human-scene interactions, while dealing with
occlusions and partial views, is challenging; current ap-
proaches are still far from achieving compelling results. We
address this problem by proposing LEMO: LEarning human
MOtion priors for 4D human body capture. By leverag-
ing the large-scale motion capture dataset AMASS [38], we
introduce a novel motion smoothness prior, which strongly
reduces the jitters exhibited by poses recovered over a se-
quence. Furthermore, to handle contacts and occlusions
occurring frequently in body-scene interactions, we design
a contact friction term and a contact-aware motion infiller
obtained via per-instance self-supervised training. To prove
the effectiveness of the proposed motion priors, we com-
bine them into a novel pipeline for 4D human body cap-
ture in 3D scenes. With our pipeline, we demonstrate high-
quality 4D human body capture, reconstructing smooth mo-
tions and physically plausible body-scene interactions. The
code and data are available at https://sanweiliti.
github.io/LEMO/LEMO.html.

1. Introduction

Recovering realistic human motions in everyday 3D
scenes is essential for human behaviour understanding,
human-scene interaction synthesis, and virtual avatar cre-
ation. Marker-based optical motion capture systems (mo-
cap) have the proven capability of recovering highly accu-
rate human motions. However, such systems require expert
knowledge and expensive setup, making it impractical to
capture people in their everyday environments, e.g. record-
ing people in their living rooms, offices or kitchens.

Recently, PROX [19] has been proposed as a lightweight
pipeline to capture everyday person-scene interactions from
monocular sequences given pre-scanned 3D scene geome-
tries. With affordable commodity sensors like an RGB or
RGBD camera, it is quite easy to scan a scene and record
how humans move in and interact with it. This shows a
promising setup for capturing large-scale human motions in
everyday environments. However, as shown in this work1,
the recovered human motions exhibit severe skating and
jitters. The reconstruction quality is far behind that ob-
tained with commercial mocap systems. Building a multi-
view setup or using additional wearable sensors (e.g. Iner-
tial Measurement Unit (IMUs)) can help improve motion
reconstruction quality. However, most multi-view settings

1please see videos on the project page
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require careful calibration and synchronization in a con-
trolled environment and IMUs suffer from heading drift
and interference. Furthermore, human motions obtained by
IMUs [60] or multi-view setups [23] still exhibit jitters and
are less compelling than the ones from mocap systems.

To improve the naturalness and accuracy of human
motions reconstructed from monocular RGBD sequences
(e.g. the PROX pipeline [19]) and to close the performance
gap between the monocular RGBD setup and marker-based
mocap systems, we argue that it is essential to leverage data-
driven approaches and learn powerful motion priors from
high-quality large-scale mocap data (e.g. AMASS [38]). To
this end, we propose LEMO (LEarning human MOtion pri-
ors), which has two key innovations: a marker-based mo-
tion smoothness prior and a contact-aware motion infiller
which is fine-tuned per-instance in a self-supervised fash-
ion. As shown in the experiments, LEMO can effectively
capture the intrinsic properties of human motions and reg-
ularize the noisy and partial observations. As a result, the
reconstructed human motions are smooth, physically plau-
sible and robust to occlusions which are inevitable when
capturing human motions in everyday 3D scenes.

Marker-based motion smoothness prior. 3D human
bodies reconstructed by PROX [19] have severe jitters over
time. Although some heuristic methods like penalizing
joint velocity/acceleration can improve temporal smooth-
ness, they also degrade the motion naturalness. As shown
in our experiments, they can introduce foot-ground skating
artifacts, and may result in invalid body configurations like
joint hyperextension. To capture the holistic full-body dy-
namics, we use a fully convolutional autoencoder to aggre-
gate local motion cues in a bottom-up manner, and derive
latent motion patterns that cover a large spatio-temporal
receptive field. Then, we design a motion smoothness
constraint which works in this latent space rather than di-
rectly on the body. To incorporate body shape information
and model important degrees-of-freedom (DoFs), e.g. ro-
tation about limb axes, as in [71] we represent the body
in each frame by surface markers instead of body joints.
We learn this convolutional motion smoothness prior on the
AMASS [38] dataset. As shown in our experiments, the
proposed prior not only significantly increases the recon-
struction quality on the PROX dataset, but also improves the
motion naturalness on the IMU-based 3DPW dataset [60],
suggesting its effectiveness and potential usage for other
motion capture and reconstruction settings.

Contact-aware motion infiller via per-instance self-
supervised learning. When capturing humans moving in
and interacting with everyday 3D environments (e.g. liv-
ing rooms or offices), partial body occlusions are almost
inevitable. They pose a challenge for reconstruction algo-
rithms, causing invalid poses and foot-ground skating arti-
facts. By leveraging AMASS [38], we learn a neural mo-

tion infiller that is able to infer plausible motions of oc-
cluded body parts given partial observations. Our network
is inspired by [28], but goes beyond the previous work
to jointly predict the foot contact status and body motion.
Combined with a contact friction term motivated by intu-
itive physics, the infilled motion is natural, realistic and has
proper foot-ground interaction, eliminating the foot skat-
ing artifacts. Furthermore, inspired by [24], we propose
a per-instance network fine-tuning scheme. For a test in-
stance which contains partial observations (e.g. only the
upper body motion as the lower body parts are occluded
by the sofa in a 3D scene), we fine-tune the pre-trained
motion infilling network by minimizing a self-supervised
loss that is defined on the visible body parts. In this way,
we effectively adapt the general motion infilling “prior” to
per-test-instance, achieving notable improvements both for
AMASS [38] and PROX [19].

We further carefully combine the learned motion priors
and the contact friction term into a novel multi-stage opti-
mization pipeline for 4D human body capture in 3D scenes.
Contributions. In summary, our contributions are 1) a
novel marker-based motion smoothness prior that encodes
the “whole-body” motion in a learned latent space, which
can be easily plugged into an optimization pipeline; 2) a
novel contact-aware motion infiller that can be adapted to
per-test-instance via self-supervised learning; 3) a new op-
timization pipeline that explores both learned motion pri-
ors and the physics-inspired contact friction term for scene-
aware human motion capture. We extensively evaluate the
proposed priors and the optimization pipeline. The results
show both the wide applicability of the learned motion pri-
ors and the efficacy of the optimization pipeline for monoc-
ular RGBD human motion capture in 3D scenes.

2. Related Work

Human motion recovery from RGB(D) sequences. Hu-
man motion recovery extends the problem of reconstruct-
ing per-frame body 3D shape and pose [2, 5, 16, 17, 19,
26, 32, 42, 44, 53, 56, 58, 66] to sequences of frames, re-
quiring temporal consistency between estimates. A number
of works tackle the problem adopting skeleton/joint-based
representations for the body [7, 8, 11, 13, 14, 29, 35, 39–
41, 45, 46, 54, 63, 65, 70, 73]. Working with 3D joints in-
stead of surfaces, these representations cannot adequately
model the 3D shape of the body and body-scene inter-
actions. Other works propose to use parametric 3D hu-
man models (e.g. SMPL [36]) to obtain complete 3D
body meshes from multi-view [12, 15, 22, 25, 50, 64] or
monocular RGB(D) sequences [10, 27, 31, 34, 37, 55, 67].
Kanazawa et al. [27] learn a temporal context representa-
tion to predict motion in past and future frames. Kocabas
et al. [31] use a bi-directional gated recurrent unit (GRU)
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to temporally encode per-frame image features, and couple
it with an adversarial discriminator to distinguish between
real and predicted motions. Choi et al. [10] propose to bet-
ter integrate past and future frames’ temporal information
to increase temporal consistency. Sun et al. [55] introduce a
multi-level framework to decouple body skeleton and more
detailed shape and pose information. Luo et al. [37] propose
a two-step encoding scheme, which first captures the coarse
overall motion by a pretrained motion representation, and
then refines these estimates. Nevertheless, these methods
focus only on human body motion reconstruction, ignoring
person-scene interactions.
Person-scene interaction. Hasler et al. [18] obtain scene
constraints for body pose estimation by reconstructing the
scene in 3D with multiple unsynchronized moving cam-
eras. Some works rely on physics-inspired error terms
(e.g. contact and collision terms [68]), game physic en-
gines [61], and scene semantic labels [51]. Related to us,
PROX [19] captures person-scene interactions at a very
detailed level, modelling contacts and collisions between
SMPL-X body [44] and 3D scenes. Based on such contact
and collision modelling, Zhang et al. [69, 72] generate hu-
man body meshes in scenes without people in a physically
and semantically plausible manner.
Human motion priors. A large number of priors for
smooth and natural motion have been proposed in the liter-
ature [3, 4, 22, 41, 43, 47, 48, 52, 59]. Some priors directly
apply to body joint velocity or acceleration [4, 41]. Akhter
et al. [3] propose a bilinear model with discrete cosine trans-
form (DCT) basis to provide motion spatio-temporal regu-
larity. Along this line, Huang et al. [22] introduce a DCT
prior to reconstruct body motion from multi-view input.
Some recent work exploits physical simulation to regular-
ize human motion. Shimada et al. [52] assume a pre-defined
virtual character as input, and fit it to monocular sequences
via physics-based optimization. Rempe et al. [47] regress
body joints and foot-ground contact from images to con-
duct physics-based trajectory optimization. Kaufmann et
al. [28] design a convolutional autoencoder to infill motion
of unobserved body joints and remove noise.
Ours versus others. In our work we design a motion
smoothness prior and a motion infiller, and use them to re-
cover realistic motions of person-scene interactions from
RGB(D) videos. Compared to existing smoothness pri-
ors, ours is trained with high-quality AMASS sequences
and the smoothness regularization is applied in the latent
space. Consequently, we can produce smooth motions with-
out degrading per-frame body pose accuracy. Our motion
infiller has a similar architecture to Kaufmann et al. [28],
but processes body markers and predicts foot-ground con-
tact states. Since body markers better constrain body DoFs,
and the contact states are jointly learned with body motions,
our method consistently outperforms [28] w.r.t. motion re-

covery and foot skating (as shown in Sec. 4). Compared
with [47, 52] which predict contact states by 2D joints de-
tected from RGB images, our jointly learned contact states
are better coupled with body dynamics.

3. Method
3.1. Overview

We provides an overview of our approach in Fig. 2.
Given a sequence of RGB-D frames {It, Dt}Tt=1, capturing
a subject moving in a 3D scene, our goal is to reconstruct
a high-quality motion, which is smooth, physically plausi-
ble, and natural. To this end, we fit the SMPL-X parametric
body model to sequence data by proceeding in three stages.
SMPL-X. SMPL-X [44] represents the body as a function
Mb(�,�,✓,�), whose output is a triangle mesh with ver-
tices Vb 2 R10475⇥3. SMPL-X parameters are global trans-
lation � 2 R3, body shape � 2 R10, body and hand pose ✓,
and facial expression � 2 R10. We denote by J(�) the 3D
body skeleton joints in the neutral pose, and by R✓�(J(�)i)
the i-th joint posed according to pose ✓ and translation �.
Multi-stage pipeline. Given the complexity of our task,
we address it in a multi-stage fashion, as done in previous
work [6, 52]. In Stage 1, we fit SMPL-X parameters to each
RGB-D frame independently. This gives us a reasonable
initialization, but does not ensure motion smoothness, nor
deals with body-scene occlusions. We achieve temporally
consistent motions in Stage 2 by introducing our smooth-
ness prior and contact-friction term. Finally, in Stage 3 we
recover plausible motions even for occluded body parts and
alleviate foot skating with our motion infiller.

3.2. Per-frame Fitting
Stage 1 adopts the approach proposed in PROX [19].

Given a RGB-D sequence, PROX fits SMPL-X to each
frame separately by minimizing the objective function:

EPROX(�,�,✓,�) = EJ + �DED + Eprior

+ �contactEcontact + �collEcoll.
(1)

EJ penalizes the distance between the 2D joints estimated
from the RGB image with OpenPose [9], and the 2D projec-
tion of SMPL-X joints onto the image. ED penalizes the 3D
distance between the human point cloud obtained from the
depth frame and SMPL-X surface points visible from the
camera. Eprior combines a set of priors regularizing body
pose, shape and facial expression [44]. Econtact encourages
contact between scene vertices and a pre-defined set of body
“contact” vertices. Ecoll penalizes scene-body interpenetra-
tion. For more details, we refer the reader to [19].

3.3. Temporally Smooth Motion
In Stage 2, we process the output of Stage 1. In order

to obtain smooth and realistic motion, we design a mo-

11345



Figure 2: Illustration of our multi-stage pipeline. Provided a scene mesh and an RGBD sequence with body occlusion,
our method recovers a realistic global motion, with natural person-scene interactions. The markers trajectories (left) and
accelerations (right) of each stage are shown at the bottom, as well as a walking sequence from AMASS [38] (pink). Note
that the results from Stage 1 show large and unrealistic motion accelerations (blue). The recovered motion (green) in Stage 2
is significantly smoother. However, it also loses the realistic accelerations (peaks in the acceleration plot) that can happen
when the body interacts with the scene (e.g. foot-to-ground contact during walking). Our recovered motion from Stage 3
(orange) is similar to the high-quality AMASS motion w.r.t. both the trajectory smoothness and the acceleration patterns.

tion smoothness prior and a physics-inspired friction term,
which are then used in an optimization algorithm.
Motion smoothness prior. Instead of enforcing smooth-
ness explicitly on body joints as in [4, 41, 52], we propose to
learn a latent space of smooth motion. To this end, we train
an autoencoder with high-quality data from AMASS [38].

The input to our network is a sparse set of body surface
markers, as in [38, 71]. We represent the body with the loca-
tions of 81 markers (see marker placement in Supp. Mat.).
Given a sequence of T frames, at each time t we com-
pute the time difference of marker locations and concate-
nate them to a vector of length S. Then the entire sequence
is represented by a 2D feature map X� 2 RS⇥(T�1). The
network encoder Fs converts X� to its latent representa-
tion Z. Here we regard the time series X� as an image
and perform 2D convolutions as in [28]. We do not down-
sample the input, so X� and Z have identical temporal res-
olution. Therefore, the network captures spatio-temporal
correlations with a large receptive field in the latent space,
which can represent motion of overlapped body parts. The
decoder Ds has a symmetric architecture with deconvolu-
tion layers. More details can be found in the Supp. Mat..

We train our autoencoder on the AMASS dataset with
the following loss:

Ls(Fs, Ds) = |X��Xrec

� |+↵s

1

S(T � 2)

T�2X

t=1

|zt+1�zt|2,

(2)
where the first term is the reconstruction loss minimizing
discrepancy between X� and Xrec

� = Ds(Fs(X�)), and
the second term minimizes the 1st order derivative of the

latent sequence Z = Fs(X�) = [z1, z2, ..., zT�1]. ↵s

weights the contribution of the second term.
With a pretrained autoencoder, we design a smoothness

loss to regularize motions over time. Specifically, we take
the per-frame bodies obtained from Stage 1, and concate-
nate their markers into a velocity map Xopt

� . We feed
this map into Fs, encoding it into Zopt = Fs(X

opt

� ) =
[zopt

1 , zopt

2 , ..., zopt

T�1]. The smoothness loss is given by

Esmooth(�,✓,�) =
1

S(T � 2)

T�2X

t=1

|zopt

t+1 � zopt

t
|2. (3)

Compared to the methods working in joint space locally,
our prior can better capture longer-range correlations be-
tween the motion of different body parts, hence encoding
full-body dynamics.
Contact friction modelling. The contact term used in Eq. 1
only considers body-scene proximity, and hence cannot pre-
vent skating artifacts (e.g. a person slides when sitting on a
chair). To overcome this issue, we design a contact term
that incorporates stationary frictions. Compared to methods
which work with foot joints [47, 52], our contact friction
term is based on the body and scene mesh, with a more
generic human-scene interaction setting, and considers also
other body parts such as gluteus.

Specifically, we pre-define a set of “contact friction” ver-
tices Vc ⇢ Vb, corresponding to 194 foot and 113 gluteus
vertices. When contact occurs (i.e. the distance between
a body vertex to the scene mesh is smaller than 0.01m),
the velocity vt of the contacted vertex in Vc is regularized:
the component vt along the scene normal n should be non-
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Algorithm 1: smooth motion recovery in Stage 2.
Result: Smooth motion w.r.t. SMPL-X body parameters
Init: Fitted meshes from Stage 1, scene mesh, smoothness prior
Fs(·);

for i = 1 : N do
Zopt = Fs(X

opt

� );
compute Esmooth with Eq. (3);
compute Efric with Eq. (5);
minimize EPROXM

+ Esmooth + Efric

end

Figure 3: Illustration of our motion infilling network. The
blue and green color denote the marker local coordinate and
the foot-ground contact state, respectively. Yellow, gray and
orange color represent the root translational velocity [t1, t2]
and rotational velocity �, respectively. Note that masking is
only applied to the local motion. The motion infiller takes
global motion as input, and predicts local motion.

negative to prevent interpenetration, and the component tan-
gential to the scene, vtan

t
, should be small to prevent slid-

ing. Formally, this gives us:

vt · n � 0, |vtan

t
|  � for t 2 Tf , (4)

where Tf is the set of frames in which vertex and scene are
in contact, and � is a small number as a threshold. Based
on this, we formulate our contact friction term as:

Efric(�,✓,�) =
X

t2Tf

0

B@
X

vt·n<0

|vt · n|+
X

|vtan
t |��

||vtan

t |� �|

1

CA .

(5)

Stage 2 fitting. We combine Esmooth and Efric with the
error terms in Eq. 1, from which we remove Econtact and
ED to obtain a modified function EPROXM . We optimize
the resulting objective for N iterations as shown in Alg. 1.

3.4. Recovering Motion under Occlusion
Although Alg. 1 produces smooth motions, it cannot

recover realistic body motion under occlusion, which fre-
quently happens in person-scene interactions. Therefore,
we design a motion infilling network, train it on AMASS,
and exploit it as a prior in an optimization algorithm.
Motion infilling network. Figure 3 shows an overview of
our convolutional infilling network. Unlike other motion in-
filling models e.g. [28], our infiller takes body surface mark-
ers as input, and infers motions and contact states jointly.

Here we represent markers in a local coordinate system
as in [21, 28]: for each frame t, marker locations are rel-
ative to the position of the body root, which is the pelvis
projected to the ground. In addition, the body global con-
figuration is represented by the root’s translational veloc-
ity t 2 R2 and rotational velocity � 2 R around the up-
axis. Moreover, we select two markers per foot and check
whether they contact with the ground at each frame. The
marker is deemed in contact with the ground if its velocity
is smaller than 20cm/s and its height above the ground is
lower than 10cm. Finally, we arrange the motion sequence
into a 3D tensor Y 2 RP⇥T⇥4 with 4 channels. In the first
channel Ylocal, each column denotes a vector concatenating
local body marker positions and contact labels of this frame,
and P is the vector dimension. The last three channels Yroot

consist of the repeated entries of global trajectory velocities
t1, t2 and � respectively, which allows us to couple global
and local motion more closely than [21, 28].

During training, we set a spatio-temporal visibility mask
M 2 {0, 1}P⇥T (1 denotes visible, and 0 otherwise) to cor-
rupt the local motion with Ỹlocal = Ylocal�M , where � de-
notes element-wise matrix multiplication. Since most (up-
per) body parts are often visible in practice and it is easy to
estimate the root’s motion, we assume the global trajectory
is given, and only mask local pose. To generate plausible
occlusion masks for training on AMASS, we sample masks
computed from the PROX dataset [19], where we leverage
depth to reason about occlusions. Note that contact labels
are masked whenever feet are not visible. With the masked
motion Ỹ = [Ỹlocal, Yroot], we train the infiller autoencoder
G to reconstruct the full local motion by minimizing:

Linfill(G) = h(G(Ỹ ), Ylocal), (6)

where h(·) is the L1 loss for local marker coordinates, and
the binary cross entropy (BCE) loss for the contact labels.
Per-instance self-supervised learning. To better lever-
age visible body parts during testing, we fine-tune the pre-
trained motion infiller on each individual test motion se-
quence to adapt the learned general prior to per-instance.
Unlike [24], our fine-tuning procedure is self-supervised.
Specifically, given a partially occluded test sequence Y , and
occluded markers described by mask M , we fine-tune the
network parameters by exploiting the visible markers in the
sequence via minimizing

Lfinetune(G) = h(G(Ỹ ), Ylocal)�M. (7)

We show in Sec. 4 that this per-instance self-supervised
learning effectively increases prediction accuracy for both
visible and invisible body parts.

Stage 3 fitting (Alg. 2). Given results from Stage 2, we
combine the global configurations and local markers pro-
duced by the fine-tuned infiller, and reconstruct marker
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Algorithm 2: occluded motion recovery in Stage 3.
Result: Infilled motion in the presence of occlusions
Init: Results from Stage 2, scene mesh, smoothness prior Fs(·),

motion infiller G(·);
Step 1: fine-tune G(·) according to Eq. (7);
Step 2: compute X̂ , Ĉ from G(·);
Step 3: the optimization loop;
for i = 1 : N do

Zopt = Fs(X
opt

� );
compute Esmooth with Eq. (3);
compute Efric with Eq. (5);
compute Einfill with Eq. (8);
minimize EPROXM

+ Esmooth + Efric + Einfill

end

global locations X̂ and foot contact labels Ĉ. We define
an error term as

Einfill(�,✓,�) = |X̂ �Xopt|� (1�Mb)

+
TX

t=1

X

k2K

ĉt
k
· d(vt

k
, a),

(8)

where Xopt is the marker global location from the SMPL-
X body to optimize, Mb is the occlusion mask for the body,
and K is the set of foot vertices. For foot vertex k, ĉt

k
= 1

if its nearest foot marker contact label is 1, 0 otherwise, and
vt
k

is the absolute magnitude of velocity at frame t. d(vt
k
, a)

corresponds to |vt
k
� a| if vt

k
� a, 0 otherwise. We set the

foot velocity threshold a as 10cm/s.

4. Experiments
4.1. Datasets

AMASS [38]. AMASS collects 15 high-quality mocap
datasets, with 11263 motions from 344 subjects. For each
sequence, AMASS provides per-frame SMPL-H [49] pa-
rameters obtained via MoSh++ (i.e. fitting SMPL-H to mo-
cap markers). We downsample the sequences to 30fps,
and trim them to clips of 120 frames for training. Simi-
lar to [71], for each clip we reset the world coordinate to the
pelvis joint in the first frame. The x-axis is the horizontal
component of the direction from the left hip to right hip, the
y-axis points forward, and the z-axis points upward. We ex-
clude TCD handMocap, TotalCapture, SFU, SSM synced,
KIT and EKUT, and use the rest to train our motion smooth-
ness and infilling models. We exclude TCD handMocap,
TotalCapture, SFU from training since we use them to eval-
uate our motion infilling method. We do not use EKUT,
KIT and SSM synced due to their inconsistent frame rate.
PROX [19]. We use this dataset to test our models and
optimization algorithms in Stage 2 and Stage 3. PROX col-
lects monocular RGB-D sequences from 20 subjects mov-
ing in and interacting with 12 different indoor scenes. A

Kinect-One sensor [1] is employed to capture the sequences
at 30fps, and the 3D reconstructions of the static scenes are
provided. SMPL-X parameters are fitted to RGB-D data in
each frame (see Sec. 3.2) to reconstruct 3D bodies. Fol-
lowing the same pre-processing procedure for AMASS, we
trim the sequences, reset the pelvis coordinate, and obtain
205 clips of 100 frames each for evaluation.
3DPW [60]. As with PROX, we use this dataset for evalu-
ation. 3DPW fits SMPL to IMUs and RGB videos, mostly
captured in in-the-wild scenario. Although the provided
per-frame SMPL fits are accurate, the motion across frames
has jitters and temporal discontinuities. As above, we pre-
process the motion sequences and obtain 300 clips of 100
frames for evaluation. Since sequences are captured with a
moving camera, global SMPL body configurations are not
reconstructed accurately. Hence, for 3DPW we test our pri-
ors applying them only on local motions. Namely, the body
pelvis joints in different frames are aligned, and joint posi-
tions are defined with respect to the local coordinate system
of each individual frame.

4.2. Evaluation of Motion Smoothness Prior
We compare our motion smoothness prior (denoted by

‘Ours-SP’) against three optimization-based baselines: the
DCT-based prior from [22]; minimizing velocity magnitude
(L2-V) [4, 33, 57, 73]; minimizing acceleration magnitude
(L2-A) [33, 41, 52]. For all methods, we combine them with
EJ , Eprior in Eq. 1 and minimize the resulting objective
function to fit SMPL-X to data. Specifically, the objective
function of Ours-SP consists of EJ , Eprior and Esmooth in
Eq. 3. We evaluate the fits on both PROX and 3DPW.

4.2.1 Metrics

2D joint accuracy. This metric is only used for PROX.
We manually annotate 2D body joints on 542 frames via
Amazon Mechanical Turk (AMT). The AMT annotations
are in the OpenPose [9] coco-25 format (including 25 body
joints), and are converted to the SMPL-X body joint format
for evaluation. Following [44], the neck, left and right hip
joints are excluded from evaluation due to their definition
ambiguity. We report the average L2 norm of 2D joint errors
(2DJE) between our results and annotations.
3D accuracy. This metric is only used for 3DPW. Fol-
lowing [60], we report the mean per joint position error
(MPJPE) and per vertex error (PVE) with aligned body
pelvis between our estimated motions and the ones provided
by 3DPW. We expect that an effective motion smooth prior
can improve motion temporal consistency while preserv-
ing the original body configuration quality. Therefore, the
lower these two scores are, the better. However, for an ex-
haustive evaluation, 3D accuracy should be combined with
a metric assessing motion smoothness.
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Motion smoothness. Ideally, recovered motions should
resemble real ones as much as possible. Translating this
into a metric, we use the Power Spectrum KL divergence
(PSKL) [20] to measure the distribution distance between
our results and AMASS motion sequences. Specifically, we
evaluate PSKL w.r.t. the acceleration distribution for both
body markers and SMPL-X joints on PROX, and for SMPL
joints on 3DPW. Since PSKL is not a symmetric measure,
we report the numbers for both directions. Smaller values
of PSKL indicate better performance (see Supp. Mat. for
more details).
Human-scene interpenetration. We assess the degree of
human-scene interpenetration on PROX by using the non-
collision score adopted in [69, 72]. It measures the ratio be-
tween the number of body vertices with non-negative scene
SDF values, and the total number of body vertices, i.e., the
ratio of body vertices that do not interpenetrate with the
scene mesh. We report the average non-collision scores
over all frames, and denote it as ‘NonColl’. A higher value
indicates fewer human-scene interpenetration.

4.2.2 Results

Tab. 1 and Tab. 2 show the results of motion smoothness
evaluation on PROX and 3DPW, respectively. For both
datasets, the originally provided motions have the largest
PSKL score measured w.r.t AMASS, indicating that mo-
tions are not natural. Compared to all baselines, our method
achieves the lowest PSKL scores in both directions, sug-
gesting that it produces more natural motions. On PROX,
all methods achieve comparable non-collision scores. Our
method achieves a lower 2D pose error compared to the
original PROX data and baseline methods. On 3DPW,
our method has small MPJPE/PVE while reporting the best
PSKL scores. These results demonstrate that our method
can generalize well over different datasets for both global
motions and local motions.

Overall, our method consistently outperforms other
baselines, by significantly improving motion naturalness
while preserving per-frame pose accuracy. This is due to
the fact that we learn our smoothness prior from the rich
and diverse AMASS data, and apply regularization in la-
tent space. In contrast, baseline methods only encourage
motion smoothness of disjoint local body parts, and hence
have larger gaps to high-quality AMASS motions. Fig. 4
shows examples of latent sequences obtained from PROX
sequences. After fitting using our prior, latent sequences be-
come smoother along the time axis and jitters are removed.

4.3. Evaluation of Motion Infilling Prior
We compare our proposed motion infilling prior (de-

noted by ‘Ours-IP’) with the infiller from Kaufmann et
al. [28] on AMASS. On top of these networks, we addition-

Table 1: Evaluation of motion smoothness and infilling
priors on PROX. PSKL-M and PSKL-J denote PSKL com-
puted on markers and joints, respectively. (P, A) denotes
PSKL(PROX, AMASS), and (A, P) the reverse direction.
For each metric, the best result is in boldface.

2DJE # PSKL-M # PSKL-J # NonColl "

Methods (P,A) (A,P) (P,A) (A,P)

PROX [19] 20.94 1.439 2.441 1.464 2.491 0.955
DCT [22] 20.96 0.847 1.083 0.937 1.169 0.955
L2-A 21.68 0.429 0.396 0.481 0.441 0.955
L2-V 21.65 0.551 0.525 0.571 0.536 0.954
Ours-SP 20.64 0.249 0.256 0.272 0.275 0.954

Ours-S2 20.40 0.273 0.255 0.297 0.275 0.977
Ours-S3 20.23 0.236 0.234 0.256 0.255 0.979

Figure 4: Illustration of two channels ((a) and (b)) of our
motion smoothness model latent sequences Z. In each sub-
figure, the left and right plots show the result before and
after Alg. 1, respectively. The row and column in each plot
denote feature dimension and time, respectively.

Table 2: Evaluation of our motion smoothness prior on
3DPW. PSKL-J denotes PSKL of joints. (3D, A) denotes
PSKL(3DPW, AMASS), and (A, 3D) the reverse direction.
For each metric, the best result is in boldface.

MPJPE# PVE# PSKL-J #

Methods (3D, A) (A, 3D)

3DPW [60] - - 0.348 0.376
DCT [22] 0.005 0.007 0.242 0.273
L2-A 0.006 0.009 0.177 0.204
L2-V 0.019 0.025 0.257 0.271
Ours-SP 0.005 0.008 0.173 0.197

ally fit SMPL-X parameters to the infilled markers/joints,
so as to perform fair comparison. The fitting function is:

Eamass = E3D + Eprior + Esmooth + Efoot, (9)

where E3D is the error between infilled marker positions
and the corresponding markers on the SMPL-X body to op-
timize, and Eprior is the prior term for body and hand pose.
For our method, Efoot is the second term in Eq. 8. For the
baseline method, we define Efoot using a heuristic: foot-
ground contact happens if the foot marker distance from the
ground is smaller than 10cm (see Supp. Mat.).
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Table 3: Evaluation for motion infilling prior on AMASS. MPJPE-L / MPMPE-L denotes MPJPE / MPMPE for the masked
lower body part. Finetune denotes per-instance self-supervised learning. For each metric, the best result is in boldface.

Methods MPJPE # MPMPE # VPE # MPJPE-L # MPMPE-L # Foot Skating #

Ours vs baseline Kaufmann et al. [28] 0.022 0.026 0.025 0.037 0.036 0.237
Ours-IP 0.014 0.016 0.012 0.034 0.033 0.182

Ablation study

Ours-IP w/o Opt w/o finetune - 0.025 - - 0.040 -
Ours-IP w/o Opt - 0.015 - - 0.036 -

Ours-IP w/o finetune heuristic contact 0.020 0.024 0.021 0.040 0.038 0.257
Ours-IP w/o finetune 0.020 0.023 0.021 0.038 0.036 0.178
Ours-IP heuristic contact 0.014 0.017 0.013 0.036 0.035 0.265

We randomly select 130 sequences from our AMASS
test set, in order to remove redundant motions and reduce
computational cost. To simulate the occlusions occurring
in real person-scene interactions and absent in AMASS, at
evaluation time, for the network input of both methods, we
mask out all markers belonging the lower part of the body
and the contact labels in all frames. Furthermore, we eval-
uate the proposed motion infilling prior on PROX in terms
of 2D joint accuracy, PSKL and non-collision score.

4.3.1 Metrics

3D accuracy. We report the mean position error for
joints (MPJPE), body markers (MPMPE) and body vertices
(PVE) in global coordinates between the infilled motions
and the motions from AMASS. We compute these three
metrics for the full body, and also compute MPJPE and
MPMPE for the masked body parts.
Foot skating. Following [71], we adopt the “foot skating
ratio” as another measure of motion naturalness. We com-
pute it by considering the two markers located on the left
and right foot heels. We define skating as happening when
the velocity of both foot markers exceeds 10cm/s and their
height above the ground is lower than 10cm.

4.3.2 Results

The results on AMASS are shown in Tab. 3. Our infiller
consistently outperforms the baseline for all metrics. In par-
ticular, our model reconstructs more accurate motions with
all the three representations (body marker, joint and ver-
tex). Besides, we obtain smaller reconstruction errors for
the lower part of the body (MPJPE-L and MPMPE-L).

Compared to the heuristic foot-ground contact rule used
for the baseline, our predicted contact labels alleviate foot
skating more effectively, and recover foot dynamics dur-
ing optimization. This is also verified in the ablation study
(Ours-IP heuristic contact), where we replace the predicted
contact labels by the same heuristic contact rule used in the
baseline. A probable reason is that our model learns foot-

ground contact and whole body motion jointly, and hence
can predict the two more consistently.

In addition, the ablation study suggests that our
model performance is consistently improved by the self-
supervised fine-tuning (see Sec. 3.4), before SMPL-X fit-
ting (Ours w/o Opt) and after, for both whole body and oc-
cluded parts. This indicates that our motion infiller effec-
tively adapts itself to test instances, exploiting more useful
information from the unmasked body parts of the input.

The last two rows in Tab. 1 show results of the motion
infilling prior on PROX. Compared with results of Stage 2
without motion infilling (Ours-S2), Stage 3 (Ours-S3) has
an acceleration closer to AMASS, and lower 2D joint er-
rors. Finally, to assess the stages of our pipeline, we swap
Stage 2 and Stage 3, and find that the motion infiller works
poorly when taking jittered PROX data as input (see Supp.
Mat.). Also, the model overfits to the noisy input when per-
forming the self-supervised test fine-tuning.

5. Conclusion
In this paper, we propose a novel motion smoothness

prior and a contact-aware motion infilling prior learned
from high-quality motion capture data, which effectively
learn intrinsic full-body dynamics of smooth motions and
recover body parts occluded from the camera view. On
top of that, we introduce a new multi-stage optimiza-
tion pipeline which incorporates the motion priors and
a physics-inspired contact friction term, and reconstructs
smooth, accurate and occlusion-robust global motions with
physically plausible human-scene interactions in complex
3D environments. Nevertheless, there are limitations in the
current approach. For instance, human movement is rooted
in physics. The current pipeline only incorporates intuitive
physics terms (e.g. contact, interpenetration and friction);
it is a very promising and challenging research direction to
employ more physics inspired motion modeling, in combi-
nation with the powerful data-driven motion priors.
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