
STAR: A Structure-aware Lightweight Transformer for
Real-time Image Enhancement

Zhaoyang Zhang1,2 Yitong Jiang2 Jun Jiang 2 Xiaogang Wang1 Ping Luo3 Jinwei Gu2,4

1The Chinese University of Hong Kong 2SenseBrain Research 3The Univesity of Hong Kong 4Shanghai AI Laboratory

{zhaoyangzhang@link,xgwang@ee}.cuhk.edu.hk
{jiangyitong,jiangjun,gujinwei}@sensebrain.ai pluo@cs.hku.hk

Abstract

Image and video enhancement such as color constancy,
low light enhancement, and tone mapping on smartphones
is challenging, because high-quality images should be
achieved efficiently with a limited resource budget. Unlike
prior works that either used very deep CNNs or large Trans-
former models, we propose a structure-aware lightweight
Transformer, termed STAR, for real-time image enhance-
ment. STAR is formulated to capture long-range dependen-
cies between image patches, which naturally and implicitly
captures the structural relationships of different regions in
an image. STAR is a general architecture that can be eas-
ily adapted to different image enhancement tasks. Exten-
sive experiments show that STAR can effectively boost the
quality and efficiency of many tasks such as illumination
enhancement, auto white balance, and photo retouching,
which are indispensable components for image processing
on smartphones. For example, STAR reduces model com-
plexity and improves image quality compared to the recent
state-of-the-art [19] on the MIT-Adobe FiveK dataset [7]
(i.e., 1.8dB PSNR improvements with 25% parameters and
13% float operations.)

1. Introduction

Recent years have witnessed significant progress on a va-
riety of image and video enhancement tasks with learning-
based methods, such as super-resolution, denoising, de-
mosaicking, low light enhancement, color constancy (i.e.,
white balance), tone mapping. Yet, there are still two key
challenges for deploying these methods on edge devices.
First, these methods must process high-resolution images
efficiently within a very limited computation budget, mak-
ing trade-offs between model flexibility and computation
efficiency. Second, they need to incorporate structural and
global information of input images in order to achieve high-
quality stable results, especially for tasks such as color con-

STAR Curves Mean

CNN (79.4K , 5.2 GFLOPS)

Inputs

CNN_D (79.4K, 0.31 GFLOPS)

CNN_D Curves Mean

STAR (20.1K, 0.07 GFOPS)

CNN Curves Mean

Figure 1. Comparison of curve estimation results between CNN
and STAR for low light enhancement. ”CNN” denotes the original
backbone model used by [19] that predicts per-pixel curves. For
fair comparison, we also train the same CNN model with down-
sampling (denoted as CNN-D), so that both STAR and CNN-D
predict per-token curves. Both the enhanced results and model
complexity (number of parameters, FLOPS) are shown. We also
visualize the predicted curves by plotting the mean of α (See more
details in Section 4.1).

stancy, low light enhancement, and tone mapping. Even for
tasks with local support, such as denoising and demosaick-
ing, structure-aware region-based processing can often pro-
duce better results [33].

To address these two challenges, prior work can be sum-
marized into three categories. The first approach is to use
stacked, very deep CNNs [49, 9, 17, 45, 19]. In order to
maintain high-frequency details, the spatial resolution is of-
ten kept unchanged, and thus these methods have a large
computational cost and memory footprint. The second ap-
proach is to estimate one set of global adjustment func-
tion [52, 35, 24, 31], but they lack the flexibility to handle
the complexity of real-world scenarios (e.g., mixed illumi-
nation for white balance, HDR scenes for tone mapping).
Finally, the third approach is to explicitly use a segmenta-
tion network to divide images into semantically-meaningful
regions and process each region separately [33, 51]. How-
ever, this approach also has limitations such as requiring
per-pixel annotated datasets.

In this paper, we proposed STAR (Structure-aware
Transformer), a general lightweight backbone for various

4106

real-time image post-processing tasks. STAR is formulated
to capture long-range dependencies among image patches,
which naturally and implicitly captures the structure rela-
tionships within an image. STAR is a general architec-
ture that can be easily adapted for a variety of learning-
based image enhancement tasks. Rather than stacked con-
volution layers, STAR is based on the Transformer module,
which mainly consists of multi-head self-attention and full-
connected layers only. Transformer [44] is widely used in
natural language processing for its high training efficiency
towards long-distance dependencies and tremendous model
capacity. Models building upon Transformer achieved sur-
prising performance that even surpasses human recognition
ability in specific language tasks [11].

Specialized in image enhancement tasks, we design the
STAR network, which can be free of stacked convolution
and thus more efficient in extracting structural information.
In STAR, patches of the image are tokenized into token
embeddings, much like word embeddings in NLP. Rather
than computing pixel-wise dependencies directly, STAR ex-
plicitly learns token-wise dependencies for image patches.
Fig.1 shows an example. As shown in Fig.1, STAR delivers
high efficiency to enhance an image. In addition to high effi-
ciency (0.07 GFLOPS), as shown, STAR can also implicitly
learn the semantic structure and thus deliver more semantic-
meaningful results than CNNs [19]. Instead of having one
module for general information, as suggested in [27, 48],
we employ a specialized two-branch design naming long-
short Range Transformer to ensure STAR can focus on cap-
turing global contexts thus reducing computations.

We further validate STAR on several recent image
enhancement methods, including illumination enhance-
ment [19], white balance [2] and photo retouching with 3D
lookup table [52]. Experimental results show that STAR
can often effectively boost the performance of these tasks
with significantly reduced model complexity, which offers
great advantages for real-time processing on edge devices.
For instance, on low light enhancement using DCE-Net [19]
, compared to CNN backbone, STAR-based methods can
achieve 1.8dB PSNR improvement, while only requiring
25% parameters and 13% float operations (FLOPS).

2. Related Work

2.1. Learning-based Image Enhancement in Cam-
era Imaging Pipeline

Recently, with the success of deep convolutional neu-
ral networks (CNNs), many appealing learning-based im-
age enhancement methods achieve promising results such
as Camera ISP [34, 32, 38], demosaicking [41, 14], de-
noising [14, 18], white balancing [2, 1], HDR reconstruc-
tion [17, 39, 28, 29], exposure correction [19, 45] and
color enhancement [45, 52]. Nevertheless, many of these

methods rely on heavy computation and memory foot-
print, which may hinder their deployment on hardware-
constrained devices, such as smartphones or other embed-
ded systems. Some recent methods are proposed for effi-
cient image enhancement on mobile platforms. The first
category is to estimate a set of global adjustment function
like [52, 35, 24, 31]. These methods mainly process the
downsampled images and predict variables of a set of global
manipulating functions. However, many works like [35, 24]
show that applying global functions only is not able to pro-
vide adequate and flexible enhancement capability. Another
category of image enhancement methods is formulated to be
a semantic-aware prediction, which trains the CNN model
to estimate mapping or transformation functions with se-
mantic masks [33, 43]. Models in these methods are usu-
ally versatile because the predicted results are conditioned
to semantic contents like other pixel-wise methods like
[49, 9, 17, 45, 19]. But such methods have limitations
such as requiring an extra segmentation subnetwork and
per-pixel annotated datasets to predict masks.

2.2. Transformer Module

Transformer is proposed by [44] for machine translation,
where the multi-head self-attention and feed-forward MLP
are stacked to capture the long-range correlation between
words. Transformer-based networks show high model ca-
pacity and have since become the state-of-the-art method in
many NLP tasks [11, 6, 36]. The core of Transformer is
to characterize the dependencies of two distant tokens by a
multi-head self-attention mechanism. This property endows
Transformer with the potential to capture latent correlation
among large and complex data sources.

Transferring the pre-trained Transformer from NLP to
vision tasks also becomes a hot issue. [46, 40] attempts
to combine visual and linguistic representations to build
comprehensive pre-trained Transformers for both vision
and language data. Besides, relying on large-scale ex-
ternal data [42], recent work ViT [12] has implemented
high competitive image ImageNet [10] classification re-
sults using networks mainly constructed by Transformer
layers. Inspired by that, [8] further demonstrate that pre-
training such a pure Transformer model on ImageNet could
improve network performance on low-level vision tasks
(super-resolution, denoising, deraining). However, a large-
scale pre-trained model also requiring massive parameters
(e.g. IPT [8] model has over 114 M parameters and 33G
FLOPS, which is impractical to deploy on mobile platforms
for image and video enhancement. In contrast, STAR is
designed to be lightweight and can achieve real-time per-
formance, which to our knowledge is the first lightweight
Transformer for image enhancement.

4107

Linear Flatten

Dimension Reduction

Token Embeddings

Long-short Range Transformer Module

Long Range
Context

Short Range
Context

Task Tails

L Tokens

Token Embeddings

MLP

Norm

Norm

Multi-Head
Attention

Norm

Convolution

N x

Tokens Tokens

P

LeakyRelu

M x

Semantic-aware Transformer Network Long-short Range Transformer Module
Images Results

Figure 2. Network overview. Left: We flatten an image feature map into patches, then linearly embed them into tokens after dimension
reduction. The generated tokens will be fed to a long-short range Transformer module. The resulting sequence of Transformer will be
reshaped further used by downstream tasks by adding task tail. Right: Illustration of long-short range Transformer. We adopt a two branch
design to reduce model complexity by explicitly separating local and global context extraction. Long-range dependencies are extracted by
N cascaded Transformer encoder blocks. We adopt the standard Transformer design as suggested by [12, 44] with position embeddings
(denoted as P)

3. Structure-Aware Transformer Network

An overview of the STAR model is depicted in Fig. 2.
We first tokenize an image I ∈ RH×W×CI into a sequence
of flattened tokens IT ∈ RL×CT , where CI and CT are
the number of channels. The generated tokens will be re-
ceived by the long-short range Transformer module as in-
puts, which will then output two structural maps Sl,Ss ∈
RL×L×CS of long and short-range respectively. The pre-
dicted two structural maps could then be used to further
estimate curves or transformation for image enhancement
tasks.

3.1. Tokenization

To transform an image to tokens, a naive way is to
flatten image into raw patches as mentioned in [8]. In
that case, the features I ∈ RH×W×CI are reshaped into
a sequence of patches and treat them as tokens, i.e., T ∈
R(H

P ×
W
P)(P 2×CI), where P is the patch size and L =

(H
P ×

W
P) is the number of patches. However, this strategy

will result in large memory consumption. Specifically, the
input token vectors is formulated to have large dimension
ti ∈ RP 2×CI , i = 1, 2, ..., N , requiring massive parameters
for training (e.g., 33 M parameters in [8]). An alternative
strategy is to derive input token sequence from feature maps
of a CNN [12, 50]. As a special case, the patches size here
can be regarded as 1x1 after spatially downsampling, and
tokens are extracted by a stacked convolution operation.

To support efficient real-time image enhancement, we
implement the tokenization pipeline with the following
steps. As shown in Fig. 2, we first flatten the full resolution
feature into a sequence of patches. A dimension reduction
operation for each patch is cascaded behind that. After that,
we further extract tokens of each patch by learning linear
embedding. The key to alleviating memory usage is proper
dimension reduction.

In this paper, we have compared three tokenization
strategies as depicted in Fig. 3. The most typical tokeniza-
tion strategy is Linear Head [12, 8, 25], where the inputs
are divided into patches and then linearly embedded. As
mentioned before, for image enhancement such a strategy
is too heavy. To reduce computation, we first try the Conv
Head strategy as adopted in [15, 12]. Rather than comput-
ing the large P 2C × CT (C means input channel dimen-
sions and CT denotes Transformer dimension) projection,
we use a preprocessing CNN with gradually reducing spa-
tial size. The token sequence is obtained by simply flat-
ten the spatial dimension of the feature map. We further
implement the Mean Head strategy, where the spatial size
is reduced by Adaptive Average Pooling directly. This is
inspired by squeeze-and-excitation block [23]. With Mean
Head, we can maximumly reduce the tokenization complex-
ity, but note that here we follow the assumption that the
texture information (i.e. corners) is not crucial for learning
structural context for specific image enhancement tasks (i.e.
white balance). Similar to [50], we apply a 7×7 convolution

4108

Conv

Flatten

Conv

Tokens

Flatten

Linear

 Tokens

Adaptive Avgpool

Flatten

Linear

Tokens

Patches

 Patches

Conv Head Linear Head Mean Head

Features Features Features

Figure 3. Illustration of tokenization methods used in STAR. Here
H ×W denotes the spatial resolution of inputs and CT denotes
Transformer dimension. Conv head strategy: The inputs will
be fed to stacked convolution layers with downsampling. As de-
scribed in [12], the token sequence is obtained by simply flatten
the spatial dimension of the feature map and then projecting them
to Transformer dimension. Linear head strategy: Splitting fea-
ture maps into patches directly and then projection to embedding.
Mean head strategy: Reducing the spatial size using adaptive av-
erage pooling, then following linear head strategy.

with stride 4 and output channels 16 on the image and then
feed output features to the above tokenization modules for
more informative representations. We further quantitatively
compare the three strategies. See Section 5.1.

3.2. Long-short Range Transformer Module

Unlike existing vision transformer methods [12, 25, 8]
that use standard Transformer [44] architecture only, we
adopt a two-branch Transformer design to process token se-
quences. As shown in Fig. 2, instead of feeding the entire
token embeddings (T ∈ R

HW
P2 ×CT) into both branches , we

split them into two parts along the channel dimension. The

divided embeddings ({Tlong,Tshort} ∈ R
HW
P2 ×

CT
2) will be

fed to the each branch respectively. Such practice effec-
tively reduces the overall computation.

As shown in Fig. 2, for the left branch we use a normal
transformer module as in [44]. Each Transformer contains
multi-head self-attention module and a MLP with skip con-
nection. Following [12], we use LayerNorm [4] as nor-
malization and GELU [22] non-linearity function. We also
add a 1D learnable position embedding p ∈ R

CT
2 to Trans-

former inputs to retain position information like [8, 12].
For the right branch of local relationships, we apply con-
volution to cover adjacent tokens. Unlike processing sen-
tences in NLP where 1-D convolution [48, 27] are used to
capture 1-D dependency, we use 2D convolutions to process
rearranged image tokens. Instead of embedding the convo-
lution inner Transformer module , we place the convolu-
tion branch in parallel with the whole Transformer module.

Specifically, for long-range context (ylong) and short-range
context (yshort), we have

T0 = Tlong + p (1)

T̃n = MSA(LN(Tn−1)) + Tn−1, n = 1...N (2)

Tn = MLP (LN(T̃n)) + T̃n, n = 1...N (3)

ylong = LN(TN) (4)

yshort = CNN(LN(Tshort)) (5)

MSA, MLP,and LN denote multi-head self-attention, multi-
layer perceptron and layer normalization respectively. N
is the depth of Transformer (number of basic transformer
blocks). The resulting ylong and yshort can then used
for various image enhancement tasks by adding a task tail.
(e.g., adding linear layers to predict tone curves.)

4. Image Enhancement with STAR
To explore model versatility, we evaluate STAR on three

applications using the most recent CNN methods: curve es-
timation for illumination enhancement [19], auto white bal-
ance [2] and photo retouching [52]. For a fair comparison,
all the following experiments are based on public codes re-
leased by authors. We keep all experimental setups other
than the backbone model (i.e., datasets, data augmentation,
training strategy, ...) unchanged.

4.1. Illumination Enhancement

Many photos are often captured under inadequate and
unbalanced lights. Such low-light photos not only suf-
fer from compromised aesthetic quality but also challenge
many fundamental downstream vision tasks like classifica-
tion and object detection. To tackle this issue, we take one
of the most efficient recent low-light enhancement methods
DCE-Net (which is claimed to be 3× faster on GPU than the
previous methods [45, 26, 47]) as our baseline to evaluate
STAR.

In DCE-Net [19], a Deep Curve Estimation Network
(DCE-Net) is devised to estimate a set of best-fitting Light-
Enhancement curves (LE-curves) given an input image.
The framework maps all pixels of the inputs’ RGB chan-
nels by applying curves iteratively to obtain the final toned
image. Quadratic curves LE(I(x);α) = I(x)+αI(x)(1−
I(x)) are used in DCE-Net, where I(x) and LE(I(x);α)
denote the adjusted image and original inputs respectively.
The curve parameters αi ∈ [−1, 1]H×W for i-th iteration
are per-pixel predicted by a CNN with feature cascade. To
evaluate our method, we replace this CNN backbone by the
proposed STAR and estimate αi using the resulting in struc-
tural contexts (yshort, ylong). With derived αi, the calcula-
tion of LE-curve for i-th iteration can be formulated as:

α̃i = FC([yshort, ylong]) (6)

4109

DCE-Net_D (0.31 GFLOPS) STAR-DCE (0.04 GFLOPS)DCE-Net (5.2 GFLOPS) ReferenceInputs

Figure 4. Qualitative comparison of DCE-Net with different backbone on low light enhancement on MIT-Adobe FiveK [7].

αi = ψ(tanh(α̃i)) (7)

LEi(I(x);αi) = LEi−1(x)+αiLEi−1(x)(1−LEi−1(x))
(8)

where FC denotes a learned projection to predict curves,
ψ(.) is an interpolation function to map per-token curves to
per-pixel curves. We refer above pipeline as ”STAR-DCE”
in the following sections in contrast to CNN-based DCE-
Net.

4.2. Auto White Balance

White balance (WB) is a fundamental low-level com-
puter vision task applied to all camera images. Specifically,
WB is formulated to normalize the effect of the captured
scene’s illumination so that all the captured objects appear
to be under ideal ”white light”. We follow recent work [2]
and implements STAR for WB with an encoder/decoder
scheme. In this section, we will further demonstrate how
STAR can be employed in an encoder/decoder network (i.e.,
U-Net [37]).

According to [2], a CNN is applied to produce the edited
images IWB(i)↓ with target WB setting i ∈ A, T, S1. The
network is built upon 4-level encoder/decoders with 2 × 2
max-pooling and transposed convolution. [2] use a multi-
decoder architecture consisting of two units: (1) A 4-level
encoder for extracting multi-scale latent representation of
images. (2) Three 4-level decoders corresponding to AWB,
Incandescent WB, and Shade WB settings. To employ
Transformer, we use the proposed STAR the replace the
original encoder. We also adopt the multi-decoder design
which is shown to yield better performance than vanilla U-
Net [37] by [2]. Specifically, the input images are first

1A: AWB, T: Incandescent WB, S: Shade WB

divided into 16× 16 patches (corresponding to the original
4-level encoder) and then projected to tokens. After that, we
feed the tokens to our long-short range Transformer and the
generated structural context [ylong, yshort] with spatial size
H
16×

W
16 will then be used by subsequent three decoders. Fol-

lowing the prior practice in illumination enhancement, we
adopt the Mean Head tokenization and two-branch trans-
former design. We keep the first convolution (3×24×3×3)
layer and use its producing feature maps to guide the image
generation of decoders. Like [2], the whole STAR module
is shared by three decoders and jointly trained with them.

4.3. Photo Retouching with 3D-LUTs

We choose 3D-LUTs (lookup tables) learning as an in-
stance to show how STAR improves the learning of global
adjustments. 3D-LUTs are usually applied to adjust the hue,
saturation, exposure, color and tone of photos in camera
imaging pipelines. As one of the most classical yet widely
used photo adjustment techniques, 3D LUT can achieve sta-
ble photo enhancement performance at very high efficiency.
We evaluate STAR on 3D-LUTs estimation following the
framework of [52], which learns several (e.g., 3) basis 3D
LUTs to interpolate images and fuses the results by using
CNN to learn a linear combination of them.

Conventional 3D LUT based image enhancement meth-
ods have a main limitation that the 3D LUTs are mostly
manually and only provide a fixed transformation. To adapt
to different scenes, [52] learns several LUTs and uses a
small CNN predictor to fuse them. Although efficient and
stable, as discussed in [52], such 3D-LUT model have lim-
itations inherited from global adjustments. Once the 3D
LUT is determined for an input image, it is the same for dif-

4110

ferent local areas within the image. Naturally, such strate-
gies produce unsatisfactory results for images requiring lo-
cal enhancements (e.g., target images with high dynamic
range). [52] intends to tackle this problem by applying a
local tone mappings [13] as preprocessing. However, such a
local tone mapping method is still time-consuming for high-
resolution images and this issue is left to be future work by
[52].

To apply our model, we replace the CNN directly with
STAR and predict combination weights on [yshort, ylong].
Rather than predicting global adjustments weight for LUT
directly, STAR predicts 32× 32 token-wise weights, which
are then used to fuse interpolated images of each LUT.

5. Experiments

5.1. Illumination Enhancement Results

This section compares our STAR with the original CNN
model on curve estimation with the following setups.

Datasets. We choose the MIT-Adobe FiveK [7] (FiveK)
to compare our methods with CNN. The FiveK dataset con-
tains 5,000 image pairs with retouched ground-truth by ex-
perts (A - E). We follow previous methods [45, 17, 24, 35]
to use only the Output from Expert C and randomly split im-
ages into two parts: 500 images for validation and testing,
remaining 4,500 images for training. For a fair comparison,
we use datasets split by [45]. Both the training and evalua-
tion images are resized to 1200×900 based on their longest
side like [19]. Note that here we choose MIT-Adobe FiveK
rather than datasets released by [19] or other datasets cor-
responding to specific methods because we intend to show
that STAR can work as a general backbone, which should
be evaluated on common and widely-used datasets.

Model Complexity. DCE-Net [19] choose a CNN with
7 layers, 32 maximum output channels as its network back-
bone (79.42k parameters). Following that, we first set the
Transformer dimension (Cin) to be the same 32. The in-
ner MLP dimensions are also kept the same. Both the CNN
and STAR model predicts 24 curves (totally 8 iterations for
3 channels) like practice in [19]. Each image will be di-
vided to 32 × 32 tokens in STAR. In this task, we observe
strong overfitting when applying STAR with large Trans-
former depth. Consequently, we use STAR of Transformer
depth 1 as defaults. Additional ablation studies towards
model complexity are performed including changing model
width/depth, using Mean Head tokenization and employing
a two-branch design.

Training and Evaluation. Similar to [52], images are
processed in full resolution (1200 × 900) when evaluation
and resized to 256 × 256 during training. Following [19],
Adam [30] optimizer is applied with fixed learning rate
1e−4. We use a simple L1-norm as loss function for both
the CNN and STAR based models to fairly compare the

Tokenization Branches Parameters (K) FLOPS (G) PSNR (dB) SSIM
DCE-Net - - 79.4 5.20 22.7 0.870
DCE-NetD - - 79.4 0.51 22.2 0.866
STAR-DCE Linear 1 79.6 0.17 24.0 0.882
STAR-DCE Conv 1 32.6 0.10 24.5 0.894
STAR-DCE Mean 1 23.3 0.07 24.5 0.892
STAR-DCE Linear 2 77.8 0.15 24.1 0.885
STAR-DCE Conv 2 30.8 0.08 24.4 0.894
STAR-DCE Mean 2 20.1 0.05 24.5 0.893

Table 1. Comparisons of Tokenization and Two-branch strat-
egy. DCE-Net and DCE-NetD denote the 7-layer CNN model
with/without downsampling. We report model size and total float
operations (FLOPS) and corresponding average PSNR on FiveK
evaluation set. The top results are bold.

model performance. We evaluate model efficiency using
the following metrics: memory consumption (number of
parameters), model complexity (float operations, FLOPS)2,
enhancement performance (PSNR/SSIM) and inference la-
tency.

To identify the most efficient STAR setups, we perform
several ablation studies:

Ablation I: Tokenization and Long-short Range Cap-
turing. We first compare the mentioned Conv / Linear /
Mean Head tokenization. As shown in the table. 1, the
three tokenization methods bring approaching model per-
formance despite the varying model size. As a compar-
ison, we also train DCE-Net with downsampling to to-
ken size 32 × 32 , denoted by DCE-NetD. We observe
that STAR model could hardly benefit from complex to-
kenization methods especially the most wide-used Linear
Head [8, 12, 25]. In contrast, simply averaging the feature
maps can reduce more than 50% computations and mem-
ory usage without performance loss, and the model can be
further compressed by applying a two-branch (long-short
range) design. The results support that texture information
like corners are not essential for such toning tasks. Subse-
quent experiments perform the Mean Head tokenization and
two-branch design as defaults for better efficiency.

Ablation II: Slimmer Model. This section explores the
model scalability of CNNs and STAR by using fewer chan-
nels/layers. We reduce network width to 16 (for both STAR
and CNN) and depth to 3 (for CNN) to observe the sensi-
tivity of model performance towards model size. Table. 2
reports the quantitative results. As shown, reducing CNN
depth to 3 will severely harm model performance (over 10
dB PSNR drops). Besides, reducing CNN width to 16 will
also result in obvious degradation on outputs quality (i.e.,
0.9 dB PSNR and 0.04 SSIM drop for DCE-NetD). Qual-
itative comparison can be seen in Fig. 4 The above results
illustrate the limitation of the pure CNN model to capture
structural representations. To derive a more efficient model,
simply reducing the depth/width of CNN may also lead to
poor performance.

Runtime Latency. We have shown the effectiveness

2FLOPS are calculated with inputs of size 3× 256× 256 in this appli-
cation

4111

STAR (1.37 GFLOPS) CNN (1.93 GFLOPS) ReferenceInput

Figure 5. Qualitative comparison of AWB correction on
Cube+ [5]. We show both model complexity (FLOPS) and per-
formance (∆E 2000, MSE). Green arrows indicate the obvious
color difference.

Width Layers Parameters (K) FLOPS (G) PSNR (dB) SSIM
DCE-Net 32 7 79.4 5.20 22.7 0.870
DCE-NetD 32 7 79.4 0.31 22.2 0.866
DCE-Net 16 7 23.6 1.55 21.6 0.820
DCE-NetD 16 7 23.6 0.10 21.3 0.824
DCE-Net 32 3 24.0 1.57 12.3 0.605
STAR-DCE 32 - 20.1 0.04 24.5 0.893
STAR-DCE 16 - 7.2 0.01 23.0 0.845

Table 2. Comparisons of STAR-DCE and DCE-Net with reduced
depth/width. DCE-NetD denotes DCE-Net with downsampling.

Platform Latency (s)
*SRIE [16] Matlab (CPU) 12.1865
*LIME [20] Matlab (CPU) 0.4914
*RetinexNet [47] Tensorflow (GPU) 0.1200
*DeepUPE [45] Tensorflow (GPU) 0.0210
*EnlightenGAN [26] PyTorch (GPU) 0.0078
*DCE-Net [19] PyTorch (GPU) 0.0025
DCE-Net [19] PyTorch (GPU) 0.0037
DCE-NetD [19] PyTorch (GPU) 0.0027
STAR-DCE PyTorch (GPU) 0.0019

Table 3. Runtime latency comparisons of STAR-DCE / DCE-Net
and existing methods. ”*” denotes results reported by [19] (tested
on Nvidia 2080Ti and Inter i7 6700). The remaining results are
from our re-implementation (tested on Nvidia 1080 Ti and Intel
Xeon 6126)

of STAR-DCE compared the CNN baselines on both low-
light enhancement quality (i.e., PSNR: 24.5, SSIM: 0.893
vs. PSNR: 22.2, SSIM: 0.866) and theoretical complexity
(i.e., 20.1K parameters, 0.04G FLOPS vs. 79.4K parame-
ters, 0.51G FLOPS). To further measure STAR’S real-time
performance, we evaluate its inference speeds in contrast to
[19] and other existing methods. The images are resized to
a resolution of 1200×900 and tested for 32 times on Nvidia
1080 Ti GPU with 11GB memory. We also include results
tested by [19] as a comparison. Table. 3 reports the aver-
aged results. As can be seen, DCE-Net is of high efficiency
and over 3× faster than existing methods. By further using
the STAR backbone, DCE-Net can even have an extra 2×
speed-up.

5.2. White Balance Results

Datasets. We adopt Rendered WB dataset [3] and the
Cube+ dataset [5] to compare STAR with CNNs. The Ren-
dered WB dataset [3] consists of two subsets: Set 1 (62,535

Datasets Parameters (M) FLOPS (G) MAE MSE ∆E 2000
WB editting [2] Set 1–Test 4.37 1.93 3.12 82.55 3.77
WB editting+STAR Set 1–Test 3.32 1.37 3.24 79.95 3.62
WB editting [2] Set 2 4.37 1.93 3.75 124.97 4.90
WB editting+STAR Set 2 3.32 1.37 3.67 118.27 4.79
WB editting [2] Cube+ 4.37 1.93 3.45 80.96 4.59
WB editting+STAR Cube+ 3.32 1.37 3.31 75.8 4.32

Table 4. AWB comparisons of CNN encoder and STAR encoder on
white balance datasets. ”WB editting” denotes the original CNN
encoder in [2] and ”WB editting+STAR” denotes the transformer
encoder. We report the mean of the image MAE (mean angular
error), MSE (mean square error), and ∆E 2000 for the each eval-
uation set.

images captured by seven different DSLR cameras) and Set
2 (2,881 images captured by a DSLR camera and four mo-
bile phone cameras). Set 1 is split into three folds by [3].
Following [2], We train our networks on 12,000 images ran-
domly selected from the first and second folds of Set 1. The
remaining third fold (referred to as Set 1-Test) together
with the Set 2 (2,881 images) and the Cube+ dataset (10,242
images) are used for testing.

Training Strategy. For a fair comparison, we keep most
of the training strategy in [2] unchanged. For each image,
four 128 × 128 patches are randomly sampled for training
together with their corresponding ground truth. Geometric
augmentations including random rotation and flipping are
added for data augmentation. The networks are trained us-
ing MAE (Mean Absolute Error) loss to minimize L1-norm
between the generated and ground truth patches. Model pa-
rameters are optimized using Adam [30] with initial learn-
ing rates 1e−4, which are reduced by 0.5 every 25 epochs.

Quantitative Results. In Table. 4 and Fig. 5, we pro-
vide a comparison between CNN encoder and STAR en-
coder on three evaluation sets. Following [2], we use the
mean MAE (mean angular error), MSE (mean square er-
ror), and ∆E 2000 to evaluate the produced results. For
model size and FLOPS3 in the table, we only count the en-
coder and AWB decoder as only AWB results are evalu-
ated. From Table. 4 we can see that with STAR encoder, the
methods can yield approaching (even slightly better) results
with 25% fewer parameters and 30% fewer computations.
Note that such compression ratios are achieved by only re-
placing the CNN encoder. We also have tried to replace the
entire CNN decoder with Transformers (to have a smaller
model) but this idea yields poor performance when recon-
structing high-resolution images. We leave this topic to be
future works to further reducing the model computations.

5.3. Photo Retouching Results

Datasets. We conduct experiments on HDR+ [21]
to demonstrate the performance improvement of STAR.
HDR+ is a burst photography dataset for research of high
dynamic range and low-light imaging on mobile cameras.
The same to [52], we use the TIF images transformed from

3Calculated with 3× 128× 128 inputs [2]

4112

PSNR 21.8 PSNR 24.0 PSNR 25.9

CNN (0.21 GFLOPS)CNN (0.07 GFLOPS) STAR (0.04 GFLOPS) Reference

PSNR 25.8PSNR 24.6PSNR 23.1

Inputs

Figure 6. Qualitative results of photo retouching by learning 3D LUTs with CNN and STAR on HDR+ dataset [21].

Parameters (K) FLOPS (G) PSNR SSIM ∆E

CNNglobal 270.1 0.07 23.5 0.885 7.93
CNNsemantic 270.1 0.29 25.6 0.884 5.81
CNN-halfglobal 74.0 0.02 22.8 0.881 8.54
CNN-halfsemantic 74.0 0.08 24.4 0.881 6.24
STAR-64global 109.4 0.08 23.7 0.885 7.24
STAR-64semantic 109.4 0.08 26.8 0.887 5.42
STAR-32global 43.4 0.03 23.5 0.884 7.75
STAR-32semantic 43.4 0.03 26.5 0.883 5.77

Table 5. Comparisons of photo retouching by CNNs and STAR
on HDR+ dataset. Here global and semantic denotes learning
per-image weight / per-token weight respectively. STAR-32 and
STAR-64 represents STAR model with Transformer dimension 32
/ 64.

an intermediate result of the aligned and merged frames (in
DNG format) as inputs, while the JPG images generated by
manually fine-tuned HDR imaging pipeline as ground truth.
Following the dataset settings of the photo retouching appli-
cation in [52], both the inputs and targets are compressed
in JPG format and have an 8-bit dynamic range. Since most
scenes in the HDR+ dataset are not aligned between the
intermediate frame and the ground-truth, we use the well-
aligned Nexus 6p subset (consists of 675 scenes for training
and 250 scenes for testing.) according to [52].

Training Strategy. We train and evaluate both CNNs
and STAR models on 480p resolutions. During training,
each image will be randomly cropped into 256×256 patches
then fed to the model as inputs. As mentioned before, we
kept all the training settings other than the backbone model
unchanged. To be specific, we optimize both the CNN and
STAR model with Adam optimizer and fixed learning rate
1e−4. Input patches are randomly flipped for data augmen-
tation.

Quantitative Results. We employ three metrics to eval-
uate model performance: PSNR, SSIM, and deltaE (∆E).
Smaller ∆E and higher PSNR / SSIM represent better per-
formance. To fairly compare with STAR, we not only
train CNN to predict global LUT weights for the entire im-
age like [52], but also use the same architecture to predict
32 × 32 per-token weights by changing strides of the last
two layers from 2 to 1. We denote such two strategies as

global and semantic respectively. As shown in Table. 5, pre-
dicting semantic weights significantly improve the meth-
ods’ performance on processing HDR+ images. However,
such improvements are at the cost of heavy computation
(i.e., for [52], over 3× FLOPS4). Experiments show that
the obtained results using our STAR achieve 26.8 dB PSNR
with 40% parameters and approaching FLOPS compared to
CNNs. Moreover, when we reduce the width of the STAR
by half, the model can still maintain high performance with
only a 0.3 dB PSNR drop. This shows the STAR architec-
ture has high efficiency to capture semantic context. Fig. 6
visualizes examples of the enhanced results.

6. Conclusion and Discussion

In this work, we have presented Semantic-aware Trans-
fomer (STAR), a new lightweight deep learning backbone
for image enhancements. The proposed methods allow fast
inference with small memory usage. We conduct exper-
iments to evaluate STAR on three common applications
including illumination enhancements, white balance and
photo retouching with 3D LUTs. Quantitative and quali-
tative results demonstrate the efficiencies and effectiveness
of the proposed STAR with the state-of-the-art prior work.
In our future work, we plan to extend STAR for more image
and video enhancement tasks such as denoising and super-
resolution.

7. Acknowledgement

This work is supported in part by Centre for Perceptual
and Interactive Intelligence Limited, in part by the Gen-
eral Research Fund through the Research Grants Council
of Hong Kong under Grants (Nos. 14202217, 14203118,
14208619,27208720), in part by Research Impact Fund
Grant No. R5001-18.

4Calculated with 3× 256× 256 inputs

4113

References
[1] Mahmoud Afifi. Semantic white balance: Semantic color

constancy using convolutional neural network. arXiv
preprint arXiv:1802.00153, 2018. 2

[2] Mahmoud Afifi and Michael S Brown. Deep white-balance
editing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1397–
1406, 2020. 2, 4, 5, 7

[3] Mahmoud Afifi, Brian Price, Scott Cohen, and Michael S
Brown. When color constancy goes wrong: Correcting
improperly white-balanced images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1535–1544, 2019. 7

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4

[5] Nikola Banić, Karlo Koščević, and Sven Lončarić. Un-
supervised learning for color constancy. arXiv preprint
arXiv:1712.00436, 2017. 7

[6] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 2

[7] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo
Durand. Learning photographic global tonal adjustment with
a database of input/output image pairs. In CVPR 2011, pages
97–104. IEEE, 2011. 1, 5, 6

[8] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. arXiv
preprint arXiv:2012.00364, 2020. 2, 3, 4, 6

[9] Yu-Sheng Chen, Yu-Ching Wang, Man-Hsin Kao, and Yung-
Yu Chuang. Deep photo enhancer: Unpaired learning for
image enhancement from photographs with gans. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6306–6314, 2018. 1, 2

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2, 3, 4, 6

[13] Frédo Durand and Julie Dorsey. Fast bilateral filtering for
the display of high-dynamic-range images. In Proceedings
of the 29th annual conference on Computer graphics and in-
teractive techniques, pages 257–266, 2002. 6

[14] Thibaud Ehret, Axel Davy, Pablo Arias, and Gabriele Fac-
ciolo. Joint demosaicking and denoising by fine-tuning of

bursts of raw images. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 8868–8877,
2019. 2

[15] Patrick Esser, Robin Rombach, and Björn Ommer. Tam-
ing transformers for high-resolution image synthesis. arXiv
preprint arXiv:2012.09841, 2020. 3

[16] Xueyang Fu, Delu Zeng, Yue Huang, Xiao-Ping Zhang, and
Xinghao Ding. A weighted variational model for simulta-
neous reflectance and illumination estimation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2782–2790, 2016. 7

[17] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W
Hasinoff, and Frédo Durand. Deep bilateral learning for real-
time image enhancement. ACM Transactions on Graphics
(TOG), 36(4):1–12, 2017. 1, 2, 6

[18] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte.
Self-guided network for fast image denoising. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 2511–2520, 2019. 2

[19] Chunle Guo, Chongyi Li, Jichang Guo, Chen Change Loy,
Junhui Hou, Sam Kwong, and Runmin Cong. Zero-reference
deep curve estimation for low-light image enhancement. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1780–1789, 2020. 1, 2,
4, 6, 7

[20] Xiaojie Guo, Yu Li, and Haibin Ling. Lime: Low-light im-
age enhancement via illumination map estimation. IEEE
Transactions on image processing, 26(2):982–993, 2016. 7

[21] Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew
Adams, Jonathan T Barron, Florian Kainz, Jiawen Chen, and
Marc Levoy. Burst photography for high dynamic range and
low-light imaging on mobile cameras. ACM Transactions on
Graphics (TOG), 35(6):1–12, 2016. 7, 8

[22] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 4

[23] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 3

[24] Yuanming Hu, Hao He, Chenxi Xu, Baoyuan Wang, and
Stephen Lin. Exposure: A white-box photo post-processing
framework. ACM Transactions on Graphics (TOG), 37(2):1–
17, 2018. 1, 2, 6

[25] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan:
Two transformers can make one strong gan. arXiv preprint
arXiv:2102.07074, 2021. 3, 4, 6

[26] Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang,
Xiaohui Shen, Jianchao Yang, Pan Zhou, and Zhangyang
Wang. Enlightengan: Deep light enhancement without
paired supervision. IEEE Transactions on Image Process-
ing, 30:2340–2349, 2021. 4, 7

[27] Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen,
Jiashi Feng, and Shuicheng Yan. Convbert: Improving
bert with span-based dynamic convolution. arXiv preprint
arXiv:2008.02496, 2020. 2, 4

[28] Nima Khademi Kalantari and Ravi Ramamoorthi. Deep high
dynamic range imaging of dynamic scenes. ACM Trans.
Graph., 36(4):144–1, 2017. 2

4114

[29] Nima Khademi Kalantari, Eli Shechtman, Connelly Barnes,
Soheil Darabi, Dan B Goldman, and Pradeep Sen. Patch-
based high dynamic range video. ACM Trans. Graph.,
32(6):202–1, 2013. 2

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6, 7

[31] Satoshi Kosugi and Toshihiko Yamasaki. Unpaired image
enhancement featuring reinforcement-learning-controlled
image editing software. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages 11296–
11303, 2020. 1, 2

[32] Zhetong Liang, Jianrui Cai, Zisheng Cao, and Lei Zhang.
Cameranet: A two-stage framework for effective camera isp
learning. IEEE Transactions on Image Processing, 30:2248–
2262, 2021. 2

[33] Orly Liba, Longqi Cai, Yun-Ta Tsai, Elad Eban, Yair
Movshovitz-Attias, Yael Pritch, Huizhong Chen, and
Jonathan T Barron. Sky optimization: Semantically aware
image processing of skies in low-light photography. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pages 526–527, 2020.
1, 2

[34] Seonghyeon Nam and Seon Joo Kim. Modelling the scene
dependent imaging in cameras with a deep neural network.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 1717–1725, 2017. 2

[35] Jongchan Park, Joon-Young Lee, Donggeun Yoo, and In So
Kweon. Distort-and-recover: Color enhancement using deep
reinforcement learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
5928–5936, 2018. 1, 2, 6

[36] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. OpenAI blog, 1(8):9, 2019. 2

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 5

[38] Eli Schwartz, Raja Giryes, and Alex M Bronstein. Deepisp:
Toward learning an end-to-end image processing pipeline.
IEEE Transactions on Image Processing, 28(2):912–923,
2018. 2

[39] Pradeep Sen, Nima Khademi Kalantari, Maziar Yaesoubi,
Soheil Darabi, Dan B Goldman, and Eli Shechtman. Ro-
bust patch-based hdr reconstruction of dynamic scenes. ACM
Trans. Graph., 31(6):203–1, 2012. 2

[40] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu
Wei, and Jifeng Dai. Vl-bert: Pre-training of generic visual-
linguistic representations. arXiv preprint arXiv:1908.08530,
2019. 2

[41] Runjie Tan, Kai Zhang, Wangmeng Zuo, and Lei Zhang.
Color image demosaicking via deep residual learning. In
IEEE Int. Conf. Multimedia and Expo (ICME), volume 2,
page 6, 2017. 2

[42] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-
tention. arXiv preprint arXiv:2012.12877, 2020. 2

[43] Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli,
and Ming-Hsuan Yang. Sky is not the limit: semantic-aware
sky replacement. ACM Trans. Graph., 35(4):149–1, 2016. 2

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017. 2, 3, 4

[45] Ruixing Wang, Qing Zhang, Chi-Wing Fu, Xiaoyong Shen,
Wei-Shi Zheng, and Jiaya Jia. Underexposed photo enhance-
ment using deep illumination estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6849–6857, 2019. 1, 2, 4, 6, 7

[46] Yue Wang, Shafiq Joty, Michael R Lyu, Irwin King, Caim-
ing Xiong, and Steven CH Hoi. Vd-bert: A unified vi-
sion and dialog transformer with bert. arXiv preprint
arXiv:2004.13278, 2020. 2

[47] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying
Liu. Deep retinex decomposition for low-light enhancement.
arXiv preprint arXiv:1808.04560, 2018. 4, 7

[48] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song
Han. Lite transformer with long-short range attention. arXiv
preprint arXiv:2004.11886, 2020. 2, 4

[49] Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris,
and Yizhou Yu. Automatic photo adjustment using deep
neural networks. ACM Transactions on Graphics (TOG),
35(2):1–15, 2016. 1, 2

[50] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-
to-token vit: Training vision transformers from scratch on
imagenet. arXiv preprint arXiv:2101.11986, 2021. 3

[51] Xiaoyu Yue, Zhanghui Kuang, Zhaoyang Zhang, Zhen-
fang Chen, Pan He, Yu Qiao, and Wei Zhang. Boosting
up scene text detectors with guided cnn. arXiv preprint
arXiv:1805.04132, 2018. 1

[52] Hui Zeng, Jianrui Cai, Lida Li, Zisheng Cao, and Lei Zhang.
Learning image-adaptive 3d lookup tables for high perfor-
mance photo enhancement in real-time. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020. 1, 2, 4,
5, 6, 7, 8

4115

