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Abstract

Regression-based methods have recently shown promis-
ing results in reconstructing human meshes from monocular
images. By directly mapping raw pixels to model param-
eters, these methods can produce parametric models in a
feed-forward manner via neural networks. However, mi-
nor deviation in parameters may lead to noticeable mis-
alignment between the estimated meshes and image evi-
dences. To address this issue, we propose a Pyramidal
Mesh Alignment Feedback (PyMAF) loop to leverage a fea-
ture pyramid and rectify the predicted parameters explicitly
based on the mesh-image alignment status in our deep re-
gressor. In PyMAF, given the currently predicted parame-
ters, mesh-aligned evidences will be extracted from finer-
resolution features accordingly and fed back for parameter
rectification. To reduce noise and enhance the reliability of
these evidences, an auxiliary pixel-wise supervision is im-
posed on the feature encoder, which provides mesh-image
correspondence guidance for our network to preserve the
most related information in spatial features. The efficacy
of our approach is validated on several benchmarks, in-
cluding Human3.6M, 3DPW, LSP, and COCO, where ex-
perimental results show that our approach consistently im-
proves the mesh-image alignment of the reconstruction. The
project page with code and video results can be found at
https://hongwenzhang.github.io/pymaf.

1. Introduction
Aiming at the same goal of producing natural and well-

aligned results, two different paradigms for human mesh
recovery have been investigated in the research commu-
nity. Optimization-based methods [5, 29, 63] explicitly fit
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Figure 1: Illustration of our main idea. (a) The commonly-
used iterative error feedback. (b) Our mesh alignment feed-
back. (c) Mesh-aligned evidences extracted from a feature
pyramid. (d) Our approach PyMAF improves the mesh-
image alignment of the estimated mesh.

the models to 2D evidences, which can typically produce
results with accurate mesh-image alignments but tend to
be slow and sensitive to the initialization. Alternatively,
regression-based ones [22, 42, 27, 26] suggest to directly
predict model parameters from images, which have shown
very promising results, and yet still suffer from the coarse
alignment between predicted meshes and image evidences.

For parametric models like SMPL [34], the joint poses
are represented as the relative rotations with respect to their
parent joints, which means that minor rotation errors ac-
cumulated along the kinematic chain can result in notice-
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mesh vertices in 3D space. In this way, the auxiliary super-
vision provides mesh-image correspondence guidance for
the image encoder to preserve the most related information
in the spatial feature maps.

In our implementation, we adopt the IUV maps defined
in DensePose [1] as the dense correspondence representa-
tion, which consists of part index and UV values of the
mesh vertices. Note that we do not use DensePose anno-
tations in the dataset but render IUV maps based on the
ground-truth SMPL models [66]. During training, classi-
fication and regression losses are applied on the part index
P and UV channels of dense correspondence maps, respec-
tively. Specifically, for the part index P channels, a cross-
entropy loss is applied to classify a pixel belonging to ei-
ther background or one among body parts. For the UV
channels, a smooth L1 loss is applied to regress the cor-
responding UV values of the foreground pixels. Only the
foreground regions are taken into account in the UV regres-
sion loss, i.e., the estimated UV channels are firstly masked
by the ground-truth part index channels before applying the
regression loss. Overall, the loss function for the auxiliary
pixel-wise supervision is written as

Laux =λpiCrossEntropy(P, P̂ )

+λuvSmoothL1(P̂ ⊙ U, P̂ ⊙ Û)

+λuvSmoothL1(P̂ ⊙ V, P̂ ⊙ V̂ ),

(4)

where ⊙ denotes the mask operation. Note that the auxiliary
prediction is required in the training phase only.

Fig. 3 visualizes the spatial features of the encoder
trained with and without auxiliary supervision, where the
feature maps are simply added along the channel dimension
as grayscale images and visualized with colormap. We can
see that the spatial features are more neat and robust to the
input variations when the auxiliary supervision is applied.

4. Experiments
4.1. Implementation Details

The proposed PyMAF is validated on the ResNet-50 [15]
backbone pre-trained on ImageNet [10]. The ResNet-50
backbone takes a 224 × 224 image as input and produces
image features with the size of 2048 × 7 × 7. For the
classic regression network HMR [22], a 2048 × 1 global
feature vector will be obtained after average pooling. In
our approach, the image features will go through decon-
volution layers, resulting spatial feature maps with resolu-
tions of {14 × 14, 28 × 28, 56 × 56}, where Cs = 256
for all resolutions. Here, the maximum number T is set
to 3, which is equal to the iteration number used in HMR.
When generating mesh-aligned features, the SMPL mesh is
down-sampled using a pre-computed downsampling matrix
provided in [27], after which the vertex number drops from
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Figure 3: Visualization of the spatial feature maps and pre-
dicted dense correspondences. Top: Input images. Second
/ Third Row: Spatial feature maps learned without / with
the Auxiliary Supervision (AS). Bottom: Predicted dense
correspondence maps under the auxiliary supervision.

6890 to 431. The mesh-aligned features of each point will
be processed by a three-layer MLP so that their dimension
will be reduced from Cs to 5. Hence, the mesh-aligned fea-
ture vector has a length of 2155 = 431×5, which is similar
to the length of global features. For the grid features used at
t = 0, they are uniformly sampled from ϕ0

s with a 21× 21
grid pattern, i.e., the point number is 441 = 21×21 which is
approximate to the vertices number 431 after mesh down-
sampling. The regressors Rt have the same architecture
with the regressor in HMR except that they have slightly dif-
ferent input dimensions. Following the setting of SPIN [26],
we train our network using the Adam [24] optimizer with
the learning rate set to 5e−5 and the batch size of 64 on
a single 2080 Ti GPU. No learning rate decay is applied
during training. More details of the implementation can be
found in our code and the Supplementary Material.

4.2. Datasets

Following the settings of previous work [22, 26], our
approach is trained on a mixture of data from sev-
eral datasets with 3D and 2D annotations, including Hu-
man3.6M [17], MPI-INF-3DHP [36], LSP [19], LSP-
Extended [20], MPII [2], and COCO [33]. For the last five
datasets, we also utilize their pseudo ground-truth SMPL
parameters [5, 26] for training. We do not use training data
from 3DPW [55] but only perform evaluations on its test
set. Moreover, we do not use the DensePose annotations
in COCO for auxiliary supervision, but render IUV maps
based on the ground-truth SMPL meshes using the method
described in [66]. We evaluate our approach using a variety
of metrics for quantitative comparisons with previous meth-
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Method
3DPW Human3.6M

PVE MPJPE PA-MPJPE MPJPE PA-MPJPE

Te
m

po
ra

l

Kanazawa et al. [23] 139.3 116.5 72.6 - 56.9
Doersch et al. [11] - - 74.7 - -
Arnab et al. [4] - - 72.2 77.8 54.3
DSD [51] - - 69.5 59.1 42.4
VIBE [25] 113.4 93.5 56.5 65.9 41.5

Fr
am

e-
ba

se
d

Pavlakos et al. [42] - - - - 75.9
HMR [22] - 130.0 76.7 88.0 56.8
NBF [40] - - - 59.9
GraphCMR [27] - - 70.2 - 50.1
HoloPose [14] - - - 60.3 46.5
DenseRaC [59] - - - 76.8 48.0
SPIN [26] 116.4 96.9 59.2 62.5 41.1
DecoMR [64] - - 61.7† - 39.3†
DaNet [65] - - 56.9 61.5 48.6
Song et al. [49] - - 55.9 - 56.4
I2L-MeshNet [37] - 100.0 60.0 55.7† 41.1†

HKMR [12] - - - 59.6 43.2

Baseline 117.9 98.5 60.9 64.8 43.7
PyMAF w/o AS 113.6 95.6 58.8 60.3 42.3
PyMAF 110.1 92.8 58.9 57.7 40.5

Table 1: Reconstruction errors on 3DPW and Human3.6M.
† denotes the numbers evaluated on non-parametric results.

ods, i.e., PVE, MPJPE, and PA-MPJPE for the evaluation of
3D pose estimation, the segmentation accuracy, f1 scores,
and AP for the measure of mesh-image alignment. Detailed
descriptions about the datasets and evaluation metrics can
be found in the Supplementary Material.

4.3. Comparison with the State of the Art

3D Human Pose and Shape Estimation. We first eval-
uate our approach on the 3D human pose and shape es-
timation task, and make comparisons with previous state-
of-the-art regression-based methods. We present evalua-
tion results for quantitative comparison on 3DPW and Hu-
man3.6M datasets in Table 1. Our PyMAF achieves com-
petitive or superior results among previous approaches, in-
cluding both frame-based and temporal approaches. Note
that the approaches reported in Table 1 are not strictly com-
parable since they may use different training data, learning
rate schedules, or training epochs, etc. For a fair compar-
ison, we report results of our baseline in Table 1, which
is trained under the same setting with PyMAF. The baseline
approach has the same network architecture with HMR [22]
and also adopts the 6D rotation representation [71] for pose
parameters. Compared with the baseline, PyMAF reduces
the MPJPE by 5.7 mm and 7.1 mm on 3DPW and Hu-
man3.6M datasets, respectively. The auxiliary supervision
(AS) also helps PyMAF to have better reconstruction results
as shown in the last two rows of Table 1.

From Table 1, we can see that PyMAF has more notable
improvements on the metrics MPJPE and PVE. We would
argue that the metric PA-MPJPE can not fully reveal the

Method
FB Seg. Part Seg.

acc. f1 acc. f1

SMPLify oracle [5] 92.17 0.88 88.82 0.67
SMPLify [5] 91.89 0.88 87.71 0.64
SMPLify on [42] 92.17 0.88 88.24 0.64

HMR [22] 91.67 0.87 87.12 0.60
BodyNet [54] 92.75 0.84 - -
CMR [27] 91.46 0.87 88.69 0.66
TexturePose [41] 91.82 0.87 89.00 0.67
SPIN [26] 91.83 0.87 89.41 0.68
DecoMR [64] 92.10 0.88 89.45 0.69
HKMR [12] 92.23 0.88 89.59 0.69

Baseline 91.67 0.87 89.23 0.68
PyMAF w/o AS 92.43 0.88 89.98 0.70
PyMAF 92.79 0.89 90.47 0.72

Table 2: Foreground-background and six-part segmentation
accuracy and f1 scores on the LSP test set. SMPLify Or-
acle denotes the SMPLify using ground-truth keypoints as
inputs.

mesh-image alignment performance since it is calculated as
the MPJPE after rigid alignment. As depicted in the Sup-
plementary Material, a reconstruction result with smaller
PA-MPJPE value can have larger MPJPE value and worse
alignment between the reprojected mesh and image.

2D Segmentation and Pose Estimation. To quantita-
tively measure the mesh-image alignment of the predic-
tions, we also conduct evaluation on the 2D segmenta-
tion and pose estimation task, where the predicted meshes
are projected on the image plane to obtain 2D part seg-
mentation and keypoints. Table 2 reports the assessment
of foreground-background and six-part segmentation per-
formance on the LSP test set. As shown in Table 2,
optimization-based approaches remain very competitive in
terms of 2D alignment metrics and tend to outperform
most of the regression-based ones. The reason behind
it is that optimization-based approaches is optimized for
the mesh-image alignment explicitly. Though PyMAF is
regression-based, it surpasses all other methods including
the optimization-based ones.

Finally, we evaluate 2D human pose estimation perfor-
mance on the COCO validation set to verify the effective-
ness of our approach in real-world scenarios. During the
evaluation, we project keypoints from the estimated mesh
on the image plane, and compute the Average Precision
(AP) based on the keypoint similarity with the ground truth
2D keypoints. The results of keypoint localization APs are
reported in Table 3. OpenPose [6], a widely-used 2D human
pose estimation algorithm, are also included for reference.
We can see that, the COCO dataset is very challenging for
approaches to human mesh reconstruction as they typically
have much worse performances in terms of 2D keypoint lo-
calization accuracy. In Table 3, we also include the results
of the optimization-based SMPLify [5] by fitting the SMPL
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Figure 4: Qualitative comparison of reconstruction results
on the COCO validation set.

Method AP AP50 AP75 APM APL

OpenPose [6] 65.3 85.2 71.3 62.2 70.7

SMPLify [5] 22.0 37.7 23.1 27.7 17.6
HMR [22] 18.9 47.5 11.7 21.5 17.0
GraphCMR [27] 9.3 26.9 4.2 11.3 8.1
SPIN [26] 17.3 39.1 13.5 19.0 16.6

Baseline 16.8 38.2 12.8 18.5 16.0
PyMAF w/o AS 20.7 43.9 17.4 22.3 19.9
PyMAF 24.6 48.9 22.7 26.0 24.2

Table 3: Keypoint localization APs on the COCO validation
set. There is a total of 50,197 samples used for evaluation.
Results of SMPLify [5] are evaluated based on the imple-
mentation in SPIN [26] with 300 optimization iterations.
Results of HMR [22], GraphCMR [27], and SPIN [26] are
evaluated based on their publicly released code and models.

model to the ground-truth 2D keypoints. As pointed out
in previous work [26], SMPLify may produce well-aligned
but unnatural results. Moreover, SMPLify is much more
time-consuming than regression-based solutions. Among
approaches recovering 3D human mesh, PyMAF outper-
forms previous regression-based methods by remarkable
margins. Compared with our baseline, PyMAF significantly
improves the AP and AP50 by 7.8% and 10.7%, respec-
tively. The auxiliary supervision (AS) also considerably
contributes to more robust reconstruction in this challenging
dataset and brings 3.9% performance gain on AP. Recon-
struction results on COCO are depicted in Fig. 4 for qual-
itative comparisons, where PyMAF convincingly performs
better than SPIN [26] and our baseline by producing better-
aligned and natural results.

4.4. Ablation Study

In this part, we will perform ablation studies under var-
ious settings on Human3.6M to validate the efficacy of the

Feedback Feat. Pyramid? # Regressor MPJPE PA-MPJPE

Global (Baseline) No 1 84.1 55.6

Global

No 1

84.3 55.3
Grid 80.5 54.7
Mesh-aligned 79.6 53.4

Grid
Yes 3

79.7 54.3
Mesh-aligned 76.8 50.9

Table 4: Ablation study on using different types of feedback
features for refinement. No auxiliary supervision is applied.

key components proposed in our approach. All ablation ap-
proaches are trained and tested on Human3.6M, as it in-
cludes ground-truth 3D labels and is the most widely used
benchmark for 3D human pose and shape estimation.

Efficacy of Mesh-aligned Features. In PyMAF, mesh-
aligned features provide the current mesh-image alignment
information in the feedback loop, which is essential for bet-
ter mesh recovery. To verify this, we alternatively replace
mesh-aligned features with the global features or the grid
features uniformly sampled from spatial features as the in-
put for parameter regressors. Table 4 reports the perfor-
mances of the approaches equipped with different types of
features in the feedback loop. The results under the non-
pyramidal setting are also included in Table 4, where the
grid and mesh-aligned features are extracted from the fea-
ture maps with the highest resolution (i.e., 56 × 56) and
the mesh-aligned features are extracted on the reprojected
points of the mesh under the mean pose at t = 0. For
fair comparisons with Baseline, the approaches with global,
grid, and mesh-aligned feedback features under the non-
pyramidal setting also use a single regressor but have in-
dividual supervision on the prediction of each iteration. Be-
sides, all approaches in Table 4 do not use the auxiliary su-
pervision.

Unsurprisingly, using mesh-aligned features yields the
best performance under both non-pyramidal and pyrami-
dal designs. The approach using the grid features sampled
from spatial feature maps has better results than that us-
ing the global features but is worse than the mesh-aligned
counterpart. When using pyramidal feature maps, the mesh-
aligned solution achieves even more performance gain since
multi-scale mesh-alignment evidences can be leveraged in
the feedback loop. Though the grid features largely contain
spatial cues on uniformly distributed pixel positions, they
can not reflect the alignment status of the current estima-
tion. This implies that mesh-aligned features are the most
informative one for the regressor to rectify the current mesh
parameters.

Benefit from Auxiliary Supervision. The auxiliary
pixel-wise supervision helps to enhance the reliability of
the mesh-aligned evidences extracted from spatial features.
Using alternative pixel-wise supervision such part segmen-
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