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Abstract

The DCNN methods in addressing semantic segmenta-
tion demand vast amount of pixel-wise annotated training
samples. In this work, we present zero-shot semantic seg-
mentation, which aims to identify not only the seen classes
contained in training but also the novel classes that have
never been seen. We adopt a stringent inductive setting
in which only the instances of seen classes are accessible
during training. We propose an open-aware prototypical
matching approach to accomplish the segmentation. The
prototypical way extracts the visual representations by a
set of prototypes, making it convenient and flexible to add
new unseen classes. A prototype projection is trained to
map the semantic representations towards prototypes based
on seen instances, and will generate prototypes for unseen
classes. Moreover, an open-set rejection is utilized to de-
tect objects that do not belong to any seen classes, which
greatly reduces the misclassification of unseen objects into
seen classes due to the lack of seen training instances. We
apply the framework on two segmentation datasets, Pascal
VOC 2012 and Pascal Context, and achieve impressively
state-of-the-art performance.

1. Introduction

In semantic segmentation [8, 13, 14, 12] which aims to
classify each pixel in a given image, great challenges are
induced by the demand for massive training samples with
pixel-wise annotations. In the field of image recognition
facing the same dilemma, zero-shot learning (ZSL) [32,
41, 18] is proposed, where the classification model is
trained to accommodate unseen objects using knowledge
learnt from seen classes. Similarly, zero-shot segmenta-
tion (ZSS) [47, 5, 20, 31, 36, 26, 21] is also proposed in
semantic segmentation. The goal of ZSS is to generate seg-
mentation mask for objects of both seen (with annotated in-
stances) and unseen categories (that have never been seen

*Equal contribution.
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Figure 1. Zero-shot Semantic Segmentation (ZSS). The purpose
of ZSS is to transfer knowledge learnt from seen classes to unseen
classes (i.e., never-seen in training). In testing, ZSS classifies each
pixel to one of the seen classes or newly-added unseen classes.

in training), as shown in Figure 1.
The preliminary ZSL setting does not need to distinguish

between the seen and unseen classes, which is unrealistic
and contradicts the real-world conditions of recognition. A
practical generalized zero-shot learning (GZSL) [42] is then
proposed since image samples from seen and unseen classes
often appear together and it is important to recognize both
groups simultaneously. Zero-shot segmentation (ZSS) is
naturally an analogue of GZSL, since the given image for
segmentation already contains diverse categories. “ZSS” in
this paper stands for the generalized case.

In ZSS, an important source of information is the seman-
tic representation - semantic information encoded by high-
dimensional vectors. The semantic information can include
automatically-extracted word vectors, manually-defined at-
tribute vectors, context-based embedding, or their combina-
tions. Each class (either seen or unseen) has its own seman-
tic representation. The ways of utilizing unseen information
separates ZSS into two settings: inductive setting and trans-
ductive setting (see Figure 1). In inductive training, the vi-
sual features and semantic representations of only the seen
classes are available; while in transductive training, one can
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access the semantic representations (and sometimes images
without annotations) of unseen classes, apart from the vi-
sual features and semantic representations of seen classes.
Although several methods (e.g., ZS3 [5], CaGNet [20], and
CSRL [33]) are developed under transductive learning, this
setting is indeed impractical because it violates the unseen
assumption and significantly reduces challenges. Neverthe-
less, both settings have reached a consensus that the ground
truth of unseen classes should never be present or utilized
during training. Therefore, misuse of ground truth of un-
seen classes in training the classifier should be prevented.

In this work, we obey a strict inductive setting, in which
only the information (i.e., semantic representations, visual
features and ground truth) of seen classes are available dur-
ing training. In ZSS, to transfer knowledge from seen to un-
seen classes, a mapping function from semantic space to vi-
sual feature space is expected. For instance, ZS3 [5] trained
such a generator on seen classes and used it to produce
fake visual features for unseen classes. These fake features
are then used to fine-tune the classifier (trained on the seen
classes in advance). However, it is controversial that their
classifier training uses pairs of fake feature and correspond-
ing label, which requires practically inaccessible informa-
tion (e.g., the ground-truth of unseen pixels, the number and
the attributes of unseen classes). Besides, the trained model
can no longer handle newly-added unseen classes, showing
a fixed capacity. In this work, to break this limitation, we
employ a prototypical way instead of the convolutional clas-
sifier way. We extract high-level visual representations by
training prototypes that correspond to classes one-to-one.
Segmentation is performed to each pixel by finding the clos-
est prototype to its own features. The mapping between se-
mantic information and visual features is thereby bridged
by the prototype vector. A lightweight projection network
is proposed to learn the mapping from semantic information
to prototypes. Any new unseen class can be flexibly added
during testing, by projecting its semantic description to a
prototype and adding the new prototype to existing ones.

Bias problem also imposes a significant challenge to
ZSS. There exists a natural bias towards the seen classes
when the model trained merely on seen classes is expected
to segment both seen and unseen classes. Misclassifications
easily take place when objects in unseen classes are similar
to a seen class, to any extent or in any form. Previous ZSS
works pay little attention to this issue, resulting in inaccu-
rately predicting the unseen class as the seen class. In this
work, we propose an open-set rejection (OSR) module as
a detector to identify which group (seen or unseen) the test
sample belongs to. Concretely, the OSR classifies an ob-
ject directly to a certain seen class, or a general “unknown”
class. If an object is predicted as the “unknown”, a certain
unseen class label that has the closet prototype will be as-
signed to it. Therefore, during testing, the possible classes

into which unseen objects can be classified is constrained.
The main contributions of this works are concluded from

four aspects:

• We clarify the inductive and transductive setting of
ZSS and perform ZSS in challenging inductive setting.

• We employ prototypical matching in ZSS, to bridging
the semantic and visual information, and make it flex-
ible to add new unseen categories during testing.

• We introduce the open-set rejection into ZSS for the
first time, effectively mitigating the bias problem and
enhancing the parsing performance.

• We achieve new state-of-the-art performance on ZSS.

2. Related Work

2.1. Zero-Shot Segmentation

The term zero-shot semantic segmentation first appears
in SRPNet [47], which achieves knowledge transfer from
trained classes to novel classes utilizing the similarity be-
tween different categories. This method is obviously bi-
ased towards the seen classes, however limited manifesta-
tion is built up in their test setting. Almost simultaneously,
ZS3Net [5] proposes to generate pixel-wise fake features
for unseen classes to fine-tune the classifier in a semantic
segmentation network. However, they improperly use the
ground truth of unseen objects since they has to specify
the label of pixels belonging to unseen classes during the
fine-tuning. Gu et al. [20] make some improvements by a
contextual module, aiming to generate diverse and context-
aware features from semantic information. Li et al. [33]
propose a Consistent Structural Relation Learning (CSRL)
approach to harness the similarity of category-level rela-
tions and to learn a better visual feature generator. As in-
spired by few-shot segmentation, Kato et al. [31] propose a
two-branch (segmentation branch and conditioning branch)
architecture for ZSS. In their testing, the test set contains
only unseen classes, which is unrealistic and significantly
reduces the challenge. Different from few-shot segmenta-
tion that predicts masks of the same classes in query im-
age and its support annotated image, zero-shot segmenta-
tion aims at transferring knowledge from seen classes to
unseen classes (non-overlap in between) via the bridge be-
tween semantic and visual information. The challenges of
ZSS come not only from the domain shift but also the obvi-
ous bias to seen classes. Most existing works are devoted to
solving the domain transfer problem in ZSS. Specifically,
Lv et al. [36] mitigate the problem of strong bias towards
seen classes by a transductive approach, where both labeled
seen images and unlabeled unseen images are utilized for
training. Hu et al. [26] define another challenge that is in-
duced by the noisy and outlying training samples from seen
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classes, and address it with Bayesian uncertainty estima-
tion. Another perspective of ZSS is to generate synthetic
visual features for unseen classes, as demonstrated by Gu et
al. [21]. They generate synthetic unseen features by utiliz-
ing category-level semantic representations and pixel-wise
contextual information.

2.2. Zero-Shot Learning

The existing ZSL works can be divided into classifier-
based methods and instance-based methods. The classifier-
based methods again can be divided into correspondence-
based [1, 10, 34] and relationship-based [29, 19, 51]. The
correspondence-based methods capture a correspondence
between visual features and class label embeddings, i.e.,
they aim at building a general mapping function from se-
mantic embedding to visual space. The relationship-based
methods aim to simulate the relationships among classes, so
that the relationships observed in the semantic spaces could
be directly transferred to the feature space. The instance-
based methods [45, 15, 49] are devoted to retrieving some
instances (visual features) for unseen classes, although they
are not provided in training set. Such instances could be ac-
quired through projection functions, borrowing from seen
classes and synthesizing methods. Although the instance-
based methods are effective in zero-shot learning, it is hard
to be extended to ZSS since synthesizing pixel-level in-
stances for segmentation tasks are much harder than syn-
thesizing image-level instances for recognition tasks.

2.3. Generalized Zero-Shot Learning

The GZSL is firstly proposed by Scheirer et al. [42].
Afterwards, Chao et al. [7] empirically show that the ZSL
methods cannot function well under the GZSL setting. Be-
cause of ZSL’s overfitting on seen categories, there is a
strong bias problem of classifying all testing instances of
the unseen as the seen class. Calibration techniques [6, 9,
22, 27] are proposed to alleviate this issue, by attempting to
achieve a balance between the classification of seen group
and unseen group.

Detector-based methods [4, 17] become another branch,
which aims to determine whether a testing image belongs
to the unseen group. This scheme restricts the number of
candidate categories by narrowing down the group (seen
or unseen) to which the test sample belongs. For exam-
ple, Socher et al. [45] believe that compared with the seen
categories, the unseen ones may exceed the scope of dis-
tribution. The testing instances from unseen group are
regarded as outliers of the training (i.e., seen) distribu-
tion. Later, auto-encoder-based [4], entropy-based [38] and
probabilistic-based [46] detectors are proposed for out-of-
distributions (OODs), i.e., the unseen classes. Liu et al. [35]
use the temperature scaling [25] and an entropy-based reg-
ularizer to make the unseen classes more confident and the

seen classes less confident. We follow the way of detector-
based methods and design an open set rejection module that
can identify whether a pixel belongs to the seen classes.

2.4. Open-Set Learning

Open set learning (OSL) [43] assumes that deficient
knowledge exists during the training stage, and aims to rec-
ognize samples belonging to known classes and identify
unknown samples simultaneously during the testing stage.
Most traditional methods are based on support vector ma-
chine [43, 44, 28], nearest neighbor [30, 2], sparse represen-
tation [50], etc. Recently, deep-learning-based OSL meth-
ods [43, 3, 24, 52, 40] greatly advance the state-of-the-art.
The straightforward deep-learning-based OSL method is to
add a threshold to the close set recognition [24]. However,
unknown samples could also obtain high scores because of
softmax. To address this issue, Openmax [3] is proposed
to redistribute the probability scores produced by softmax
and estimates the probability of an input that belongs to an
unknown class. Besides, the difficulty of training unknown
set arises from the lack of unknown samples. Correspond-
ingly, some works [40, 52] propose to synthesize images
of unknown classes for the training of the network. In this
work, we share the same spirit with sample synthesis meth-
ods. We randomly replace some objects/stuff of known
classes in the given image with synthesized unknown ob-
jects/stuff. The corresponding annotations in ground truth
mask are changed to “unknown”.

3. Method
3.1. Problem Formulation

We use X = {Xs, Xu}, A= {As, Au}, Y = {Y s, Y u}
to represent the feature space, semantic space, and label
space, respectively. The superscript s and u indicate the
seen and unseen classes respectively. According to how the
information (i.e., Xu and Au) of unseen classes is utilized,
zero-shot semantic segmentation methods can typically be
divided into two different settings: inductive setting and
transductive setting. Inductive setting can only utilize the
information of seen classes in training, while transductive
setting can use both the seen information and the unlabeled
unseen information. Inductive setting is stricter and more
challenging. In detail, for inductive ZSS, its training set
can be denoted as Dtrain={(xs

i , a
s
i , y

s
i )

Ns

i=1|xs
i ∈Xs, asi ∈

As, ysi ∈Y s}, where the subscript i indicates the ith sample
and Ns is the number of training samples for seen classes.
xs
i ∈ RK is the K-dimensional image* (visual) feature of

the ith training sample. As = {as,1, · · · , as,nseen} indi-
cates the semantic representations of seen classes in the se-
mantic space A, and nseen is the number of seen classes.
Y s = {ys,1, · · · , ys,nseen} represents the label set of the

*Here specifically for segmentation, the “image” is actually a “pixel”.
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Figure 2. The overall framework for training. In training phase 1, we aim at training the segmentation network with a set of trainable
prototypes for seen categories and the “unknown” category. The network conducts pixel-wise classification via calculating the distances
between the vision prototypes and features of each pixel. In phase 2, a projection network is trained to bridge the semantic information and
the vision prototypes obtained in phase 1.

nseen seen classes in label space Y . While for transduc-
tive ZSS, in addition to the information of seen classes, vi-
sual features Xu and semantic representations Au of the un-
seen classes can be used in training without knowing their
corresponding labels. The training set of transductive ZSS
is denoted by Dtrain = {(xs

i , a
s
i , y

s
i )

Ns

i=1, (x
u
j , a

u
j )

Nu

j=1|xs
i ∈

Xs, asi ∈ As, ysi ∈ Y s, xu
j ∈Xu, auj ∈ Au}, where Nu is

the number of samples for unseen classes.
The label set of unseen classes is represented by Y u =

{yu,1, · · · , yu,nunseen}, where nunseen is the number of
unseen classes. There is no overlap between the seen
and unseen classes, i.e., Y s ∩ Y u = Ø. Both inductive
and transductive ZSS settings target at learning a model
fZSS : X → Y to generate pixel-level segmentation
mask for each of Nt test samples. The testing samples of
zero-shot learning (ZSL) only contain unseen classes, i.e.,
Dtest = {Xu, Au, Y u}, while the generalized zero-shot
learning (GZSL) contains both seen and unseen classes, i.e.,
Dtest = {X ,A,Y}. ZSS is naturally an analogue of GZSL.

3.2. Architecture Overview

In this work, the inductive setting is adopted, where only
the images, semantic information and ground truth of seen
classes are accessible in training. The overall architecture
for training is shown in Figure 2. The training can be di-
vided into two stages. In stage 1, we train an open-aware
segmentation network to recognize the seen classes, as well
as to identify whether a pixel belongs to the seen classes,
by defining an “unknown” category. To make the adding of

new classes flexible, the classification of the segmentation
network is carried out in a prototypical way, instead of the
convolutional classifier way. We are able to obtain a set of
prototypes, each for a seen class, at the end of stage 1. In
the stage 2, we aim to learn a projection between the seman-
tic and visual information. A projection network is trained
to map the semantic representation of each seen class to its
corresponding prototype obtained from stage 1. After train-
ing, the projection network would be able to generate proto-
types for unseen classes, given their semantic embeddings.

Being indifferent to the seen and unseen classes in the
inference process always leads to significant misclassifica-
tions, because the trained model is naturally biased towards
the seen classes. Here, we place the remaining part of the
open-set rejection module in inference process, as shown
in Figure 3. If the closest prototype to a pixel’s visual fea-
ture corresponds to one of the seen classes, the label will
be output directly. Otherwise, if any pixel is classified as
“unknown”, it will be compared further with unseen proto-
types and the label of the closest prototype will be selected.
In this way, unseen classes does not need to compete with
seen classes and the bias towards seen class is reduced.

3.3. Training Phase 1: Prototype Extraction

In training phase 1 in Figure 2, we aim to train an open-
aware segmentation network and extract the prototypes as
high-level visual representations. Before this, we imple-
ment pixel synthesis for open-set rejection module. We
follow [40, 52] to synthesize images of unknown classes.

6977



CNN

Vision FeatureImage

cow

motorbike...

Word2Vector
Projection 

Network...

Semantic EmbeddingUnseen Classes

...

Projected Prototypes
of Unseen Classes

...

Vision Prototypes
Seen

Unknown

Cos

Vision Feature
of Unknown

Mask

Mask

Figure 3. Framework for inference. The projection network maps the semantic embedding of each unseen class to vision prototype. We
first conduct open-aware segmentation to assign each pixel to one of the nseen and “unknown” categories. These pixels that are classified
as “unknown” are then compared with the projected prototypes of unseen classes and classified as the the one with closest distance.

Different from [40, 52] that generate a whole image, we
randomly select pixels/pieces in an image and replace them
with synthesized pixel values. The synthetic process is as
follows. First, we generate 5k synthetic images outside of
the seen class boundaries. Second, for each training image,
we randomly select a piece from its ground-truth mask, gen-
erate a map that indicates the positions to be replaced. Here,
a piece refers to a sub-region that occupies 20% to 100% of
the entire region with the same semantic category. We re-
place the RGB values of the indicated pixels in the training
image with the RGB values of the same positions in the
synthetic image. Then these pixels/pieces is assigned with
a new category, which is collectively referred to as an “un-
known” category. The processed images are used to train
the segmentation network. It is worth noting here the differ-
ence between “unknown” and “unseen”. The “unseen” cat-
egories are defined in the zero-shot segmentation task and
are not accessible during training, but have to be predicted
during inference. The “unknown” category is defined in the
training phase, and it specifically refers to pixels that do not
belong to any seen categories.

For each input image, we convert it into visual features
through a backbone network. We adopt prototypical way
to classify each pixel. A set of prototypes are randomly
initialized as trainable parameters. We calculate the cosine
similarity between vision features at each spatial location
with the prototypes. Then we apply softmax over the dis-
tances to produce a group of probability score maps Ŝ over
semantic classes. Concretely, suppose the set of prototypes
P = {pi|i ∈ (1, ..., nseen + 1)} and fx,y denote feature

vector of position (x, y) in the feature map F . For each
pi we have the score map

Ŝ
(x,y)
i =

exp(−α⟨fx,y, pi⟩)∑
pi∈P exp(−α⟨fx,y, pi⟩)

(1)

where ⟨, ⟩ represents the computation of cosine similarity. α
is an amplification factor. The predicted segmentation mask
is then given by

M̂ (x,y) = argmax
i

Ŝ
(x,y)
i (2)

The supervision loss for training the prototypes are

Lseg = − 1

N

∑
x,y

∑
pi∈P

1(M (x,y) = i) log Ŝx,y
i (3)

where M is the ground truth segmentation mask and N is
the total amount of spatial locations. 1(∗) is the binary la-
bel indicator that outputs 1 when ∗ is true. Optimizing the
above loss will train suitable prototypes for each class, in-
cluding the one for the unknown category.

3.4. Training Phase 2: Semantic-Visual Projection

In the phase 2, we aim to train a projection network
that bridges the visual and semantic information. We use
the trained vision prototypes of seen classes, i.e., Ps =
{pi|i ∈ (1, ..., nseen)}, in training phase 1 as the visual rep-
resentations. To obtain semantic information, we use the
word2vec [37] model which takes the names of seen classes
as input and generates embeddings to be the semantic repre-
sentations. Concretely, we denote the names of seen classes
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as W s = {ws
i |i ∈ (1, ..., nseen)}) and the semantic em-

beddings of seen classes as As = {asi |i ∈ (1, ..., nseen)},
we have asi = word2vec(ws

i ). The word2vec model is
trained from a dump of the Wikipedia corpus (about 3 bil-
lion words) and produce closer embeddings for words that
are closer in context. Thus, the generated semantic embed-
dings by word2vec is expected to have captured the seman-
tic correlations among the classes.

We stack three linear layers to form a lightweight pro-
jection network. Under the L2 regression loss, the seman-
tic projection network maps the semantic embedding asi of
each seen class into the corresponding prototypes pi ob-
tained from training phase 1, as shown in Figure 2. The
projection network learns how to bridge the semantic and
visual information in training, and it will generate projected
vision prototype for the newly added unseen class in test-
ing. The using of vision prototypes simplifies the projec-
tion between visual and semantic information into a linear
transformation between two vectors.

3.5. Inference

The inference of our approach is shown in Figure 3.
Before segmentation, we first predict the prototypes for
the unseen classes through the training outcome at phase
2. We denote the unseen prototypes as Pu, where Pu ={
puj |j ∈ (1, ..., nunseen)

}
. Notably, there is no limit on the

number of unseen classes and it is easy to add new proto-
type by our projection network. Then we conduct the open-
aware segmentation to assign each pixel with one of the
nseen+1 categories, as in Eq. (1) and Eq. (2). Those pixels
classified as “unknown” category are denoted as (xu, yu).
The (xu, yu), i.e., mask of “unknown”, is used to index and
split the vision features of unknown, as shown in Figure 3.
We use the unseen prototype Pu to designate these “un-
known” pixels as one of the unseen categories. The labels
in M̂ (xu,yu) are replaced by

Ŝ
(xu,yu)
j =

exp(−α⟨fxu,yu

, puj ⟩)∑
pu
j ∈Pu exp(−α⟨fxu,yu , puj ⟩)

(4)

M̂ (xu,yu) = argmax
j

Ŝ
(xu,yu)
j (5)

Till now, the input image is classified into either seen
classes or unseen classes. The unknown class functions as
a medium which does not appear in the final prediction, but
do participate in the intermediate process. By separating
seen and unseen, the open-set rejection helps alleviate the
bias problem in (generalized) zero-shot segmentation.

4. Experiments
4.1. Implementation Details

Datasets. We perform experimental evaluation on two
datasets: Pascal VOC 2012 [16] and Pascal Context [39].

Pascal VOC 2012 provides segmentation annotations of 21
object classes (including background) for 1464 training and
1449 validation images. Pascal Context contains 4998 train-
ing and 5105 validation images of 60 object/stuff classes
(including background), and provides dense semantic seg-
mentation annotations for Pascal VOC 2010.

Word embeddings and zero-shot setups. In this work,
we use the embeddings generated by word2vec as the se-
mantic representations [11]. The semantic similarity be-
tween labels plays an important role in bridging the gap
between seen and unseen set. As similar to ZS3 [5],
we use zero-shot setups with different number of unseen
classes, constructing the 2-, 4-, 6-, 8- and 10-class un-
seen sets. The detailed splits of Pascal VOC are: 2-
cow/motobike, 4-airplane/sofa, 6-cat/tv, 8-train/bottle, 10-
chair/potted plant. The detailed splits of Pascal Con-
text are: 2-cow/motorbike, 4-sofa/cat, 6-boat/fence, 8-
bird/tvmonitor, 10-keyboard/aeroplane. In different setups,
the classes in unseen set increases incrementally, which
means, for example, 4-unseen set contains 2-unseen set.

Evaluation metrics. Three standard semantic segmenta-
tion matrics, i.e., pixel accuracy (PA), mean accuracy (MA)
and mean-intersection-over-union (mIoU) are reported in
our experiments. Additionally, in the generalized zero shot
segmentation, the search space becomes the union of seen
and unseen classes. Following [48, 5], we compute the har-
monic mean of seen mIoU and unseen mIoU by

hIoU =
2×mIoUseen ×mIoUunseen

mIoUseen +mIoUunseen
(6)

where mIoUseen and mIoUunseen represents the mean IoU
of seen classes and unseen classes respectively. mIoUseen

is commonly much higher than mIoUunseen and dominates
the overall mIoU. Therefore, we use hIoU that can better
demonstrate the overall performance of ZSS.

Backbone and Training details. We adopt ResNet-
101 [23] as the backbone to build a DeepLav3+ [8] frame-
work, and train the model by SGD optimize with polyno-
mial learning rate decay. The base learning rate is 7e-3,
the weight decay is 5e-4 and the momentum is 0.9. We
use the pre-trained model provided by ZS3Net [5], which
solely uses seen categories, so to guarantee no information
leakage.

4.2. Ablation Studies

1) Trainable Prototypes vs. Convolutional Classifier
We test these two different ways, the prototypical way

and the convolutional classifier, on supervised network and
get the comparable segmentation results of 76.9% vs. 76.8%
in terms of mIoU. Compared with convolutional classifier,
prototypical way is more flexible in adding new category
during testing, and simplifies the mapping between seman-
tic and visual information to the projection between seman-
tic embeddings and prototype vectors.
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Figure 4. Qualitative results on Pascal VOC. From the first row to the last row are image, ground truth, prediction without ZSL, and our
prediction, respectively. Without zero-shot learning, the model incorrectly classify the unseen classes to some seen classes, e.g., recognize
the cow as horse in the first column. Our zero-shot segmentation approach can assign correct labels to the unseen classes and generate
acceptable masks for these objects.

Table 1. Ablation study of open-set rejection.

Methods
cow/motorbike cat/tv

seen unseen hIoU seen unseen hIoU
w/o open-set rejection 66.1 2.8 5.4 69.8 3.2 6.1
w/ open-set rejection 73.8 51.3 60.5 75.4 53.0 62.2
grount-truth rejection 76.7 64.0 69.8 75.6 65.3 70.1

2) Open-Set Rejection
In ZSS, the open-set rejection module aims to alleviate

the bias problem. To demonstrate the efficiency of the open-
set rejection, we design and conduct three experimental set-
tings: (1) Without open-set rejection, we generate the un-
seen prototypes using the projection network, and directly
predict seen and unseen classes simultaneously. We expect
the results to be poor, because training images contain only
annotated pixels of seen classes, at the testing stage, predic-
tions will be biased significantly to seen classes. (2) Our
open-set rejection way, in ZSS and inductive setting. (3)
We use ground truth to filter pixels that belong to the un-
seen classes, and make predictions independently of seen
classes. In other words, we only distinguish which one of
the unseen classes the pixel belongs to, without distinguish-
ing whether it comes from the seen category. This setting
reduces the challenges of ZSS, but it is impractical in ac-
tual use and will not be regarded as a meaningful setting of
ZSS. However, it imposes an upper limit on how much the
overall performance can be improved by solving the bias
problem, and estimates the extent to which our open-set re-
jection module alleviates the bias problem.

The results are shown in Table 1. As observed, when the
unseen classes are cow and motorbike that have similar seen

Table 2. Ablation study of projection.

Methods
aeroplane/sofa bird/boat

seen unseen hIoU seen unseen hIoU
embedding 76.1 56.7 65.0 74.9 53.9 62.7
projection 76.0 65.2 70.2 75.3 60.2 66.9

classes, e.g., cow-horse and motorbike-bicycle, setting (1)
results in poor mIoU as 2.8% on unseen classes, indicating
that the network has few classification capability on unseen
partitions. Network trained under setting (2) has an mIoU
of 73.8% on seen classes and 51.3% on unseen classes and
outperforms setting (1) by a very large margin of 55.1%
hIoU, which demonstrates the effectiveness of our open set
rejection. The setting (3), which is not bothered by the bias
problem, has an mIoU of 76.7% on seen classes and 64.0%
on unseen classes. This is the maximum gain that the open-
set rejection can bring about.

3) Projection Network
The projection network is proposed and aims to trans-

fer the knowledge from seen classes to unseen classes. To
quantify the effectiveness of the proposed projection net-
work, we compare the following two settings: (1) When the
word embeddings are used directly as the prototypes. (2)
Our projection network way. The results are shown in Ta-
ble 2. For example, when the useen classes are aeroplane
and sofa (both do not have similar seen classes), setting (1)
has a mIoU of 76.1% on seen classes and 56.7% on un-
seen classes. The setting (2) has a mIoU of 76.0% on seen
classes and 65.2% on unseen classes. The projection way
has higher unseen accuracies, which demonstrates its effec-
tiveness. The reason why setting (2) outperforms setting (1)
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Table 3. Results on Pascal VOC 2012.

setting model
Seen Unseen Overall
mIoU mIoU mIoU hIoU

0 Supervised - - 76.9 -

2
ZS3 [5] 72.0 35.4 68.5 47.5

CSRL [33] 73.4 45.7 70.7 56.3
Ours 73.7 51.3 71.6 60.5

4

ZS3 66.4 23.2 58.2 34.4
CSRL 69.8 31.7 62.5 43.6

CaGNet [20] 69.5 40.2 63.2 50.9
Ours 75.0 44.1 69.1 55.5

6
ZS3 47.3 24.2 40.7 32.0

CSRL 66.2 29.4 55.6 40.7
Ours 74.3 41.4 64.9 53.2

8
ZS3 29.2 22.9 26.8 25.7

CSRL 62.4 26.9 48.8 37.6
Ours 73.8 37.6 60.0 49.8

10
ZS3 33.9 18.1 26.3 23.6

CSRL 59.2 21.0 50.0 31.0
Ours 72.1 33.9 53.9 46.1

is: Data samples of some of the seen and unseen classes
are disjoint and unrelated. Directly using word embeddings
for classification may prove useful for those unseen classes
that has a very close counterpart in seen classes. However,
for disjoint unseen classes, a large domain gap exists, and
learning the projection function using seen samples is of
great help to mitigate the domain gap.

4.3. Results on Benchmarks

Generalized ZSS is a realistic segmentation setting. In-
stead of only evaluating on the unseen set, we jointly evalu-
ate all classes and report results on seen, unseen, and over-
all classes, i.e., a pixel can be assigned to one of the seen
or one of the unseen classes. The prediction is supposed
to be biased towards seen classes because the training im-
ages contain only labeled pixels of seen classes. Hence,
this is a particularly challenging task. We report in Ta-
ble 3 and 4 the performance metrics on Pascal VOC 2012
and Pascal Context datasets, according to the three metrics.
We focus on unseen class that have a semantically simi-
lar seen class, i.e., cow (horse/sheep), motorbike (bicycle),
cat (dog), train (bus), chair (dining table). The high accu-
racies prove that our method effectively alleviate the bias
problem and domain-shift problem.

Qualitative Results Figure 4 shows the qualitative re-
sults. The sub-images displayed from top to bottom are
original images, ground truth, segmentation results with-
out zero-shot learning, and our ZSS results. Most of the
shown cases contain more than three classes and are chal-
lenging due to the very similar classes in unseen and seen
divisions (cow - horse, motorbike - bicycle, cat - dog), the
entanglement of different objects, and various scale of the
objects. For example, in the 3rd column, which includes the

Table 4. Results on Pascal Context.

setting model
Seen Unseen Overall
mIoU mIoU mIoU hIoU

0 Supervised - - 42.7 -

2
ZS3+GC [5] 41.5 30.0 41.3 34.8
CSRL [33] 41.9 27.8 41.4 33.4

Ours 41.9 51.8 42.2 46.3

4
ZS3+GC 39.5 29.1 38.6 33.5

CSRL 39.8 23.9 38.7 29.9
Ours 41.1 43.1 41.2 42.1

6
ZS3+GC 34.8 21.6 33.5 26.7

CSRL 35.5 22.0 34.1 27.2
Ours 40.9 36.4 40.5 38.5

8
ZS3+GC 22.8 16.8 22.0 19.3

CSRL 31.7 18.1 29.9 23.0
Ours 40.2 27.3 38.5 32.5

10

ZS3+GC 24.0 14.1 22.3 17.8
CSRL 29.4 14.6 27.0 19.5

CaGNet [20] 24.8 18.5 23.2 21.2
Ours 39.8 21.3 36.7 27.7

two unseen classes of motorbike and cow, w/o ZSL result
predicts the cow as a horse and the motorbike as a bicycle,
while our method successfully predicts the unseen classes.
Especially in the 5th column, the cat and the dog with sim-
ilar appearance appear in the same picture, and our method
can achieve segmentation well. After open-set rejection, the
segmentation present some minor errors between the com-
pletely different unseen classes (e.g., cow and motorbike),
which looks like irrational, but is actually explainable be-
cause we could hardly achieve a 100% segmentation within
the rejected group.

5. Conclusion
In this work, we address the challenging zero-shot se-

mantic segmentation (ZSS), where a model is required to
conduct pixel-level classification of categories that have
been seen or not seen during training. We clarify the in-
ductive/transductive settings of ZSS and adopt the inductive
setting. We propose an approach with prototypical match-
ing and open-set rejection to enhance the zero-shot perfor-
mance. A set of trainable prototypes are employed to ex-
tract the visual representations and perform classification.
A projection network is trained to map the semantic em-
beddings to these prototypes, based on seen instances, and
generate prototypes for unseen classes. To address the bias
problem, an open-set rejection (OSR) module is proposed
to identify the pixels that do not belong to seen classes. The
OSR help to reduce the misclassification of unseen objects
into seen classes. Then the pixels rejected by OSR is clas-
sified by projected prototypes of unseen classes. We test
the proposed approach on two segmentation datasets and
achieve impressively state-of-the-art performance on gener-
alized zero-shot segmentation.
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