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Abstract

Inspired by the complementarity between conventional
frame-based and bio-inspired event-based cameras, we pro-
pose a multi-modal based approach to fuse visual cues from
the frame- and event-domain to enhance the single object
tracking performance, especially in degraded conditions
(e.g., scenes with high dynamic range, low light, and fast-
motion objects). The proposed approach can effectively and
adaptively combine meaningful information from both do-
mains. Our approach’s effectiveness is enforced by a novel
designed cross-domain attention schemes, which can effec-
tively enhance features based on self- and cross-domain at-
tention schemes; The adaptiveness is guarded by a specially
designed weighting scheme, which can adaptively balance
the contribution of the two domains. To exploit event-based
visual cues in single-object tracking, we construct a large-
scale frame-event-based dataset, which we subsequently
employ to train a novel frame-event fusion based model. Ex-
tensive experiments show that the proposed approach out-
performs state-of-the-art frame-based tracking methods by
at least 10.4% and 11.9% in terms of representative success
rate and precision rate, respectively. Besides, the effective-
ness of each key component of our approach is evidenced
by our thorough ablation study.

1. Introduction
Recently, convolutional neural networks (CNNs) based

approaches show promising performance in object tracking
tasks [4, 6, 10, 12, 14, 18, 20, 30, 37, 46, 48, 49]. These
approaches mainly use conventional frame-based cameras
as sensing devices since they can effectively measure ab-
solute light intensity and provide a rich representation of
a scene. However, conventional frame-based sensors have
limited frame rates (i.e., ≤ 120 FPS) and dynamic range
(i.e.,≤ 60 dB). Thus, they do not work robustly in degraded
conditions. Figure 1 (a) and (b) show two examples of de-
graded conditions, high dynamic range, and fast-moving
object, respectively. Under both conditions, we hardly see
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Figure 1. Limitations of conventional frame-based and bio-
inspired event-based cameras. (a) and (b) show the limitation of
a frame-based camera under HDR and fast-moving object, respec-
tively. (d) shows an event-based camera’s asynchronous output of
the scene shown in (c), sparse and no texture information.

the moving objects. Thus, obtaining meaningful visual cues
of the objects is challenging. By contrast, an event-based
camera, a bio-inspired sensor, offers high temporal resolu-
tion (up to 1MHz), high dynamic range (up to 140 dB), and
low energy consumption [7]. Nevertheless, it cannot mea-
sure absolute light intensity and thus texture cues (as shown
in Figure 1 (d)). Both sensors are, therefore, complemen-
tary. The unique complementarity triggers us to propose a
multi-modal sensor fusion-based approach to improve the
tracking performance in degraded conditions, which lever-
ages the advantages of both the frame- and event-domain.

Yet, event-based cameras measure light intensity
changes and output events asynchronously. It differs sig-
nificantly from conventional frame-based cameras, which
represent scenes with synchronous frames. Besides, CNNs-
based approaches are not designed to digest asynchronous
inputs. Therefore, combining asynchronous events and syn-
chronous images remains challenging. To address the chal-
lenge, we propose a simple yet effective event aggregation
approach to discretize the time domain of asynchronous
events. Each of the discretized time slices can be accumu-
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lated to a conventional frame, thus can be easily processed
by a CNNs-based model. Our experimental results show the
proposed aggregation method outperforms other commonly
used event accumulation approaches [9, 26, 32, 40, 50]. An-
other critical challenge, similar to other multi-modal fusion-
based approaches [2, 8, 27, 29, 33, 41], is grasping mean-
ingful cues from both domains effectively regardless the di-
versity of scenes. In doing so, we introduce a novel cross-
domain feature integrator, which leverages self- and cross-
domain attention schemes to fuse visual cues from both the
event- and frame-domain effectively and adaptively. The ef-
fectiveness is enforced by a novel designed feature enhance-
ment module, which enhances its own domain’s feature
based on both domains’ attentions. Our approach’s adap-
tivity is held by a specially designed weighting scheme to
balance the contributions of the two domains. Based on the
two domains’ reliabilities, the weighting scheme adaptively
regulates the two domains’ contributions. We extensively
validate our multi-modal fusion-based method and demon-
strate that our model outperforms state-of-the-art frame-
based methods by a significant margin, at least 10.4% and
11.9% in terms of representative success rate and precision
rate, respectively.

To exploit event-based visual cues in single object track-
ing and enable more future research on multi-modal learn-
ing with asynchronous events, we construct a large-scale
single-object tracking dataset, FE108, which contains 108
sequences with a total length of 1.5 hours. FE108 provides
ground truth annotations on both the frame- and event-
domain. The annotation frequency is up to 40Hz and 240Hz
for the frame and event domains, respectively. To the best
of our knowledge, FE108 is the largest event-frame-based
dataset for single object tracking, which also offers the
highest annotation frequency in the event domain.

To sum up, our contributions are as follows:
• We introduce a novel cross-domain feature integrator,

which can effectively and adaptively fuse the visual cues
provided from both the frame and event domains.
• We construct a large-scale frame-event-based dataset

for single object tracking. The dataset covers wide chal-
lenging scenes and degraded conditions.
• Our extensively experimental results show our ap-

proach outperforms other state-of-the-art methods by a sig-
nificant margin. Our ablation study evidences the effective-
ness of the novel designed attention-based schemes.

2. Related Work
Single-Domain Object Tracking. Recently, deep-
learning-based methods have dominated the frame-based
object tracking field. Most of the methods [4, 12, 14, 30, 37,
48, 49] leverage conventional frame-based sensors. Only a
few attempts have been made to track objects using event-
based cameras. Piatkowska et al. [39] used an event-based

camera for multiple persons tracking in the occurrence of
high occlusions, which is enabled by the Gaussian Mix-
ture Model based events clustering algorithm. Barranco
et al. [3] proposed a real-time mean-shift clustering algo-
rithm using events for multi-object tracking. Mitrokhin et
al. [35] proposed a novel events representation, time-image,
to utilize temporal information of the event stream. With it,
they achieve an event-only feature-less motion compensa-
tion pipeline. Chen et al. [9] pushed the event representa-
tion further and proposed a synchronous Time-Surface with
Linear Time Decay representation to effectively encode the
Spatio-temporal information. Although these approaches
reported promising performance in object tracking tasks,
they did not consider leveraging frame domains. By con-
trast, our approach focuses on leveraging complementarity
between frame and event domains.
Multi-Domain Object Tracking. Multi-modal-based
tracking approaches have been getting more attention. Most
of the works leverage RGB-D (RGB + Depth) [2, 8, 24, 41,
44] and RGB-T (RGB + Thermal) [27, 29, 31, 42, 47, 51]
as multi-modal inputs to improve tracking performance.
Depth is an important cue to help solve the occlusion prob-
lem in tracking. When a target object is hidden partially
by another object with a similar appearance, the difference
in their depth levels will be distinctive and help detect the
occlusion. Illumination variations and shadows do not in-
fluence images from the thermal infrared sensors. They
thus can be combined with RGB to improve performance
in degraded conditions (e.g., rain and smog). Unlike these
multi-domain approaches, fusing frame and event domains
brings a unique challenge caused by the asynchronous out-
puts of event-based cameras. Our approach aims to solve
the problem, which effectively leverage events for improv-
ing robustness, especially under degraded conditions.

3. Methodology
3.1. Background: Event-based Camera

An event-based camera is a bio-inspired sensor. It
asynchronously measures light intensity changes in scene-
illumination at a pixel level. Hence, it provides a very high
measurement rate, up to 1MHz [7]. Since light intensity
changes are measured in log-scale, an event-based camera
also offers a very high dynamic range, 140 dB vs. 60 dB of
a conventional camera [17]. When the change of pixel in-
tensity in the log-scale is greater than a threshold, an event
is triggered. The polarity of an event reflects the direction of
the changes. Mathematically, a set of events can be defined
as:

E = {ek}Nk=1 = {[xk, yk, tk, pk]}Nk=1, (1)

where ek is the k-th event; (xk, yk) is the pixel location of
event ek; tk is the timestamp; pk ∈ {−1, 1} is the polar-
ity of an event. In a stable lighting condition, events are
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triggered by moving edges (e.g., object contour and texture
boundaries), making an event-based camera a natural edge
extractor.

3.2. Event Aggregation

Since the asynchronous event format differs significantly
from the frames generated by conventional frame-based
cameras, vision algorithms designed for frame-based cam-
eras cannot be directly applied. To deal with it, events are
typically aggregated into a frame or grid-based representa-
tion first [19, 26, 32, 34, 40, 43, 50].

We propose a simple yet effective pre-processing method
to map events into a grid-based presentation. Specifically,
inspired by [50], we first aggregate the events captured be-
tween two adjacent frames into an n-bin voxel grid to dis-
cretize the time dimension. Then, each 3D discretized slice
is accumulated to a 2D frame, where a pixel of the frame
records the polarity of the event with the latest timestamp
at the pixel’s location inside the current slice. Finally, the n
generated frames are scaled by 255 for further processing.
Given a set of events, E i = {eik}

Ni

k=1, with the timestamps
in the time range of i-th bin, the pixel located at (x, y) on
the i-th aggregated frame can be defined as follows:

g(x, y, i) = bp
i
k × δ(t(x, y, i)max − tik) + 1

2
× 255c

t(x, y, i)max = max(tik × δ(x− xik, y − yik))
∀tik ∈ [Tj + (i− 1)B, Tj + iB], (2)

where Tj is the timestamp of the j-th frame in the frame do-
main; δ is the Dirac delta function; B is the bin size in the
time domain, which is defined as: B = (Tj+1−Tj)/n. The
proposed method leverages the latest timestamp to capture
the latest motion cues inside each time slice. Our experi-
mental results show that our event processing method out-
performs other commonly used approaches (see Table 4).

3.3. Network Architecture

The overall architecture of the proposed approach is il-
lustrated in Figure 2, which has two branches: reference
branch (top) and test branch (bottom). The reference and
test branches share weights in a siamese style. The core
of our approach is the Cross-Domain Feature Integrator
(CDFI), designed to leverage both domains’ advantages.
Specifically, the frame domain provides rich texture infor-
mation, whereas the event domain is robust to challenging
scenes and provides edge information. As shown in Fig-
ure 2, the inputs of CDFI are a frame and events captured
between the frame and its previous one. We preprocess the
events based on Eq. 2. The outputs of CDFI are one low-
level (i.e., Kl) and one high-level (i.e., Kh) fused features.
The classifier uses the extracted low-level fused features
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Figure 2. Overview of the proposed architecture.

from both reference and test branches to estimate a confi-
dence map. Finally, the bbox-regressor reports IoU between
the ground truth bounding box and estimated bounding box
to help locate a target on the test frame.

3.3.1 Cross-Domain Feature Integrator

The overall structure of the proposed CDFI is shown in Fig-
ure 3 (a). It has three components, namely: Frame-Feature
Extractor (FFE), Event-Feature Extractor (EFE), and Cross-
Domain Modulation and Selection Block (CDMS).
FFE is for extracting features from the frame domain. We
adopt ResNet18 [21] as our frame feature extractor. The
4th and 5th blocks’ features are used as the low-level and
high-level frame features (i.e., Fl and Fh), respectively.
EFE generates features to represent the encoded informa-
tion in the event domain. Similar to FFE, EFE extracts low-
/high-level features from the event domain (i.e.,El andEh).
Since each aggregated event frame conveys different tem-
poral information, each of them is processed by a dedicated
sub-branch. Like other feature extractors, each sub-branch
of EFE leverages stacked convolutional layers to increase
receptive field at higher levels. We also introduce a self-
attention scheme to each sub-branch to focus on more criti-
cal features. It is achieved by a specially designed Edge At-
tention Block (EAB), illustrated in Figure 3 (b). As shown
in Figure 3 (a), two EABs are added behind the third and
fourth convolutional layers. Then, the low-level (i.e., eli)
and high-level (i.e., ehi ) features on the ith sub-branch are
generated by the first and second EABs, respectively. Fi-
nally, all generated eli and ehi are fused in a weighted sum
manner to obtain the El and Eh. Mathematically, EFE is
defined as (here we ignore l and h to bring a general form):

E = w1e1 ⊕ ...⊕ wnen, (3)
ei = σ(ψ1×1(C(κmi )))⊗ κi, (4)
κmi = σ(A(κi))⊗ κi, (5)

where wi is a learned weight; ψ1×1 means a 1 × 1 con-
volution layer; σ is the Sigmoid function; κi, ei, C, and
A are the input, output features of the EAB on the ith
sub-branch, channel-wise addition, and adaptive average
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Figure 3. Detailed architectures of the proposed components. (a) Overview of Cross-Domain Feature Integrator (CDFI), (b) Edge-Attention
Block (EAB), (c) Cross-Domain Modulation and Selection block (CDMS), (d) Bbox Regressor, and (e) Classifier.

pooling, respectively; ⊕/⊗ indicates element-wise summa-
tion/multiplication;
CDMS is designed to fuse the extracted frame and event
features, shown in Figure 3 (c). The key to the proposed
CDMS is a cross-domain attention scheme designed based
on the following observations: (i) Rich textural and seman-
tic cues can easily be captured by a conventional frame-
based sensor, whereas an event-based camera can easily
capture edge information. (ii) The cues provided by a con-
ventional frame-based sensor become less effective in chal-
lenging scenarios. By contrast, an event-based camera does
not suffer from these scenarios. (iii) In the case of multiple
moving objects crossing each other, it is hard to separate
them trivially based on edges. However, the problem can be
addressed well with texture information.

To address the first observation, we design a Cross-
Attention Block (CAB) to fuse features of the two domains
based on cross-domain attentions. Specifically, given two
features from two different domains, D1 and D2, we define
the following cross-domain attention scheme to generate an
enhanced feature for D1:

TD1
= T 1→1

D1
⊕ T 2→1

D1
⊕D1 (6)

T 1→1
D1

= σ(ψ3×3(D1))⊗D1, (7)

T 2→1
D1

= σ(ψ1×1[ξ(ψ1×1(D2)),

ξ(ψ3×3(D2)), ξ(ψ5×5(D2))])⊗D1,
(8)

where [·] indicates channel-wise concatenation; ξ is the

Batch Normalization (BN) followed by a ReLU activa-
tion function; T 1→1

D1
indicates a self-attention based on D1.

T 2→1
D1

is a cross-domain attention scheme based on D2 to
enhance the feature of D1. When D1 and D2 represent the
event- and frame-domain, the enhanced feature of the event-
domain, Te, is obtained. Inversely, the enhanced feature of
the frame-domain, Tf , can be generated.

To address the second and third observations, we pro-
pose an adaptive weighted balance scheme to balance the
contribution of the frame- and event- domains:

K =WfTf ⊕WeTe, (9)
WDi = σ(ψ1×1(ξ(ψ1×1(A(TDi))))). (10)

3.3.2 Bounding Box (BBox) Regressor and Classifier

For the BBox regressor and classifier, we adopt the tar-
get estimation network of ATOM[13] and the classifier of
DiMP [5], respectively. The architecture of BBox regressor
is shown in Figure 3 (d). The IoU modulation maps Kr

l and
Kr

h to different level modulation vectors vl and vh, respec-
tively. Mathematically, the mapping is achieved as follows:

vl = F(q), vh = F(q),
q = [F(P(ψ3×3(K

r
l ), B

r)),P(ψ3×3(K
r
h), B

r)]
(11)

where F is fully connected layer; P denotes PrPool [23];
Br is the target bounding box from reference branch. The
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IoU predictor predicts IoU based on the following equation:

IoU = F([F(P(ψ3×3(ψ3×3(K
t
l )), B

t)⊗ vl),
F(P(ψ3×3(ψ3×3(K

t
h)), B

t)⊗ vh)])
(12)

For the classifier, following [5], we use it to predict a
target confidence score. As shown in Figure 3 (e), the clas-
sifier first maps Kr

l and Br to an initial filter, which is then
optimized by the optimizer. The optimizer uses the steep-
est descent methodology to obtain the final filter. The final
filter is used as the convolutional layer’s filter weight and
applied to Kt

l to robustly discriminate between the target
object and background distractors.

3.4. Loss Function

We adopt the loss function of [5], which is defined as:

Ltot = βLcls + Lb, (13)

Lcls =
1

N

N∑
i=1

(` (si, zc))
2, (14)

`(si, zc) =

{
si − zc, zc > 0.05
max(0, si), zc ≤ 0.05,

(15)

Lb =
1

N

N∑
i=1

(IoUi − IoUgt)
2, (16)

where si is the i-th classification score predicted by the clas-
sifier, and zc is obtained by setting to a Gaussian function
centered as the target c. The loss function has two compo-
nents: classification loss Lcls, and bounding box regressor
loss Lb. The Lcls estimates Mean Squared Error (MSE) be-
tween si and zc. The idea behind Eq. 15 is to alleviate the
impact of unbalanced negative samples (i.e., background).
A hinge function is applied to clip the scores at zero in the
background region so that the model can equally focus on
both positive and negative samples. The Lb estimates MSE
between the predicted IoU overlap IoUi obtained from test
branch and the ground truth IoUgt.

4. Dataset
Currently, Hu et al. [22] collected a dataset by plac-

ing an event-based camera in front of a monitor and
recorded large-scale annotated RGB/grayscale videos (e.g.,
VOT2015 [25]). However, the dataset based on RGB track-
ing benchmarks cannot faithfully represent events captured
in real scenes since the events between adjacent frames are
missing. Mitrokhin et al. [35, 36] collected two event-based
tracking datasets: EED [35] and EV-IMO [36]. As shown
in Table 1, the EED only has 179 frames (7.8 seconds) with
two types of objects. EV-IMO offers a better package with
motion masks and high-frequency events annotations, up to
200Hz. But, similar to EED, limited object types block it

Classes Frames Events Time Frame(Hz)Event(Hz)
EED [35] 2 179 3.4M 7.8s 23 23
EV-IMO [36] 3 76,800 – 32.0m 40 200
Ours 21 208,672 5.6G 96.9m 20/40 240

Table 1. Analysis of existing event-based datasets. Our FE108
offers the best in terms of all listed metrics.

to be used practically. To enable further research on multi-
modal learning with events, we collect a large-scale dataset
termed FE108, which has 108 sequences with a total length
of 1.5 hours. The dataset contains 21 different types of ob-
jects and covers four challenging scenarios. The annotation
frequency is up to 20/40 Hz for the frame domain (20 out of
108 sequences are 20Hz) and 240 Hz for the event domain.

4.1. Dataset Collection and Annotation

The FE108 dataset is captured by a DAVIS346 event-
based camera [7], which equips a 346×260 pixels dynamic
vision sensor (DVS) and an active pixel sensor (APS). It
can simultaneously provide events and aligned grayscale
images of a scene. The ground truth bounding boxes of a
moving target are provided by the Vicon motion capture
system [1], which captures motion with a high sampling
rate (up to 330Hz) and sub-millimeter precision. During the
capturing process, we fix APS’s frame rate to 20/40 FPS and
Vicon’s sampling rate to 240Hz, which are also the annota-
tion frequency of the captured APS frame and accumulated
events (i.e., accumulated every 1/240 second), respectively.

4.2. Dataset Facts

We introduce critical aspects of the constructed FE108.
More details about the FE108 are described in the supple-
mentary material.
Categorical Analysis. The FE108 dataset can be catego-
rized differently from different perspectives. The first per-
spective is the number of object classes. There are 21 dif-
ferent object classes, which can be divided into three cate-
gories: animals, vehicles, and daily goods (e.g., bottle, box).
Second, as shown in Figure 4 (a), the FE108 contains four
types of challenging scenes: low-light (LL), high dynamic
range (HDR), fast motion with and without motion blur on
APS frame (FWB and FNB). Third, based on the camera
movement and number of objects, FE108 has four types of
scenes: static shots with a single object or multiple objects;
dynamic shots with a single object or multiple objects.
Annotated Bounding Box Statistics. In Figure 4 (b), we
plot out the distribution of all annotated bounding box lo-
cations, which shows most annotations are close to frames’
centers. In Figure 4 (c), we also show the distribution of the
bounding box aspect ratios (H/W) .
Event Rate. The FE108 dataset is collected in a constant
lighting condition. It means all events are triggered by mo-
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Figure 4. Statistics of FE108 dataset in terms of (a) attributes, (b)
bounding box center position, (c) aspect ratios, and (d) event rate.

tions (e.g., moving objects, camera motion). Therefore, the
distribution of the event rate can represent the motion distri-
bution of FE108. As shown in Figure 4 (d), the distribution
of the event rate is diverse. It indicates the captured 108
scenes offer wide motion diversity.

5. Experiments

We implement the proposed network in PyTorch [38]. In
the training phase, random initialization is used for all com-
ponents except the FFE (which is a ResNet18 pre-trained
on ImageNet). The initial learning rate for the classifier,
the bbox regressor, and the CDFI are set to 1e-3, 1e-3, and
1e-4, respectively. The learning rate is adjusted by a decay
scheduler, which is scaled by 0.2 for every 15 epochs. We
use Adam optimizer to train the network for 50 epochs. The
batch size is set to 26. It takes about 20 hours on a 20-core
i9-10900K 3.7 GHz CPU, 64 GB RAM, and an NVIDIA
RTX3090 GPU.

5.1. Comparison with State-of-the-art Trackers

To validate the effectiveness of our method, we compare
the proposed approach with the following eight state-of-
the-art frame-based trackers: SiamRPN [28], ATOM [13],
DiMP [5], SiamFC++ [45], SiamBAN [11], KYS [6],
CLNet [16], and PrDiMP [15]. To show the quantitative
performance of each tracker, we utilize three widely used
metrics: success rate (SR), precision rate (PR), and overlap
precision (OPT). These metrics represent the percentage of
three particular types of frames. SR cares the frame of that
overlap between ground truth and predicted bounding box is
larger than a threshold; PR focuses on the frame of that the
center distance between ground truth and predicted bound-
ing box within a given threshold; OPT represents SR with
T as the threshold. For SR, we employ the area under curve

0 10 20 30 40 50
0

20

40

60

80

100

Location error threshold [pixels]

D
is

ta
nc

e
Pr

ec
is

io
n

[%
]

Precision plot

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Overlap threshold

O
ve

rla
p

Pr
ec

is
io

n
[%

]

Success plot
Methods[RPR,RSR]
Ours [92.4,63.4] 
Pr Di MP+ E [87.7,59.0] 
Di MP+ E [85.1,57.1] 
ATOM+ E [81.8,55.5] 
Pr Di MP [80.5,53.0] 
DiMP [79.1,52.6] 
ATOM [71.3,46.5] 
CLNet [55.5,34.4]  
KYS [41.0,26.6] 
Siam FC++ [39.1,23.8] 
SiamBAN [37.4,22.5] 
SiamRPN [33.5,21.8]

Figure 5. Precision (left) and Success (right) plot on FE108. In
terms of both metric, our approach outperforms the state-of-the-
art by a large margin.

(AUC) of an SR plot as representative SR (RSR). For PR,
we use the PR score associated with a 20-pixel threshold as
representative PR (RPR).

Illustrated as the solid curves in Figure 5, on FE108
dataset, our method outperforms other compared ap-
proaches by a large margin in terms of both precision and
success rate. Specifically, the proposed approach achieves a
92.4% overall RPR and 63.4% RSR, and it outperforms the
runner-up by 11.9% and 10.4%, respectively. To get more
insights into the effectiveness of the proposed approach, we
also show the performances under four different challeng-
ing conditions provided by FE108. As shown in Table 2,
our method offers the best results under all four conditions,
especially in LL and HDR conditions. Eight visual exam-
ples under different degraded conditions are shown in Fig-
ure 7, where we can see our approach can accurately track
the target under all conditions.

Even though EED [35] has very limited frames and as-
sociated events, it provides five challenging sequences: fast
drone (FD), light variations (LV), occlusions (Occ), what
is background (WiB), and multiple objects (MO). The first
two sequences both record a fast moving drone under low
illumination. The third and the fourth sequences record a
moving ball with another object and a net as foreground,
respectively. The fifth sequence consists of multiple mov-
ing objects under normal lighting conditions. Therefore,
we also compare our approach against other methods on
EED [35]. The experimental results are shown in Figure 6
and Table 3. Our method significantly outperforms other
approaches in all conditions except WiB. But with limited
frames, the experimental result is less convincing and mean-
ingful compared to the ones obtained from FE108.

One question in our mind is whether combining the
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Figure 6. Precision (left) and Success (right) plot on EED [35].
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methods
HDR LL FWB FNB ALL

RSR OP0.50 OP0.75 RPR RSR OP0.50 OP0.75 RPR RSR OP0.50 OP0.75 RPR RSR OP0.50 OP0.75 RPR RSR OP0.50 OP0.75 RPR
SiamRPN [28] 15.3 16.9 6.1 21.6 10.1 8.3 1.4 14.5 26.2 32.1 6.1 44.1 33.2 42.9 11.5 51.9 21.8 26.1 7.0 33.5
ATOM [13] 36.6 41.8 14.4 56.0 28.6 29.1 5.8 45.0 66.8 89.6 32.6 96.7 57.1 71.0 28.0 88.6 46.5 56.4 20.1 71.3
DiMP [5] 41.8 50.0 17.9 62.7 45.6 52.8 11.2 69.5 69.4 94.7 37.1 99.7 60.5 75.6 29.3 93.2 52.6 65.4 23.4 79.1
SiamFC++ [45] 15.3 15.0 1.3 25.2 13.4 8.7 0.8 15.3 28.6 36.3 6.0 48.2 36.8 42.7 7.4 63.1 23.8 26.0 3.9 39.1
SiamBAN [11] 16.3 16.4 3.9 26.6 15.5 14.8 2.3 26.5 25.2 26.3 5.8 46.7 32.0 39.6 9.1 51.4 22.5 25.0 5.6 37.4
KYS [6] 15.7 14.5 5.2 23.0 12.0 8.0 1.1 18.0 47.0 63.9 14.8 73.3 36.9 44.5 15.2 57.9 26.6 30.6 9.2 41.0
CLNet [16] 30.0 33.5 9.6 48.3 13.7 6.0 0.9 23.6 52.9 71.2 23.3 80.3 40.8 46.3 14.2 67.7 34.4 39.1 11.8 55.5
PrDiMP [15] 44.3 52.8 19.6 66.3 44.6 48.2 8.9 69.5 67.0 89.9 33.6 99.7 60.6 75.8 29.7 93.3 53.0 65.0 23.3 80.5
ATOM [13] + Event 49.0 59.2 21.0 68.8 50.8 67.8 27.7 72.6 68.5 90.4 42.0 97.2 57.4 71.1 28.3 90.2 55.5 70.0 27.4 81.8
DiMP [5] + Event 50.1 60.2 23.7 74.8 57.0 70.4 28.2 82.8 70.1 94.2 44.2 99.9 60.8 75.9 29.1 93.6 57.1 71.2 28.6 85.1
PrDiMP [15] + Event 53.1 65.3 24.9 79.1 60.3 79.6 29.8 90.5 70.0 93.8 44.8 99.8 61.8 76.3 29.4 93.6 59.0 74.4 29.8 87.7
Ours 59.9 74.4 33.0 86.0 65.6 86.0 30.8 95.7 71.2 94.7 45.9 100.0 62.8 80.5 32.0 94.5 63.4 81.3 34.4 92.4

Table 2. State-of-the-art comparison on FE108 in terms of representative success rate (RSR), representative precision rate (RPR), and
overlap precision (OP).

Methods
FD LV Occ WiB MO ALL

RSR RPR RSR RPR RSR RPR RSR RPR RSR RPR RSR RPR
SiamRPN [28] 23 43 11 10 38 40 43 63 53 100 33 51
ATOM [13] 12 19 7 12 47 60 74 100 47 100 37 58
DiMP [5] 9 19 2 4 48 60 79 100 50 100 37 57
SiamFC++ [45] 17 52 10 26 45 60 58 63 50 100 36 60
SiamBAN [11] 22 43 8 6 36 40 69 100 54 100 38 58
KYS [6] 19 38 6 19 46 60 46 63 54 100 34 56
CLNet [16] 10 19 2 6 19 20 13 25 4 13 9 17
PrDiMP [15] 9 14 4 22 19 20 78 100 31 70 28 45
Ours 32 81 35 98 48 60 69 100 55 100 48 88

Table 3. State-of-the-art comparison on EED [35] in terms of RSR
and RPR.

frame and event information can make other frame-based
approaches outperform our approach. To answer this ques-
tion, we combine APS and event aggregated frame by con-
catenation manner to train and test the top three frame-based
performers (i.e., PrDiMP [15], DiMP [5], and ATOM [13]).
We report their RSR and RPR in Table 2 and show the corre-
sponding results as the dashed curve in Figure 5. As we can
see, our approach still outperforms all others by a consid-
erable margin. It reflects the effectiveness of our specially
designed cross-domain feature integrator. We also witness
that the performance of the three chosen approaches can be
improved significantly only by naively combining the frame
and event domains. It means event information definitely
plays an important role in dealing with degraded conditions.

5.2. Ablation Study

Multi-modal Input. We design the following experiments
to show the effectiveness of multi-modal input. 1. Frame
only: only using frames and FFE; 2. Event only: only us-
ing events and EFE; 3. Event to Frame: combining frames
and events by concatenation as input to FFE; 4. Frame to
Event: the same as 3, but input to EFE. For each setup, we
train a dedicated model and test with it. As shown in the
row A-D of Table 4, the models with multi-modal inputs
perform better than the ones with unimodal input. It shows
the effectiveness of multi-modal fusion and our CDFI.
Effectiveness of the proposed key components. There are

Models RSR ↑ OP0.50 ↑ OP0.75 ↑ RPR ↑
A. Frame Only 45.6 54.6 21.0 73.1
B. Event Only 52.0 63.2 20.3 82.0
C. Event to Frame 55.5 70.0 27.4 82.8
D. Frame to Event 53.6 66.5 25.9 80.4
E. w/o EAB 60.7 77.9 31.7 88.6
F. w/o CDMS 59.8 75.8 31.0 88.1
G. CDMS w/o SA 62.6 79.8 33.8 91.5
H. CDMS w/o CA 61.9 78.8 33.0 90.7
I. CDMS w/o AW 60.9 77.2 32.0 89.9
J. TSLTD [9] 60.4 77.0 31.2 89.2
K. Time Surfaces [26] 61.4 78.5 32.9 90.1
L. Event Count [32] 59.6 76.4 27.4 88.6
M. Event Frame [40] 59.0 74.5 29.9 87.7
N. Zhu et al. [50] 61.9 79.2 32.3 91.2
O. All w = 1 61.3 78.1 31.6 90.1
P. Ours 63.4 81.3 34.4 92.4

Table 4. Ablation study results.

two key components in our approach: EAB and CDMS.
Inside the CDMS, there are three primary schemes: self-
attention (Eq. 7), cross-attention (Eq. 8), and adaptive
weighting (Eq. 9). To verify their effectiveness, we mod-
ify the original model by dropping each of the components
and retrain the modified models. Correspondingly, we ob-
tain five retrained models: (i) without EAB; (ii) without
CDMS; Inside CDMS, (iii) without self-attention (CDMS
w/o SA); (iv) without cross-attention (CDMS w/o CA); (v)
without adaptive weighting (CDMS w/o AW). The results
of the five modified models are shown in the row E-I of Ta-
ble 4, respectively. Compared to the original model, remov-
ing CDMS has the most considerable impact on the perfor-
mance, whereas removing the self-attention influences the
least. It confirms the proposed CDMS is the key to our out-
standing performance. Moreover, removing EAB also in-
fluences performance significantly. It shows that the EAB
indeed enhances the extracted edge features.

Inside CDMS, removing adaptive weighting scheme de-
grades performance the most. To get more insights into it,
we report the estimated two weights (i.e., wf for the frame
domain; we for the event domain) of all eight visual exam-
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(d) Fast motion without motion blur

#8
Wf : 0.3775 We : 0.7348

#4
Wf : 0.3701 We : 0.8004

(c) Fast motion with motion blur

#7
Wf : 0.3775 We : 0.7373

#3
Wf : 0.2932 We : 0.7883

(b) High Dynamic Range

#2

#6
Wf : 0.3071 We : 0.8390

Wf : 0.5268 We : 0.3832

(a) Low-light

#5
Wf : 0.3826 We : 0.7509

Wf : 0.3699 We : 0.7639
#1

Ours SiamFC++ [46] PrDiMP [16] GTCLNet [17] DiMP [5]

Figure 7. Visual outputs of state-of-the-art algorithms on FE108 dataset. The lower-right dashed boxes show accumulated event frame of
the dashed boxes inside the frames.

ples in Figure 7. Except for the second one, the frame do-
main cannot provide reliable visual cues. Correspondingly,
we can see the we in these seven examples are significantly
higher than wf , whereas we is much lower than wf in the
second scene. The fourth one provides an interesting obser-
vation. We can see the object clearly in the frame domain,
but we is still higher than wf . We think it is because the
model is trained to focus on texture cues in the frame do-
main, but no texture cues can be extracted in this case. It
is worthwhile to mention that only our method can success-
fully track the target in all examples.
Event Aggregation. For the events captured between two
adjacent frames, we slice them into n chunks in the time
domain and then aggregate them as EFE’s inputs. Here, we
study the impacts of hyperparameter n. As shown in Ta-
ble 5, both RSR and RPR scores increase with a larger n
value. However, with a larger n value, it slows down the
inference time. We can see n = 3 offers the best trade-
off between accuracy and efficiency. The way of aggregat-
ing events is another factor that has an impact on the per-
formance. We conducted experiments with five commonly
used event aggregation methods [9, 26, 32, 40, 50]. The re-
sults are shown in the row J-N of Table 4, and our method
still delivers the best performance. It suggests that discretiz-
ing the time dimension and leveraging the recent timpstamp
information are effective for tracking. Another component
associated with event aggregation is the weights in Eq. 3,
which are learned during the training process. We manually
set the weights to 1 with n = 3. The result is shown in row
O of Table 4, and we can see the corresponding performance
is worse than the original model.

6. Discussion and Conclusion

In this paper, we introduce a frame-event fusion-based
approach for single object tracking. Our novel designed at-

n 1 2 3 4 5 6
RPR ↑ 89.3 90.1 92.4 92.6 92.6 92.7
RSR ↑ 60.2 61.7 63.4 63.8 63.4 63.9
FPS ↓ 35.1 32.7 30.1 27.9 25.2 22.7

Table 5. Trade-off between accuracy and efficiency introduced by
the number of slices of event aggregation (i.e., n).

tention schemes effectively fuse the information obtained
from both the frame and event domains. Besides, the novel
developed weighting scheme is able to balance the contri-
butions of the two domains adaptively. To enable further
research on multi-modal learning and object tracking with
events, we construct a large-scale dataset, FE108, compris-
ing events, frames, and high-frequency annotations. Our ap-
proach outperforms frame-based state-of-the-art methods,
which indicates leveraging the complementarity of events
and frames boosts the robustness of object tracking in de-
graded conditions. Our current focus is on developing a
cross-domain fusion scheme that can enhance visual track-
ing robustness, especially in degraded conditions. How-
ever, we have not leveraged the high measurement rate of
event-based cameras to achieve low-latency tracking and
the frame rate in the frame-domain bounds the tracking fre-
quency of the proposed approach. One limitation of our
frame-event-based dataset, FE108, is that no sequence con-
tains the scenario of no events. Our further work will focus
on these two aspects: 1) We will investigate the feasibil-
ity of increasing tracking frequency by leveraging the high
measurement rate of event-based cameras; 2) We will ex-
pand the FE108 by collecting more challenging sequences,
especially with no events and more realistic scenes.
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Leonardis. Robust fusion of color and depth data for rgb-d
target tracking using adaptive range-invariant depth models
and spatio-temporal consistency constraints. IEEE transac-
tions on cybernetics, 2017. 2

[45] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu.
Siamfc++: Towards robust and accurate visual tracking with
target estimation guidelines. In AAAI, 2020. 6, 7

[46] Jiqing Zhang, Kai Zhao, Bo Dong, Yingkai Fu, Yuxin Wang,
Xin Yang, and Baocai Yin. Multi-domain collaborative fea-
ture representation for robust visual object tracking. The Vi-
sual Computer, 2021. 1

[47] Lichao Zhang, Martin Danelljan, Abel Gonzalez-Garcia,
Joost van de Weijer, and Fahad Shahbaz Khan. Multi-modal
fusion for end-to-end rgb-t tracking. In ICCVW, 2019. 2

[48] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang.
Learning multi-task correlation particle filters for visual
tracking. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2018. 1, 2

[49] Zhipeng Zhang and Houwen Peng. Deeper and wider
siamese networks for real-time visual tracking. In CVPR,
2019. 1, 2

[50] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and
Kostas Daniilidis. Unsupervised event-based learning of op-
tical flow, depth, and egomotion. In CVPR, 2019. 2, 3, 7,
8

[51] Yabin Zhu, Chenglong Li, Bin Luo, Jin Tang, and Xiao
Wang. Dense feature aggregation and pruning for rgbt track-
ing. In ACM MM, 2019. 2

13052


