This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Neural Video Portrait Relighting in Real-time via Consistency Modeling

*

Longwen Zhang'»? Qixuan Zhang!*?

!ShanghaiTech University

Minye Wu'l*?

Lan Xu!

Jingyi Yu!

2Deemos Technology

3University of Chinese Academy of Sciences
{zhanglw2, zhanggxl, wumy, yujingyi, xulanl}@shanghaitech.edu.cn

{zhanglw, zhangqx}@deemos .com

Abstract

Video portraits relighting is critical in user-facing hu-
man photography, especially for immersive VR/AR experi-
ence. Recent advances still fail to recover consistent relit
result under dynamic illuminations from monocular RGB
stream, suffering from the lack of video consistency super-
vision. In this paper, we propose a neural approach for real-
time, high-quality and coherent video portrait relighting,
which jointly models the semantic, temporal and lighting
consistency using a new dynamic OLAT dataset. We pro-
pose a hybrid structure and lighting disentanglement in an
encoder-decoder architecture, which combines a multi-task
and adversarial training strategy for semantic-aware con-
sistency modeling. We adopt a temporal modeling scheme
via flow-based supervision to encode the conjugated tempo-
ral consistency in a cross manner. We also propose a light-
ing sampling strategy to model the illumination consistency
and mutation for natural portrait light manipulation in real-
world. Extensive experiments demonstrate the effectiveness
of our approach for consistent video portrait light-editing
and relighting, even using mobile computing.

1. Introduction

The past ten years have witnessed a rapid development
of digital portrait photography with the rise of mobile cam-
eras. Relighting evolves as a cutting-edge technique in such
portrait photography for immersive visual effects of VR/AR
experience. How to further enable consistent relit video
results under challenging dynamic illumination conditions
conveniently remains unsolved and has received substantive
attention in both industry and academia.

For video portrait relighting, early solutions [ 14, 57] rely
on a sophisticated studio setup which is expensive and diffi-
cult to be deployed. Modern approaches [4 1, 44, 42] further

*Equal contribution

Figure 1. Our approach achieves high-quality and consistent video
portrait relighting under dynamic illuminations in real-time, using
only mobile computing and monocular RGB video input.

apply color or style transfer techniques to ease the hard-
ware requirements. However, they still require two to four
orders of magnitude more time than is available for inter-
active video application. The recent learning techniques
bring huge potential for human portrait modeling and re-
lighting [69, 67, 46, 31, 56] from only monocular RGB in-
put. In particular, the methods [43, 39] perform explicit
neural inverse rendering but are limited to the low-quality
face and Spherical Harmonics (SH) lighting models. Re-
cent methods [67, 46] remove the explicit inverse rendering
by learning an efficient end-to-end mapping between the in-
put headshots and relit ones, while the method [56] further
models reflectance attributes explicitly to handle lighting ef-
fects like specular or shadow. However, they still focus on
single image input without modeling the temporal consis-
tency for video portrait relighting, leading to severe jittery
artifacts, especially under the challenging dynamic illumi-
nations. Some recent mobile devices [2, 18] enables the
“Portrait Lighting” mode for video editing of lighting con-
ditions. Critically, they only modify existing illumination
rather than relight the captured video into various scenes.

802



In this paper, we address the above challenges and
present a novel real-time and temporally coherent portrait
relighting approach from only a monocular RGB video in-
put, as illustrated in Fig. 1. Our approach jointly models
the semantic, temporal and lighting consistency to enable
realistic video portrait light-editing and relighting into new
scenes with dynamic illuminations, whilst maintaining real-
time performance even on portable device.

Generating such realistic and consistent video relit result
in a real-time and data-driven manner is non-trivial. From
the data aspect, existing face datasets [10, 60, 56] lack the
video ground-truth supervision for consistency modeling.
Thus, we build up a high-quality dataset for video portrait
relighting, consisting of 603,288 temporal OLAT (one light
at a time) images at 25 frames per second (fps) of 36 ac-
tors and 2,810 environment lighting maps. From the algo-
rithm side, we further propose a novel neural scheme for
consistent video portrait relighting under dynamic illumi-
nations. To maintain the real-time performance, we adopt
the encoder-decoder architecture to each input portrait im-
age similar to previous methods [46, 56]. Differently, we in-
troduce a hybrid and explicit disentanglement for semantic-
aware consistency, which self-supervises the portrait struc-
ture information and fully supervises the lighting informa-
tion simultaneously in the bottleneck of the network. Such
disentanglement is further enhanced via multi-task train-
ing as well as an adversarial strategy so as to encode the
semantic supervision and enable more realistic relighting.
Then, to utilize the rich temporal consistency in our dy-
namic OLAT dataset, a novel temporal modeling scheme
is adopted between two adjacent input frames. Our tempo-
ral scheme encodes the conjugated temporal consistency in
a cross manner via flow-based supervision so as to model
the dynamic relit effect. Finally, a lighting sampling based
on Beta distribution is adopted, which augments the dis-
crete environment lighting maps and generates a triplet of
lighting conditions for adjacent input frames and the tar-
get output. Our sampling scheme models the illumination
consistency and mutation simultaneously for natural video
portrait light-editing and relighting in the real-world. To
summarize, our main contributions include:

* We present a real-time neural video portrait relighting
approach, which faithfully models the video consis-
tency for dynamic illuminations, achieving significant
superiority to the existing state-of-the-art.

* We propose an explicit structure and lighting disen-
tanglement, a temporal modeling as well as a light-
ing sampling schemes to enable realistic video portrait
light-editing and relighting on-the-fly.

* We make available our dataset with 603,288 temporal
OLAT images to stimulate further research of human
portrait and lighting analysis.

2. Related Work

Portrait Relighting. Debevec et al. [14] invented Light
Stage to capture the reflectance field of human faces, which
has enabled high-quality 3D face reconstruction and illumi-
nations rendering, advancing the film’s special effects in-
dustry. Some subsequent work has also achieved excellent
results by introducing deep learning [64, 29, 21, 30, 47, 49].
Obviously, this is not a product for individual consumers;
thus various methods for single portrait relighting have
been proposed. Several methods [58, 6, 26, 59, 50] per-
form relighting on static objects. Some work follows
the pipeline of color transfer to achieve the relighting ef-
fects [11, 41, 44, 42], which usually needs another portrait
image as the facial color distribution reference. Blanz et
al. [7] use a morphable model of faces that allows relight-
ing by changing the directional lighting model parameters.
Several work [67, 28, 39, 1, 15, 54] estimate SH [5, 34]
parameters and achieve relighting by modifying the param-
eters of the SH lighting model. Sevastopolsky et al. [40] use
point cloud to generate relightable 3D head portraits, while
Tewari et al. [48] use GAN to manipulate the illumina-
tion. Explicitly modeling the shadow and specular [56, 31]
achieve excellent results in directional light source relight-
ing. Mallikarjunr et al. [4] take a single image portrait as
input to predict OLAT as Reflectance Fields, which can be
relit to other lighting via image-based rendering. Sun et
al. [46] choose environment map as lighting model and use
light stage captured OLAT data to generate realistic training
data and train relighting networks in an end-to-end fashion.
We also use the OLAT images to generate training data for
portrait relighting. Differently, our approach enables real-
time and consistent video portrait relighting under dynamic
illuminations, with the aid of a new dynamic OLAT dataset.

Temporal Consistency. Previous image relighting methods
can be extended to videos if we directly treat every video
frames as independent images. However, those methods
will inevitably generate flicker results on relit videos. To
suppress flicker results, several approaches have been de-
veloped for video style transfer tasks [27, 23, 8, 61, 51, 9,
, 53]. Specifically, Ruder et al. [36] employed a temporal
loss guided by optical flow for video style transfer, but the
real-time computation of optical flows makes this approach
slower. Vid2Vid [53] synthesised videos with temporal con-
sistency by training a network to estimate optical flow and
apply it on previously generated frames. In this paper, we
show that temporal consistency and portrait relighting can
be simultaneously learned by a feed-forward CNN, which
avoids computing optical flows in the inference stage.

Video Relighting. Some methods [52, 20, 37, 55] use
LEDs or OLAT to provide acceptable lighting for video
conferencing. ST-NeRF [63] manipulates dynamic scene
through a spatio-temporal coherent neural layered radiance
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Figure 2. Illustration of the capturing system for building our dy-
namic OLAT dataset.

representation. Li et al. [25] create free-viewpoint relight-
ing video using multi-view reconstruction under general
illumination, while Richardt ef al. [35] add video effects
like relighting using RGBZ video cameras. “The Relighta-
bles” [21] proposes a hybrid geometric and machine learn-
ing reconstruction pipeline to generate high-quality relit
video. In contrast, our method does not require extra spe-
cific capturing equipment and enables real-time video por-
trait relighting using mobile computing.

Face Dataset. Traditional face dataset usually takes 2D
images in various lighting conditions [19, 24, 16]. The
controlled lighting conditions are easy to build but lack re-
flectance information for photo-realistic portrait relighting.
With the development of face scanning and reconstruction
techniques, 3D face datasets have been extended from only
geometric [62, 65, 38, 10, 12, 13, 66, 60] to include re-
flectance channels [45, 56]. However, the existing rendering
scheme is difficult to avoid the uncanny valley effect with-
out manual modification. 3D dataset still cannot achieve the
realism in 2D face dataset or those using image-based ren-
dering Thus, various face OLAT datasets [4, 40, 31] have
been proposed with light stage setup. In contrast, we con-
struct a new dynamic OLAT dataset through a a light stage
setup and a 4K ultra-high-speed camera. Our high-quality
dataset consists of 603,288 temporal OLAT imagesets at 25
fps of 36 subjects (18 females and 18 males) with various
expressions and hairstyles.

3. Dynamic OLAT Dataset Overview

Our goal is to naturally manipulate the lighting of a por-
trait RGB video captured in the wild into new environment
lighting conditions while preserving the consistent structure
and content. To provide ground truth supervision for video
consistency modeling, we build up a high-quality dynamic
OLAT dataset. As illustrated in Fig. 2, our capture system
consists of a light stage setup with 114 LED light sources
and Phantom Flex4K-GS camera (global shutter, stationary
4K ultra-high-speed camera at 1000 fps), resulting in dy-
namic OLAT imageset recording at 25 fps using the over-
lapping method [57]. Our dataset includes 603,288 tempo-
ral OLAT imagesets of 36 actors (18 females and 18 males)
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Figure 3. Illustration of our video portrait relighting network based
on encoder-decoder architecture for real-time inference.

with 2810 HDR environment lighting maps [22, 17], to pro-
vide high-quality and diverse video portrait relighting sam-
ples. Besides, we apply a pre-defined light condition to each
OLAT imageset to obtain a fully-illuminated portrait image.
Then, both the portrait parsing [68] and the optical flow [32]
algorithms are applied to such a fully-illuminated stream
to obtain ground truth semantics and correspondence su-
pervisions. Our dynamic OLAT dataset provides sufficient
semantic, temporal and lighting consistency supervision to
train our neural video portrait relighting scheme, which can
generalize to in-the-wild scenarios.

4. Neural Video Portrait Relighting

Our scheme obtains real-time and coherent video relit

results from only mobile computing and monocular RGB
steam, using our dynamic OLAT dataset, as shown in Fig. 4.
First, a hybrid disentanglement for portrait structure and
lighting is introduced for semantic-aware consistency mod-
eling (Sec. 4.1). Then, a temporal modeling is adopted to
utilize the flow-based supervision for dynamic relit effects
(Sec. 4.2). We also introduce a lighting sampling strategy
to model the illumination consistency and mutation for nat-
ural portrait lighting manipulation in real-world scenarios
(Sec. 4.3).
Notations. To achieve the real-time performance, we adopt
the encoder-decoder architecture to the portrait stream se-
quentially similar to previous methods [46, 56], as illus-
trated in Fig. 3. Given an input image I? at ¢-th frame and a
desired target lighting L* (environment lighting map), our
network ® predicts both a target portrait image if lit by the
L* and a corresponding semantic mask P

I, L', P, = oI}, L"), (1)

where L’ is the regressed lighting of the input image I/
Specifically, the en;oder d.,,. encodes the input image into
both the lighting L* and a portrait structure latent code &;:

L F & = ®,pe(ID), )

where F? is the output of skip connections. Similarly, the
corresponding decoder ® 4. is formulated as:

I,P, = &4 (L1, Fl8,), (3)
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Figure 4. The training pipeline of our approach. It consists of a structure and lighting disentanglement (Sec. 4.1), a temporal consistency
modeling (Sec. 4.2) and a lighting sampling (Sec. 4.3), so as to generate consistent video relit results from a RGB stream in real-time.

where we use predicted illumination L to relit itself. By
replacing the lighting with a known one L” in the decoder,
we can obtain a relit portrait image I} corresponding to LF.
Note that we use tilde and hat notations for the images relit
by known illumination or the predicted one, respectively.

4.1. Structure and Lighting Disentanglement

The core of realistic relighting is the reliable disentangle-
ment of the portrait structure information e and the lighting
condition L in the bottleneck of our network in Eqn. 2. To
this end, we adopt a hybrid disentanglement scheme comb-
ing with multi-task training and adversarial training strategy
to model the semantic consistency for realistic relighting.

Similar to method [46], during training we optimize the
following basic loss for disentanglement, which minimizes
the photometric error and illumination distance between the
prediction and the ground truth from our dataset:

1 . ~.
'Cbasic = §|| 10g(1 + Ll) - IOg(l + LZ)”%

HIMy © (T = IF)[h + M © (I = )],

“)

where M, is a portrait foreground mask of the ¢ correspond-
ing frame from face parsing and © is element-wise multipli-
cation. However, only using this basic scheme fails to pro-
vide supervision on the structure latent code e and encode
the rich semantic consistency in our dynamic OLAT dataset.
Thus, we introduce the following strategies for more reli-
able disentanglement and more consistent relighting.

Structure Self-supervision. Recall that the method [46]
treats the latent space as lighting map and only relies on the
feature maps F for modeling the portrait structure informa-
tion. Differently, we utilize a separated structure-wise latent
code &;, which has larger receptive field in the encoder to
represent the global context information of the portrait im-

age. Thus, we design a novel self-supervised scheme for
such structure-wise latent code by applying the encoder re-
currently to the relit output and enforces the consistency be-
tween the structure codes for further disentanglement. We
formulate it as follows:

&3, 5)

where €; is from the recurrent output of @enc(if); Here
we utilize encoder ®.,,. to encode the relit image I,’f with
the target light L* and verify its global structure latent code
with the original one to enhance structure consistency.

Semantics-aware Multi-Task Learning. Human face skin
with scattering effects owns different reflectance distribu-
tion from other materials like hair. Treating all the portrait
pixels uniformly will cause strong artifacts in relighted re-
sults without maintaining the semantic consistency. To this
end, we design the multi-task decoder ® ;.. which aims to
restore both the relighted image f? and the semantic portrait
mask Py under the supervision from our dataset. Such pars-
ing loss with binary cross-entropy metrics is formulated as:

»Clatent - ||ét -

—(Pt © IOgPt + (]. — Pt) © log(l — Pt))
(6)

By predicting semantic portrait mask P;, we enforce both
encoder and decoder networks to be aware of the semantic
information of human portrait image. Hence the networks
can implicitly model the semantic consistency for more re-
alistic relighting of various portrait regions.

Adversarial Training. To further reinforcing portrait im-
age details, we also introduce a discriminator network ® p,
which has the same architecture as DCGAN’s [33]. We
adopt Wasserstein GAN [3] strategies to the proposed dis-
criminator for a stable training process. Specifically, we

»Cparsing =
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remove the activation function of ®p’s final layer and ap-
ply the weight clipping method during training. Then, the
adversarial losses is formulated as:

_(I)D(Iia If, Lk) + (I)D(Iiv ifv Lk)
7(I)D(I;a ifa Lk)v

where L,4,,, is only for updating the discriminator, and
Ladve 1s only for updating the decoder; Lo4, = Ladv, +
Ladv.- Here, the discriminator takes a triplet as input, in-
cluding a source image, a relit image, and the correspond-
ing light condition L*, which estimates the Wasserstein dis-
tance between the real image distribution and the relit image

distribution. Note that the structure of the source image and
LF are essential cues for such distance measurement.

LadvD =
(7

Ladvc =

4.2. Temporal Consistency Enhancement

Previous single-image relighting approaches lack the ex-
plicit temporal modeling in terms of portrait motions or dy-
namic illuminations, leading to flickering artifacts for video
applications. Thus, we propose a rescue by utilizing the rich
temporal consistency supervision in our dynamic OLAT
dataset. Specifically, for two adjacent training samples at
timestamps ¢ and ¢+ 1, we obtain the forward flow f; ;41 (-)
and the backward flow f;;1 +(-) from our continues OLAT
imagesets, where f, ;(-) warps images from time a to time
b. Note that our high-quality OLAT imagesets at 25 fps en-
sures the accuracy of such supervision based on optical flow
for self-supervised verification in a cross manner.

For balancing the lighting distribution between two
frames, we also introduce two conjugated illuminations in
our training scheme. Given two adjacent frames I! and
I/, |, we relit both of them using our network according
to the predicted lighting conditions L?, L7, as well as the
target illumination L” to obtain corresponding relit images
at both frames. Thus, our temporal loss is formulated as:

‘Ctempoml = Hft t+1(ik) t+1||1 + ||ft+1 t( t+1) - ile

+ Z (e (B) = T+ e (@) = T201),
z€{i,j}
®)
which encodes the conjugated temporal consistency in a
cross manner via flow-based supervision so as to model the
dynamic relit effect.

4.3. Lighting Conditions Sampling

Note that the discrete environment lighting maps in our
dynamic OLAT dataset still cannot model the illumina-
tion consistency and mutation for real-time video relight-
ing scenarios. Thus, we introduce a novel lighting sam-
pling scheme during training to generate a triplet of light-
ing conditions for adjacent input frames and the target out-
put, which enhances the illumination consistency for natural
portrait relighting and lighting manipulation.

Similar to previous work [46, 56], the lighting condition
L is represented as a flattened latitude-longitude format of
size 16 x 16 with three color channels from the environ-
ment lighting map and we adopt the same environment map
re-rendering with random rotation to augment the lighting
conditions in our dataset, which forms a uniform lighting
condition sampling distribution G. To model illumination
mutation, we further design a lighting condition distribu-
tion ‘H, where we randomly sample one to three point light
sources with uniformly random colors outside a unit sphere.
The maximum distance from the light source to the sphere is
limited by 1.5 in order to produce reasonable illumination.
Then, we project these light sources on a sphere according
to the Lambertian reflectance model [5] to form an environ-
ment map and corresponding lighting condition.

For each training sample, we generate three illumina-
tions using different sampling strategies, including L? and
L’ to generate the adjacent images I and I 41> as well as
the L* for the target image I*, which is formulated as:

Li = X?
L/ = BL 4 (1 - )X/ ©)
F = BL7 + (1 - B)XF +Y,

where X*, X7, X* ~ G, Y ~ H and B3, B2 are sampled
from a Beta distribution Beta(0.5,0.5). Here, the Beta dis-
tribution drastically diversifies the lighting combination for
modeling the illumination consistency and mutation simul-
taneously and enhancing the generalization ability of our
network. Conceptually, L* and L’ have similarity, con-
tributing to the coverage of temporal loss training. And L*
provides challenging illumination examples to enhance the
lighting manipulation ability of our approach.

4.4. Implementation Details

We utilize our dynamic OLAT dataset to train our video
relighting network. Our training dataset consists of 536,256
temporal OLAT imagesets of 32 actors lasting for 188.16
seconds. The remaining OLAT imagesets of the other four
actors unseen during training are taken as the test dataset.
Note that we also augment the dataset using random crop-
ping and resizing to add more challenging incomplete por-
traits to enhance the generalization ability of our network.
During training our total loss is formulated as follows:

L= A1‘Cbasic_|')\2)Clate1’nf + AZ’ycg)(zrsz"rLg

(10)
+ )\4£temporal + )\5£adv;

where the weights for each term are set to be 1.0 in our ex-
periments. Since we utilize Wasserstein GAN in our ap-
proach, our network’s parameters are optimized by RM-
Sprop algorithm with a learning rate of 0.00005. Besides,
we also clamp parameters of discriminator into a range of
[—0.01,0.01] and adopt the progressive training strategy.
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Figure 5. Our relighting results under dynamic illuminations. Each triplet includes the input frame and two relit result examples.

small images in MTP and DPR are the reference and the gray-scale SH lighting, respectively. Please refer to [

5. Experiments

Here we evaluate our method in various challenging sce-
narios. We run our experiments on a PC with Intel 17-8700K
CPU and Nvidia RTX 3080 GPU, where our approach gen-
erates high-quality 512x512 relit results at 111 fps (15 fps
on iPhone 12) with the latency of 29.2 ms. Fig. 5 demon-
strates several results of our approach, which can generate
consistent video relit results of both in-the-wild sequences
and the one from our dataset with challenging illuminations.

5.1. Comparison

We compare our approach against existing state-of-the-
art methods, including Single Image Portrait Relighting
(SIPR) [46], the one via Explicit Multiple Reflectance

PIR

Input Ground Truth Ours SIPR

EMRCM

Figure 6. Qualitative comparisons of relit results on our dynamic OLAT dataset. Our approach achieves more realistic relighting. The

, 67] for details.

Channel Modeling (EMRCM) [56], the one based on Mass
Transport Approach (MTP) [42] and Deep Portrait Relight-
ing (DPR) [67]. Note that we re-implement SIPR [46] and
train it using our dataset for a fair comparison. Please refer
to supplementary material for the results from the original
SIPR author. Fig. 6 and Fig. 7 provide the qualitative com-
parison on both our dynamic OLAT dataset and online or
in-the-wild sequences, respectively. Note that our approach
achieves significantly more realistic relit results under chal-
lenging illuminations by modeling the video consistency.
Then, we utilize our testing set with ground truth for
quantitative comparison. Similar to previous methods [40,
], we adopt the RMSE, PSNR, and SSIM as metrics.
Note that the output values are normalized to [0, 1], and
only the valid portrait regions are considered. As shown
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Figure 8. Quantitative comparison in terms of handling fast chang-
ing illuminations. Our approach consistently outperforms other
baselines under various lighting speed up factors.

Method RMSE PSNR SSIM

SIPR 0.0974  20.6542  0.8901
EMRCM  0.0766  22.7197  0.8748
MTP 0.0902 219535 0.8775
DPR 0.1080  20.8042  0.8593
Ours 0.0349  30.6110  0.9584

Table 1. Quantitative comparison on our dynamic OLAT dataset.

in Tab. 1, our approach consistently outperforms the base-
lines in terms of these metrics above. We further compare
against baselines under dynamic illuminations. Thus, we
synthesize 1000 frames with the static performer and chang-
ing lighting conditions using various speed-up factors from
1 to 10. Then, we relit the sequence into static lighting and
calculated the average RMSE of adjacent output frames as
the error metric for the jittery artifacts. As shown in Fig. 8§,
the error of our approach glows much slower consistently
compared to others, which illustrates our superiority to han-
dle dynamic illuminations.

5.2. Evaluation

Hybrid disentanglement. Here we evaluate our hybrid
scheme for structure and lighting disentanglement. Let
w/o structure denote the variation of our approach with-
out the self-supervision of portrait structure in Eqn. 5, and
w/o enhance denote the variation without the enhance-

EMRCM MTP DPR

Figure 7. Qualitative comparisons of relit results on online or in-the-wild sequences. We obtain more natural results on unseen performers.

£ N, (
Input w/o structure Ours
Figure 9. Qualitative evaluation of structure self-supervison. Our

full pipeline achieve sharper relighting with fine structured details.

Iriput w/o enhance Ours
Figure 10. Qualitative evaluation of disentangle enhancement. Our

scheme models the semantic consistency for realistic relighting.

ment of disentanglement by using multi-task and adversar-
ial strategy. As shown in Fig. 9, our scheme with struc-
ture self-supervision enables more accurate disentangle-
ment for sharper realistic results. The qualitative evaluation
in Fig. 10 further illustrates that our multi-task and adver-
sarial training strategy encodes the semantic consistency for
more realistic relighting.

Temporal modeling. Here we compare against our vari-
ation without temporal consistency modeling, denoted as
w/o temporal. Similar to the comparison under dynamic il-
luminations, we relit the same synthesized sequence with
static performer and changing illuminations into a target
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Figure 11. Evaluation of temporal modeling. Top: two relit exam-
ples of a static portrait from changing illuminations into a target
lighting condition. Down: the corresponding error curve.

Method RMSE PSNR SSIM

25.5496  0.9021
28.6403  0.9510
23.6189  0.9170
w/o sampling  0.0616  24.5142  0.9223

Ours 0.0349  30.6110  0.9584

Table 2. Quantitative evaluation on synthetic sequences.

w/o content 0.0549
w/o temporal  0.0404
w/o parsing 0.0680

lighting condition for thorough evaluation. As shown in
Fig. 11, our approach with temporal modeling achieves
more temporal consistent results both qualitatively and
quantitatively. We also provide quantitative evaluation un-
der various lighting speed-up factors in Fig. 8, which illus-
trates the effectiveness of utilizing temporal consistency.
Lighting Sampling We further evaluate our light sampling
strategy. Let w/o sampling denote our variation only using
the discrete environment lighting maps during training. As
shown in Fig. 12 and Fig. 13, our scheme models the illu-
mination consistency and mutation, enabling a more natural
portrait light-editing and relighting.

We further perform thorough quantitative analysis of the
individual components of our approach using our testing set
with ground truth. As shown in Tab. 2, our full pipeline
consistently outperforms other variations.

6. Discussion and Conclusion

Limitations. As a trial to explore real-time and consis-
tent video portrait relighting under dynamic illuminations,
our approach still has a number of limitations as follows.
First, our approach cannot handle the extreme illumination
changes, like suddenly turn on/off all the lights. Besides,
the generated relit video results lose the facial details par-
tially due to the light-weight encoder-decoder architecture.
Also, the relit results have inaccurate specularities and are
often over-diffused. The relit videos sometimes have tem-
poral artifacts near the hair boundaries due to the inconsis-
tent portrait matting during inference. Our current approach

Modified

Figure 12. Evaluation of lighting sampling on real-world scenes.
Our scheme enables more natural lighting manipulation, where a
red light source is added into the environment lighting map.

Input Recon Modified

Input GT editing w/o sampling with sampling

—— with lighting sampling mean=0.0111 std=0.0016
—— wjo lighting sampling mean=0.0199  std=0.0017

2z o1 -

0.00

A~
XTI -
172

T T T
0° 90" 180° 270° 360°
degree offset

Figure 13. Evaluation of lighting sampling on synthetic scenes
where a red light is added from different directions. Top: the qual-
itative relit examples. Down: the corresponding error curve.

is also limited to headshots only. It’s promising to include
clothes and garment material analysis for full-body portrait
relighting. It’s also interesting to enhance the OLAT dataset
with a generative model to handle high-frequency lighting.
Conclusion. We have presented a novel scheme for real-
time, high-quality and consistent video portrait relighting
under dynamic illuminations from monocular RGB stream
and a new dynamic OLAT dataset. Our hybrid disentangles
scheme with a multi-task and adversarial training models
the semantic consistency efficiently and generates realistic
relit results. Our temporal modeling scheme encodes the
flow-based supervision for temporally consistent relighting,
while our light sampling strategy enhances the illumina-
tion consistency for lighting manipulation. We believe that
our approach is a critical step for portrait lighting analysis,
with many potential applications in user-facing photogra-
phy, VR/AR visual effects or immersive telepresence.
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