
Self-Regulation for Semantic Segmentation

Dong Zhang1 Hanwang Zhang2 Jinhui Tang1* Xian-Sheng Hua3 Qianru Sun4

1School of Computer Science and Engineering, Nanjing University of Science and Technology
2Nanyang Technological University 3Damo Academy, Alibaba Group 4Singapore Management University

Abstract

In this paper, we seek reasons for the two major failure
cases in Semantic Segmentation (SS): 1) missing small ob-
jects or minor object parts, and 2) mislabeling minor parts
of large objects as wrong classes. We have an interesting
finding that Failure-1 is due to the underuse of detailed fea-
tures and Failure-2 is due to the underuse of visual contexts.
To help the model learn a better trade-off, we introduce sev-
eral Self-Regulation (SR) losses for training SS neural net-
works. By “self”, we mean that the losses are from the
model per se without using any additional data or super-
vision. By applying the SR losses, the deep layer features
are regulated by the shallow ones to preserve more details;
meanwhile, shallow layer classification logits are regulated
by the deep ones to capture more semantics. We conduct ex-
tensive experiments on both weakly and fully supervised SS
tasks, and the results show that our approach consistently
surpasses the baselines. We also validate that SR losses
are easy to implement in various state-of-the-art SS models,
e.g., SPGNet [7] and OCRNet [62], incurring little com-
putational overhead during training and none for testing1.

1. Introduction
Semantic Segmentation (SS) aims to label each image

pixel with its corresponding semantic class [37]. It is an
indispensable computer vision building block in the scene
understanding systems, e.g., autonomous driving [49] and
medical imaging [18]. Thanks to the development of deep
convolutional neural networks [20, 52] and the labour in-
put in pixel-level annotations [8, 39], the research for SS
has experienced a great progress, e.g., top-performing mod-
els can segment about 85% objects in the complex natural
scenes [33]. Intriguingly, we particularly seek reasons for
the 15% failure cases which generally fall into two cate-
gories: 1) missing small objects or minor object parts, e.g.,
the “horse legs” in Figure 1 (d), and 2) mislabeling minor

*Corresponding author.
1The code is available at: https://github.com/dongzhang89/SR-SS

horse

shallow layer deep layer

(d) Prediction (e) (f)

DeepLab-v2 w/ SR

(h) DeepLab-v2

horse

cow

√

√

horse

cow

(i) DeepLab-v2 w/ MEA(g) Input

DeepLab-v2 (Baseline)

deep layer

(a) Input (b)

shallow layer

(c)

F
a
il
u
re
-1

F
a
il
u
re
-2

Figure 1. Our inspections on two failure cases of the baseline
method DeepLab-v2 [5] in (d) and (h), for which (a) and (g) are
input images, respectively. The case in (d) has the flaw of miss-
ing “horse legs”. The visualization of shallow-layer features in (b)
shows that the model indeed attends to “horse legs” but also to
background noises. Applying our SR, in (e), reduces noises while
maintaining the desirable attention on “horse legs”. In addition,
deep-layer features in (c) and (f) also prove the effectiveness of
SR. The case in (h) confuses between object classes (i.e., “horse”
and “cow”). The revision in (i) is obtained by adding class-level
cross-entropy losses (i.e., using our MEA loss on DeepLab-v2).

parts of large objects as wrong classes, e.g., a part of “cow”
is wrongly marked as “horse” in Figure 1 (h).

To this end, we present our empirical inspections in Fig-
ure 1. We find in Figure 1 (b) that the minor object parts are
clearly visible in the shallow-layers of the model, making
use of which could address the issue in Failure-1, as in Fig-
ure 1 (e). In the literature, there is indeed a popular solution
— reshaping and then combining feature maps from differ-
ent layers for prediction, e.g., Hourglass [40], SegNet [2],
U-Net [45] and HRNet [52]. Such implementation typically
relies on one of the three specific operations: pixel-wise ad-
dition [2, 36, 45], map-wise concatenation [5, 52, 71] and

16953

pixel-wise transformation [53, 65, 72]. However, they are
expensive for deep backbones, e.g., SPGNet [7] and HR-
Net [52] take 2.04× and 1.87× of model parameters more
than their baselines, respectively.

Besides, what we observe from the “cow” example in
Figure 1 is that penalizing the model with the image-level
classification loss can mitigate Failure-2 [67, 70]: pixel-
level confusion between the foreground objects (i.e., the
“cow”) and the local pixel cues (i.e., the “horse” part). The
intuitive reason is that this loss penalizes the prediction of
an unseen class-level context (i.e., “cow” can not have a
“horse” mouth). In this paper, we make use of this intuition
and introduce a formal loss function to enhance the contex-
tual encoding for each image.

Now, we present our overall approach, called Self-
Regulation (SR), which has three major advantages: 1)
generic to be implemented in any deep backbones, 2) with-
out using any auxiliary data or supervision, and 3) with little
overhead for training and none for testing. As shown in Fig-
ure 2, given a backbone network, we first add a pair of clas-
sifier and segmenter at each layer (e.g., head networks for
multi-label classification and semantic segmentation), and
feed them with the corresponding feature maps. Then, we
apply the proposed Self-Regulation for the features and log-
its by introducing the following three operations: I) Reg-
ulating the predictions of each pair with ground-truth la-
bels, i.e., the image-level classification labels and the pixel-
level mask labels, respectively; II) Using the feature map
of the shallowest layer — Shallow Teacher — to regulate
all the subsequent deeper-layer feature maps — Deep Stu-
dents; III) Using the prediction of the deepest layer classi-
fication logits — Deep Teacher — to regulate all the previ-
ous shallow-layer classification logits — Shallow Students.
Here is our punchline: for pixel-level feature maps, we
use one Shallow Teacher to teach many Deep Students; for
image-level classification logits, we use one Deep Teacher
to teach many Shallow Students.

Operation I is the standard supervised training that
spreads over all the layers. This computation overhead
(e.g., multiple-exit network [44]) allows the ground-truth
to supervise each layer at its earliest convenience. Opera-
tion II and Operation III aim to balance the trade-off among
these supervisions. To implement them, we introduce a
self-regulation method inspired by knowledge distillation
(KD) [21, 35, 42]. Different from the conventional KD that
needs to train a teacher model in prior, our “distillation”
occurs in the same model during training. The shallowest
layer retains the most details, so its segmentation behavior
(e.g., encoded in its feature maps and then decoded by the
segmentation logits) can teach the subsequent deeper lay-
ers not to forget the details to avoid feature underuse (e.g.,
Failure-1 in Figure 1); while the deepest layer retain the
highest-level contextual semantics, so its classification be-

Input
Conv
Block

...Conv
Block

Conv
Block

Feature
Maps

Feature
Maps

Feature
Maps

SR-F Loss SR-F Loss

D
ee

p-
to

-S
ha

llo
w

R
eg

ul
at

io
n

Seg.&Cla. Seg.&Cla.
Label
Pair

Seg.&Cla.

Seg.
Logits

Cla.
Logits

Seg.
Logits

Cla.
Logits

Seg.
Logits

Cla.
Logits

SR-C Loss SR-C Loss

Conv
Block

...Conv
Block

Conv
Block

Output Output Output

Seg.&Cls.

Logits Logits Logits

Deep-to-Shallow
Self-Regulation

Shallow-to-Deep
Self-Regulation

Feature
Maps

Feature
Maps

Feature
Maps

Seg.&Cls. Seg.&Cls.

...

...

...

Shallow Teacher
Shallow Student

Deep Student
Shallow Student

Deep Student
Deep Teacher

...

Figure 2. An illustrative example of implementing our proposed
self-regulation (SR) to a plain Conv network. It is first converted
to a multiple-exit architecture (MEA) where “Seg.&Cls.” are a
pair of classifier and segmenter for each layer. Shallow-to-deep
SR means shallow-layer features regulate deep layers. Deep-to-
shallow SR means deep-layer predictions regulate shallow layers.

havior (i.e., class logits) can teach the previous shallower
layers not to ignore the contexts to avoid semantic underuse
(e.g., Failure-2 in Figure 1).

Note that Operation I at each layer also protects any
overuse. Specifically, if Operation II unnecessarily imposes
shallow details on deep contexts, the image-level classifica-
tion logits at deep layers will penalize it; similarly, if Op-
eration III unnecessarily imposes deep contexts on shallow
details, the pixel-level segmentation logits at shallow layers
will discourage it. Such “shallow to deep and back” reg-
ulation collaborate with each other to improve the overall
segmentation. Our empirical results on different baselines,
e.g., DeepLab-v2 [5], SegNet [2], SPGNet [7], and OCR-
Net [62], show that our SR is helpful to balance the use of
low-/high-level semantics among different layers.

In summary, our contributions are two-fold: 1) A novel
set of SR operations that tackle the two key issues in SS
tasks while introducing little overhead for training and none
for testing; and 2) Through extensive experiments in both
fully-supervised and weakly-supervised SS settings, we val-
idate that the proposed SR operations can be easily plugged-
and-play and consistently improve various baseline models
by a large margin.

2. Related Work

Semantic Segmentation (SS). The mainstream SS mod-
els are based on Fully Convolutional Networks (FCN) [37].
However, deeper layers of FCN often suffer from two prob-
lems: underusing detailed spatial information and insuffi-
cient receptive fields. Recent methods proposed to solve

6954

these issues can be classified into two camps: 1) encoder-
decoder [41, 2, 7] based methods, and 2) atrous/dilated con-
volution [61] based methods. In the first camp, there are
SegNet [2], De-convNet [41], and SPGNet [7]. Their com-
mon idea is to progressively aggregate high-resolution fea-
ture maps using a learnable decoder. In this way, detailed
spatial information is embedded to deeper layers without
any refinement on its semantic meaning, i.e., such details
may bring background noises to deep layers. In the sec-
ond camp, there are DeepLab-v2 [5] and PSP [71], and
their main idea is to use atrous/dilated convolutions or
pooling operations to enable deeper layers to cover large
receptive fields and to capture more contextual informa-
tion [5, 67, 68, 71]. These methods fix the size of output
feature maps to be 1/8 or 1/16 of the input image, so their
output are too compressed to contain sufficient spatial de-
tails. In contrast to these two camps, our approach enriches
the model with both contextual semantics and spatial de-
tails by leveraging optimization-based interactions between
deep and shallow layers in FCN.

Multiple-Exit Architecture (MEA). MEA was firstly pro-
posed in [23] for training image recognition models, aiming
to improve the inference speed of the models [44]. Recently,
MEA has been also successfully applied to boost the model
performance [38, 48] in a variety of visual tasks, e.g., im-
age classification [10, 63], object detection [60], and seman-
tic segmentation [66, 70]. Our differences with SS-related
works [66, 70] lie in that our implementation of MAE in-
tegrates two visual tasks, i.e., multi-label classification and
semantic segmentation, in a single deep model.

Knowledge Distillation (KD). KD uses a pre-trained
teacher model to produce soft labels as ground truth to train
a student model [21]. It was originally introduced to com-
press a big network (teacher) to a small network (student),
i.e., network compression [25, 50]. It computes a distil-
lation loss between teacher and student, for which the im-
plementation methods can be logits-based [26, 44], feature-
based [34, 57], and hybrid [28, 56]. In recent works, a
self learning version called self KD, i.e., teacher and stu-
dent networks have the same architecture, achieved impres-
sive results in several visual tasks, such as image classifi-
cation [51, 57], object detection [28, 34], and pedestrian
re-identification [6, 13]. Our approach is based on layer-
wise self KD [69, 58]. We introduce a novel approach of
bi-directional layer-wise teaching & learning to particularly
enhance SS models. Our model is learned on a single net-
work and our KD supervisions are applied across different
layers. Compared to the existing KD methods, our approach
is different in two aspects. First, it is self-regulated and
does not require any pre-trained model as teacher. Second,
it consists of two distillation directions each for a specific
purpose of learning, i.e., the shallow-to-deep regulation is to
enrich the details in the deeper feature maps and the deep-

to-shallow one is to force shallow layers to pay more atten-
tion to contexts.

3. Preliminaries
Our approach essentially encourages layer-wise interac-

tions within a SS model. For the convenience of compar-
ison, we make a brief review of closely related methods
(which also focus on layer-wise interactions). We divide
these methods into three types according to their operations.
1) Type 1: Pixel-wise Addition, 2) Type 2: Map-wise Con-
catenation, and 3) Type 3: Pixel-wise Transformation.
Type 1 sums up feature maps element-wisely, which are
from two layers. It is an intuitive feature interaction method,
and has been widely deployed in the U-Shape networks,
e.g., UNet [45], SegNet [2], and SPGNet [7]. Please note
that before the addition, one set of feature maps must be re-
sized to match the size of the other sets as in [20, 31, 41,
42]. Popular resizing methods include bi-linear interpola-
tion [46] (or deconvolution [41]) for up-sampling and stride
convolution (or pooling) for down-sampling.
Type 2 concatenates feature maps (before which one set of
feature maps are resized) along the channel dimension, e.g.,
ASPP [5], PSP [71], HRNet [52], and Res2Net [16]. There
is an additional convolution applied to the stacked feature
maps for channel size adjustment. It is indeed through this
convolution that the feature maps can interact with each
other within local regions.
Type 3 applies the advanced non-local interaction [53]
densely between every pixel from one feature map and all
pixels from another feature map. This category has been
validated of high effectiveness on several tasks, i.e., image
classification [30, 59], object detection [3, 72], and seman-
tic segmentation [65, 73]. However, it is expensive to apply
in deep neural networks.
Our difference from the above methods. We highlight
that the above methods are all based on the direct operations
on feature maps. In contrast, our self-regulation approach is
indirect as it is embodied in the loss function. Specifically,
it is realized by applying additional loss terms to the loss
function. Therefore, our approach is orthogonal to them.
Our experiments show that it can play as an easy and cheap
plug-and-play to them, while bringing consistent and sig-
nificant performance boosts.

4. Self-Regulation (SR)
Our proposed SR applies three sets (kinds) of losses

for training semantic segmentation models: 1) Multi-Exit
Architecture losses [23, 44] (MEA)—image-level multi-
label classification loss and pixel-level segmentation loss
for every block (layer); 2) Self-Regulation losses using
Feature maps (SR-F)—distillation losses between the fea-
tures output by Teacher and Student blocks; and 3) Self-

6955

Conv
Block 1

Conv
Block 2

Deconv
Block 1

Deconv
Block 2

Logits Logits

multi-loss multi-loss

encoder

decoder

feature
maps

feature
maps

up-sampleup-sample

Distillation
loss

Distillation
loss

Distillation
loss

Distillation
loss

Input

3*3, C 3*3, C

3*3, C 3*3, C

Deeper layer
feature maps

Output

...

higher
level

higher
level

Deeper layer
logits

...

Encoder i Decoder i

...

Encoder N

...

Decoder N

...
...

Mask

Mask

Conv
Block i

Feature
MapsSR-F Loss

Shallower-Layer
Feature Maps

(c) Encoder i for Conv arch.

Deeper-Layer
Logits

Cls.
LogitsSR-L Loss

(a) Conv arch. & U-Shape arch.

Image

Conv
Block i

Feature
MapsSR-F Loss

Shallower-Layer
Feature Maps

SR-L Loss

Deeper-Layer
Logits

Cls.
Logits

(b) Encoder i (up) & Decoder i (down) for U-Shape arch.

Deconv
Block i

Feature
Maps

Figure 3. Two example network architectures (arch) in (a) and their respective ways of applying SR in (b) and (c). “Encoder (Decoder) i”
denotes the i-th Conv (Deconv) block and its related computation in the Encoder (Decoder) network of U-Shape arch, or in the Conv arch
(where there is no Decoder). Both architectures have N Conv blocks, and U-Shape arch additionally contains N Deconv blocks. “Cls.
Logits” denotes the classification Logits.

Regulation losses using classification Logits (SR-L)— dis-
tillation losses between the classification logits of Teacher
and Student blocks. For the details of MEA losses, please
kindly refer to the paragraph headed with MEA in Sec-
tion 2. For SR-F and SR-L losses, we demonstrate their
computation pipelines in Figure 3 based on two popular
semantic segmentation backbones: a fully convolutional
architecture (Conv arch) [37] and a U-Shape Encoder-
Decoder architecture (U-Shape arch) [7].

In the standard U-Shape arch, each Encoder has a se-
quence of Conv blocks and every Decoder has the same
number of Deconv blocks. In its Encoder, feature maps out-
put by the shallowest block are taken as the “ground truth
features” to teach deeper blocks by computing SR-F losses.
For its Decoder (or the Encoder of Conv arch), the classi-
fication logits output by the deepest block are taken as the
“ground truth logits” to teach shallower blocks by comput-
ing SR-L losses. When back-propagating these losses, the
model is optimized to capture more pixel-level (taught by
the shallowest block) as well as semantic-level (taught by
the deepest block) information in each layer, thus derives a
more powerful image representation.

4.1. SR-F Loss: Shallow to Deep

As illustrated in Figure 3, each Conv block or De-
conv block can be regarded as an individual feature ex-
tractor. The ending (the shallowest or the deepest) block
can be either teacher or student in different situations, as
our self-regulation is bidirectional. The middle blocks are
always students. We denote the transformation functions
of Teacher and Student as Tθ(x) and Sϕ(x), respectively,
where θ and ϕ represent their corresponding network pa-
rameters, and x is the input image. For simplicity, we omit
x in the following formulations.

SR-F loss aims to encourage deep blocks to preserve the
detailed information that is retained in shallow blocks. Our

method simply deploys the shallowest (the first) block as the
Teacher (called Shallow Teacher) to regulate deep blocks
(called Deep Students). Below, we elaborate the computa-
tion pipeline of SR-F loss. We use a cross-entropy function
to measure the distance between Shallow Teacher’s feature
maps T[1]

θ to the feature maps of the i-th Deep Student (i.e.,
the i-th block) S[i]

ϕ , and obtain the SR-F loss as follows,

Lce
(
T[1]
θ ,S[i]

ϕ

)
= − 1

M

M∑
j=1

σ(tj)log (σ(sj)), (1)

where i ∈ [2, N], N denotes the number of Conv blocks
in a Conv arch (or a U-Shape arch); tj is the vector on the
j-th pixel position in T[1]

θ , and its dimension is the same as
the channel size; sj is the corresponding vector in S[i]

ϕ ; σ
denotes the softmax normalization along channels. and M
is the spatial size (= width × height) of the feature map.

In general KD [21], an advanced technique to improve
efficiency is to leverage the temperature scaling [17]. If ap-
plying this technique in our case, we can rewrite Eq. 1 as:

Lτ
ce

(
T[1]
θ ,S[i]

ϕ

)
= −τ2

1

M

M∑
j=1

σ(tj)1/τ log
(
σ(sj)1/τ

)
,

(2)
where we note that the value of t1/τj (or s1/τj) is normalized
within each feature map. τ ∈ R+ denotes the temperature
and its effect is spatial smoothness, e.g., a larger value of τ
results a greater suppression on the difference between the
maximum and minimum pixel values on the feature map.

The Shallow Teacher is “teaching” many Deep Students,
so the overall SR-F loss LSR-F can be derived as follows,

LSR-F =

N∑
i=2

Lτ
ce

(
T[1]
θ ,S[i]

ϕ

)
. (3)

6956

4.2. SR-L Loss: Deep to Shallow

SR-L aims to encourage shallow blocks (layers) to cap-
ture more global contextual information, i.e., the shape of a
“horse”, such that their feature can be more robust against
background noises. Our method simply deploys the deepest
(i.e., the last) layer as the Teacher (called Deep Teacher) to
regulate all shallow layers (called Shallow Students). We
understand that the classification logits contain the high-
level semantic information of object classes, so we use those
logits of Deep Teacher as “teaching materials”.

Given Deep Teacher’s logits T[N]
θ and all Shallow Stu-

dents’s logits {S[k]
ϕ }N−1

k=1 , we just follow methods as in Eq. 1
to Eq. 3. The difference is that we compute cross-entropy
loss between two sets of logits rather than feature maps.
Therefore, we obtain the SR-L loss as follows,

LSR-L =

N−1∑
k=1

Lτ
ce

(
T[N]
θ ,S[k]

ϕ

)
. (4)

4.3. Overall Loss Function

Below we incorporate the introduced SR losses with the
layer-wise loss terms for multi-label classification as well
as semantic segmentation (computed from multiple pairs of
classifier and segmenter as illustrated in Figure 2), and de-
rive the overall objective function as follows,

LSR = λ1LSR-cls + λ2LSR-seg︸ ︷︷ ︸
MEA loss

+λ3LSR-F + LSR-L, (5)

where LSR-seg and LSR-cls are cross-entropy losses using
ground truth one-hot labels. This pair of loss terms are
called MEA loss in the following. On the top of them,
LSR-F and LSR-L bring further performance improvement to
the model because they encourage the layer in the model to
learn from the “soft knowledge” acquired by another layer
which is beyond the knowledge of one-hot labels. λ1, λ2,
and λ3 denote the weights used to balance these losses.

We highlight that our LSR is a general loss function,
which is easy to incorporate into any FCN-based SS model.
In the following, we introduce how to implement LSR on
two representative as well as state-of-the-art SS backbones,
i.e., a U-Shape arch and a Conv arch.

4.4. SR on Specific SS Backbones

In Figure 3 (a), we demonstrate an U-Shape arch on the
Blue path and a Conv arch on the Orange path. To bet-
ter elaborate the implementation of SR on these two types
of backbones, we take the state-of-the-art SPGNet [7] and
HRNet [52] as examples, respectively.
SPGNet. It is a two-stage U-Shape arch (double-sized com-
pared to the U-Shape arch in Figure 3 (a)), each stage is a
standard U-Shape arch consisted of 5 Conv and 5 Deconv
residual blocks [7]. In Figure 3 (b), we illustrate our method

of applying SR-F and SF-L losses to an example pair of
Conv and Deconv blocks.

In the i-th Conv block (1 < i ≤ N), a 3 × 3 convo-
lution is first deployed to reduce the channel size to 256.
Another 3× 3 convolutional layer followed by a batch nor-
malization layer is then used to generate the feature maps
S[i]
ϕ which have the same channel size with the feature maps

T[1]
θ of Shallow Teacher. Next, we compute the i-th SR-F

loss L[i]
SR-F following Eq. 2. Finally, we can derive the over-

all SR-F loss, i.e., LSR-F by summing up the SR-F losses of
all Deep Students

{
S[i]
ϕ

}N

i=2
as in Eq. 3.

In the i-th Deconv block (1 ≤ i < N), we follow
the same method to generate feature maps, i.e., through
two convolutional layers and one batch normalization layer.
Then, we feed these maps into a pair of classifier and seg-
menter. We use the resulted predictions to respectively com-
pare to image-level and pixel-level one-hot labels, yielding
two standard cross-entropy losses, i.e., L[i]

SR-cls and L[i]
SR-seg.

Computing these losses through all Deconv blocks, we can
get the overall MEA loss (consisting of LSR-cls and LSR-seg).

Besides, we denote the classification logits of Deep
Teacher as T[N]

θ , and use them to regulate each Shallow Stu-
dent S[i]

ϕ , i.e., to compute the SF-L loss L[i]
SR-F. When getting

all SF-L losses (through all Shallow Students)
{

S[i]
ϕ

}N−1

i=1
,

we can derive the overall SR-L loss LSR-L using Eq. 4.

HRNet. It is a Conv arch consisting of 4 Conv blocks, i.e.,
N=4 [52]. Its block 1 produces the highest resolution fea-
ture maps. These feature maps are fed into two paths: path 1
goes to block 2 to continue producing high-resolution fea-
ture maps; and path 2 is down-sampling first via a stride
3× 3 convolution and then goes to block 2 to produce low-
resolution feature maps. Repeating these two paths on block
3 and block 4 yields four outputs with different resolutions.

We take block i as an example and illustrate the compu-
tation flow in Figure 3 (c). First, we apply a 3 × 3 convo-
lution and a batch normalization layer to reduce the chan-
nel size of feature maps to be 256. Then, we resize those
maps to be 1/8 spatial size of the input image, and apply
another 3× 3 convolution to produce the final feature maps
(named as “Feature Maps” in Figure 3 (c)) of block i. We
take the highest-resolution feature (after block 1) as Shal-
low Teacher T[1]

θ . The SR-F loss is thus the summation of
its distances to all Deep Students

{
S[j]
ϕ

}N

k=2
as in Eq. 3.

We take the classification logits of block 4 as Deep Teacher
T[N]
θ . The SR-L loss is thus the summation of its distances

to all Shallow Students
{

S[j]
ϕ

}N−1

k=1
as in Eq. 4. The MEA

loss consisting of LSR-seg and LSR-cls can be derived in the
same way as in the U-Shape arch. When using these losses
as in Eq. 5, we apply different combination weights and will
show the details in the experiment section.

6957

5. Experiments
Our SR was evaluated on two SS tasks: i.e., weakly-

supervised SS (WSSS) with image-level class labels, and
fully-supervised SS (FSSS) with pixel-level class labels.
Common Settings. All experiments were implemented
on PyTorch [43]. All models were pre-trained on Ima-
geNet [9], and then fine-tuned on the training sets of SS as
in [5, 62]. For evaluation2, the mean Intersection of Union
(mIoU) was used as the primary evaluation metric. In addi-
tion, the number of model parameters and FLOPs were used
as efficiency metrics. Following [66, 67], the combination
weights of classification loss and segmentation loss were re-
spectively set to 0.2 and 0.8 in MEA. The weights of SR-L
and SR-F were set equal, i.e., λ1 = 0.2, λ2 = 0.8, λ3 = 1.
The results of using other weights are given in the supple-
mentary materials. For the hyperparameter τ (temperature),
we applied an adaptive annealing scheme, i.e., initializing τ
as 1 and multiplying it by a factor of 1.05 every time when
the difference between the minimum and maximum values
(on any feature map in the minibatch) exceeds 0.5.

5.1. WSSS Settings

Datasets. Our WSSS experiments were carried out on two
widely-used benchmarks: PASCAL VOC 2012 (PC) [11]
and MS-COCO 2014 (MC) [32]. PC dataset consists of
21 classes (20 for objects and 1 for background) and splits
1, 464 images for training, 1, 449 for val, and 1, 456 for
test. Following related works [1, 24, 27, 64], we used an
enlarged training set including 10, 582 images. MC dataset
consists of 81 classes (80 for objects and 1 for background)
with 80k and 40k images respectively for training and val.
In the training phase of WSSS, only the image-level class
labels were used as ground truth. For data augmentation,
we followed the same strategy as in [66], including gaussian
blur, color augmentation, random horizontal flip, randomly
rotate (from −10◦ to +10◦), and random scaling (using the
scaling rates between 0.5× and 2×).
Baseline Models. The WSSS framework includes two
steps: pseudo-mask generation and semantic segmenta-
tion training with pseudo-masks. For pseudo-mask gener-
ation, we deployed two popular ones, namely IRNet [1] and
SEAM [54], and the state-of-the-art (SOTA) CONTA [64].
For semantic segmentation, we deployed DeepLab-v2 [5]
with ResNet-38 [55], SegNet [2] with ResNet-101 [20] and
the SOTA SPGNet [7] with ResNet-50 [20], respectively.
Baseline models are trained on the conventional arch and
using only the cross-entropy loss. Baseline+SR models are
ours which apply our proposed SR loss terms (see Eq. 5)
and train the model on the MEA arch (see Figure 2).
Training Details. Our major settings followed close related

2Please kindly refer to more details about hyperparameters and evalua-
tion results in supplementary materials.

works [1, 7, 54, 64]. The input images were cropped into
fixed sizes as 512 × 512 and 448 × 448 for PC and MC,
respectively. Zero padding was used if needed. The mini-
batch SGD momentum optimizer was used to train all SS
models with batch size as 16, momentum as 0.9 and weight
decay as 0.0001. The initial learning rates (LR) were 0.01
and 0.04 for PC and MC datasets, respectively. A “poly”
schedule for LR was deployed, i.e., updating LR as (1 −

iter
itermax

)0.9. All our implemented models were trained for
80 epochs on PC and 50 epochs on MC.

5.2. FSSS Settings

Datasets. Our FSSS experiments were carried out on
two challenging benchmarks: Cityscapes (CS) [8], and
PASCAL-Context (PAC) [39]. CS dataset consists of 19
classes with 2, 975 images for training, 500 for val and
1, 525 for test. Please note that we only used these finely an-
notated images, although this dataset offers 20, 000 coarsely
annotated images. For the PAC dataset, we followed [66,
62, 19] and used the most popular version consisted of 60
classes (including the background class). There are 4, 998
and 5, 015 images for training and test, respectively. For
data augmentation, we followed [62, 67, 65] to use random
horizontal flipping, random scaling (using the the scaling
rates between 0.5× and 2×), and random brightness jitter-
ing (in the range from −10◦ to +10◦).
Baseline Models. We implemented our SR onto a popular
method DBES [29] with ResNet-101 [20], and the SOTA
method OCRNet [62] with HRNetV2-W48 [52]. Please
note that HRNetV2-W48 is a backbone network.
Training Details. Our major settings were the same as
those in baseline methods [52, 62]. The input images were
cropped into 969 × 969 and 520 × 520 on CS and PAC
datasets, respectively. The mini-batch SGD momentum op-
timizer was used in the training phase with batch size as
8 and momentum as 0.9. The initial LRs were set to 0.01
and 0.001 for CS and PAC, respectively. The same “poly”
schedule was deployed. The L2 regularization term weights
were set to 0.0005 and 0.0001 for CS and PAC, respectively.
All our implemented models were trained from 580 epochs
on CS and 100 epochs on PAC.

5.3. Results and Analyses

Ablation Study. We conducted the ablation study on the
val sets of PC, MC and CS datasets, and reported the results
in Table 1. “MEA” denotes using the MEA loss consisting
of LSR-seg and LSR-cls. We used the SOTA WSSS method,
namely CONTA [64]+SPGNet [7], as the baseline here and
show its results in row 1. Comparing row 5 to row 1, we can
see the proposed SR loss brought clear performance gains,
e.g., 1.4% on PC dataset. Intriguingly, comparing row 5
to row 2 (and row 1), we find that distillation-based loss
terms (LSR-L and LSR-F) brought higher improvement mar-

6958

MEA SR-F SR-L PC MC CS

✗ ✗ ✗ 67.1 33.6 80.7♭

✓ ✗ ✗ 67.7+0.6 34.0+0.4 81.1+0.4

✓ ✗ ✓ 68.1+1.0 34.3+0.7 81.6+0.9

✓ ✓ ✗ 68.2+1.1 34.3+0.7 81.7+1.0

✓ ✓ ✓ 68.5+1.4 34.5+0.9 82.1+1.4

Table 1. Ablation study results (mIoU, %) on the val sets of
three datasets: PASCAL VOC 2012 (PC) [11], MS-COCO 2014
(MC) [32] with image-level class labels (WSSS), and Cityscapes
(CS) with pixel-level class labels (FSSS). The WSSS baseline is
CONTA [64]+SPGNet [7], and the FSSS baseline is OCRNet [62].
Their results are shown in the first row. “MEA” indicates the MEA
loss. “SR-F” and “SR-L” indicate the other two losses respectively
(see Eq. 5). ♭ means the result is produced by us using public code.

Baseline +MEA +(MEA,SR-L) +(MEA,SR-F) +SR

WSSS; SPGNet [7] as Baseline
Params. 55.6M 56.7+1.1M 56.7+0.0M 56.9+0.2M 56.9M
FLOPs 467.6B 467.9+0.3B 467.9+0.0B 467.9+0.0B 467.9B

FSSS; OCRNet [62] as Baseline
Params. 76.4M 78.9+2.5M 78.9+0.0M 79.5+0.6M 79.5M
FLOPs 1,087.3G 1,095.5+8.2G 1,095.5+0.0G 1,095.5+0.0G 1,095.5G

Table 2. Model efficiency analysis for different components of SR.
“+SR” means including all terms (MEA, SR-L, and SR-F).

gins than using only MEA loss. As we mentioned under
Eq. 5, this is because our SR-L and SR-F terms encourage
each individual layer to learn the “soft knowledge” (from a
superior layer) which is richer than the “hard knowledge”
in one-hot labels (used for computing the MEA loss). This
phenomenon is consistent across all datasets.
Model Efficiency. Our SR brings performance improve-
ments without increasing much computational costs. To
validate this, we show the statistics of Params, i.e., the num-
ber of network parameters, and FLOPs, i.e., the speed of
training, in Table 2. It is clearly shown that SR introduced
very little computational overheads for both SS tasks. For
example in WSSS, applying MEA, SR-L and SR-F losses
increased 1.1M, 0.0M, and 0.2M Params, respectively. Us-
ing MEA increased only 0.3B FLOPs, and using SR-L and
SR-F for 0. This overhead is mainly caused by using addi-
tional convolutional layers in constructing MEA.
Comparing to SOTA in WSSS. To compare with SOTA
methods, we implemented three pseudo-mask generation
approaches, i.e., IRNet [1], SEAM [54], and CONTA [64],
and used three baseline SS models, i.e., DeepLab-v2 [5],
SegNet [2], and SPGNet [7]. We plugged our SR in all
of them. We report the results on the val and test sets
of the PC dataset, and the val set of the MC dataset in
Table 3. It is shown that using our SR consistently im-
proved the performance of all implemented methods and
achieved the top performance on two datasets. For example,
it boosted DeepLab-v2 on the val set of PC by 1.1%, 1.1%,
and 0.7% mIoU improvements when using IRNet, SEAM

Methods Backbone PC val PC test MC val

SCE [4] ResNet-101 66.1 65.9 –
EME [12] ResNet-101 67.2 66.7 –
MCS [47] ResNet-101 66.2 66.8 –
IRNet [1] Deeplab-v2 [5] 63.5 64.8 32.6

IRNet+SR Deeplab-v2 [5] 64.6+1.1 65.8+1.0 33.4+0.8

SEAM [54] Deeplab-v2 [5] 64.5 65.7 31.9
SEAM+SR Deeplab-v2 [5] 65.6+1.1 66.5+0.8 32.6+0.7

CONTA [64] Deeplab-v2 [5] 66.1 66.7 33.4
CONTA+SR Deeplab-v2 [5] 66.8+0.7 67.2+0.5 34.0+0.6

CONTA [64] SegNet [2] 66.9 67.7 33.7
CONTA+SR SegNet [2] 67.9+1.0 68.4+0.7 34.4+0.7

CONTA [64] SPGNet [7] 67.1 67.9 33.6
CONTA+SR SPGNet [7] 68.5+1.4 69.1+1.2 34.5+0.9

Table 3. Comparing to the state-of-the-arts on the val and test sets
of PASCAL VOC 2012 (PC) [11], and the val set of MS-COCO
(MC) 2014 [32] using image-level class labels. “–” denotes there
are no reported results in the original papers. “+SR” means apply-
ing our SR loss (Eq. 5) function to train the models.

Methods Backbone val (%) test (%)

DANet [14] ResNet-101 81.5 81.5
CDGCNet [22] ResNet-101 81.9 –

HRNet [52] HRNetV2-W48 81.1 81.6
DBES [29] ResNet-101 81.3♭ 81.5♭

DBES+SR ResNet-101 82.0+0.7 82.1+0.6

OCRNet [62] HRNetV2-W48 80.7♭ 81.8♭

OCRNet+SR HRNetV2-W48 82.1+1.4 82.7+0.9

Table 4. Result comparison (mIoU) with the state-of-the-arts on
Cityscapes [8] using pixel-level labels. “–” denotes there are no
reported results in the original papers. ♭ means that this is our
re-implemented result. “+SR” means applying SR loss (Eq. 5)
function to train the models.

and CONTA for generating pseudo masks, respectively. It
also boosted SegNet and SPGNet on PC respectively by
1.0% and 1.4% when using CONTA. On the test set of PC,
it achieved the best performance which is higher than the
SOTA method (CONTA w/ SPGNet) by 1.2% mIoU. Its su-
periority is also obvious when comparing its best results to
those of the methods in the top block, e.g., it surpassed EME
by 1.3% on PC val set and MCS by 2.3% on PC test set.
Comparing to SOTA in FSSS. In the task of FSSS, SOTA
methods include DBES [29] on ResNet-101 [20] (back-
bone) and OCRNet [62] on HRNet [52] (backbone), on both
CS and PAC datasets. We present their original results and
also show our results (by plugging SR in these methods) in
Table 4 and Table 5 respectively for two datasets. We can
see from both tables that our SR becomes the new state-of-
the-art. Impressively, our SR with little computing overhead
boosted the large-scale network OCRNet by a clear margin
of 1.4% mIoU on the val set and 0.9% mIoU on the test set
of CS, and 0.8% on the more challenging PAC.

6959

Input Baseline w/ MEA loss only w/ overall SR loss Ground-Truth

60.9% 71.3% 89.1%

36.0%

46.7% 62.8% 78.2%

86.1% 90.7%

15.0% 72.0% 75.5%

PA
SC

A
L

V
O

C
 2

01
2

79.1% 85.5%

Input Baseline Ground-Truth

C
ity

sc
ap

es

w/ overall SR loss

69.5% 74.8% 75.1%

87.1%84.2%

87.7%86.0%

Figure 4. Visualization results for WSSS on the val set of PASCAL VOC 2012 (PC) [11] using CONTA [64]+SPGNet [7] as Baseline, and
FSSS on the val set of Cityscapes (CS) [8] using OCRNet [62] as Baseline. “w/ overall SR loss” means applying MEA loss, SR-F loss,
and SR-L loss on the Baseline. The mIoU is shown on each result image. The white dashed boxes highlight the revised regions by our
methods. The green dashed boxes highlight the failure cases of both baseline and our models.

Methods Backbone test (%)

CFNet [67] ResNet-101 54.0
ACNet [15] ResNet-101 54.1

APCNet [19] ResNet-101 54.7
DBES [29] ResNet-101 54.3

DBES+SR [29] ResNet-101 55.3+1.0

OCRNet [62] HRNetV2-W48 54.9♭

OCRNet+SR HRNetV2-W48 55.7+0.8

Table 5. Result comparison (mIoU, %) with the state-of-the-arts
on PASCAL-Context [39] using pixel-level labels.

Visualizations. In Figure 4, we visualize four segmenta-
tion samples on PC (val) and CS (val) datasets. The top two
show the results of WSSS models, and the bottom two for
FSSS models. From PC samples, we can see that many of
the failure regions (highlighted with white dash boxes) us-
ing baseline models were corrected by adding MEA losses.
This is a gain of strengthening the semantics and details on
every individual layer of the model. On the top of it, us-
ing the overall SR loss makes the models more effective to
mark out minor object parts, e.g., “horse legs” and “horse
tail”. On both datasets, we also saw some failure cases. For
example when segmenting “monitors”, all models are miss-
ing “neck” regions (see green dashed boxes). We think the
reason is that the pseudo mask module (which is basically
a classification model) in WSSS rarely attends to “monitor
neck” when training the classifier of “monitor”. Another
failure case is on the second row of CS: tiny objects such as
distant traffic signs are missing. We believe those signs are

difficult for human eyes, not to mention for machine models
trained on 969× 969 images.

6. Conclusion

We started by seeking reasons for two major failure cases
in SS. We found that it is either the overuse or underuse
of the semantics and visual details across different layers.
To this end, we proposed three “shallow to deep and back”
regulation operations: MEA — regulating the predictions
of each pair with ground-truth labels; SR-F — regulating
deeper-layer segmenters by the shallowest layer segmenter;
and SR-L — regulating shallow-layer classifiers by the
deepest layer classifier. Experimental results on both WSSS
and FSSS demonstrated that our SR loss can bring contin-
uous performance gains with little computational overhead.
In the future, we will further investigate some new regula-
tion methods on SS, as well as how to apply existing regula-
tions to solve similar problems in other tasks, such as video
event classification and action recognition.

Acknowledgements
This work was partly supported by the National Key Re-

search and Development Program of China under Grant
2018AAA0102002, the National Natural Science Founda-
tion of China under Grant 61732007, A*STAR under its
AME YIRG Grant (Project No. A20E6c0101), and the Sin-
gapore Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 2 Grant.

6960

References
[1] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly su-

pervised learning of instance segmentation with inter-pixel
relations. In CVPR, 2019.

[2] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. In TPAMI, 2017.

[3] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han
Hu. Gcnet: Non-local networks meet squeeze-excitation net-
works and beyond. In ICCV, 2019.

[4] Yu-Ting Chang, Qiaosong Wang, Wei-Chih Hung, Robinson
Piramuthu, Yi-Hsuan Tsai, and Ming-Hsuan Yang. Weakly-
supervised semantic segmentation via sub-category explo-
ration. In CVPR, 2020.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. In TPAMI, 2017.

[6] Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Dark-
rank: Accelerating deep metric learning via cross sample
similarities transfer. In ECCV, 2018.

[7] Bowen Cheng, Liang-Chieh Chen, Yunchao Wei, Yukun
Zhu, Zilong Huang, Jinjun Xiong, Thomas S Huang, Wen-
Mei Hwu, and Honghui Shi. Spgnet: Semantic prediction
guidance for scene parsing. In ICCV, 2019.

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

[10] Rahul Duggal, Scott Freitas, Sunny Dhamnani, Duen Horng,
Jimeng Sun, et al. Elf: An early-exiting framework for long-
tailed classification. In arXiv, 2020.

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. In IJCV, 2010.

[12] Junsong Fan, Zhaoxiang Zhang, and Tieniu Tan. Employing
multi-estimations for weakly-supervised semantic segmenta-
tion. In ECCV, 2020.

[13] Xing Fan, Wei Jiang, Hao Luo, and Mengjuan Fei. Spher-
ereid: Deep hypersphere manifold embedding for person re-
identification. In Journal of Visual Communication and Im-
age Representation, 2019.

[14] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei
Fang, and Hanqing Lu. Dual attention network for scene
segmentation. In CVPR, 2019.

[15] Jun Fu, Jing Liu, Yuhang Wang, Yong Li, Yongjun Bao, Jin-
hui Tang, and Hanqing Lu. Adaptive context network for
scene parsing. In ICCV, 2019.

[16] Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu
Zhang, Ming-Hsuan Yang, and Philip HS Torr. Res2net: A
new multi-scale backbone architecture. In TPAMI, 2019.

[17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In ICML, 2017.

[18] Mohammad Havaei, Axel Davy, David Warde-Farley, An-
toine Biard, Aaron Courville, Yoshua Bengio, Chris Pal,
Pierre-Marc Jodoin, and Hugo Larochelle. Brain tumor seg-
mentation with deep neural networks. In Medical Image
Analysis, 2017.

[19] Junjun He, Zhongying Deng, Lei Zhou, Yali Wang, and Yu
Qiao. Adaptive pyramid context network for semantic seg-
mentation. In CVPR, 2019.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. In NeurIPS Workshop, 2014.

[22] Hanzhe Hu, Deyi Ji, Weihao Gan, Shuai Bai, Wei Wu, and
Junjie Yan. Class-wise dynamic graph convolution for se-
mantic segmentation. In ECCV, 2020.

[23] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q Weinberger. Multi-scale dense
networks for resource efficient image classification. In ICLR,
2018.

[24] Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu, and
Jingdong Wang. Weakly-supervised semantic segmentation
network with deep seeded region growing. In CVPR, 2018.

[25] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accu-
rate single image super-resolution via information distilla-
tion network. In CVPR, 2018.

[26] Lei Jiang, Wengang Zhou, and Houqiang Li. Knowledge dis-
tillation with category-aware attention and discriminant logit
losses. In ICME, 2019.

[27] Alexander Kolesnikov and Christoph H Lampert. Seed, ex-
pand and constrain: Three principles for weakly-supervised
image segmentation. In ECCV, 2016.

[28] Quanquan Li, Shengying Jin, and Junjie Yan. Mimicking
very efficient network for object detection. In CVPR, 2017.

[29] Xiangtai Li, Xia Li, Li Zhang, Guangliang Cheng, Jianping
Shi, Zhouchen Lin, Shaohua Tan, and Yunhai Tong. Improv-
ing semantic segmentation via decoupled body and edge su-
pervision. In ECCV, 2020.

[30] Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie
Yang, Cihang Xie, Qihang Yu, Yuyin Zhou, Song Bai, and
Alan L Yuille. Neural architecture search for lightweight
non-local networks. In CVPR, 2020.

[31] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014.

[33] Jianbo Liu, Junjun He, Jiawei Zhang, Jimmy S Ren, and
Hongsheng Li. Efficientfcn: Holistically-guided decoding
for semantic segmentation. In ECCV, 2020.

[34] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie
Chen, Xinwang Liu, and Matti Pietikäinen. Deep learning
for generic object detection: A survey. In IJCV, 2020.

[35] Yifan Liu, Changyong Shu, Jingdong Wang, and Chunhua
Shen. Structured knowledge distillation for dense prediction.
In TPAMI, 2020.

6961

[36] Zhenguang Liu, Haoming Chen, Runyang Feng, Shuang Wu,
Shouling Ji, Bailin Yang, and Xun Wang. Deep dual consec-
utive network for human pose estimation. In CVPR, 2021.

[37] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015.

[38] Yunteng Luan, Hanyu Zhao, Zhi Yang, and Yafei Dai. Msd:
Multi-self-distillation learning via multi-classifiers within
deep neural networks. In arXiv, 2019.

[39] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu
Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and
Alan Yuille. The role of context for object detection and se-
mantic segmentation in the wild. In CVPR, 2014.

[40] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In ECCV, 2016.

[41] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han.
Learning deconvolution network for semantic segmentation.
In ICCV, 2015.

[42] Nikolaos Passalis, Maria Tzelepi, and Anastasios Tefas. Het-
erogeneous knowledge distillation using information flow
modeling. In CVPR, 2020.

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019.

[44] Mary Phuong and Christoph H Lampert. Distillation-based
training for multi-exit architectures. In ICCV, 2019.

[45] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, 2015.

[46] PR Smith. Bilinear interpolation of digital images. Ultrami-
croscopy, 6(2):201–204, 1981.

[47] Guolei Sun, Wenguan Wang, Jifeng Dai, and Luc Van Gool.
Mining cross-image semantics for weakly supervised seman-
tic segmentation. In ECCV, 2020.

[48] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung
Kung. Branchynet: Fast inference via early exiting from
deep neural networks. In ICPR, 2016.

[49] Michael Treml, José Arjona-Medina, Thomas Unterthiner,
Rupesh Durgesh, Felix Friedmann, Peter Schuberth, An-
dreas Mayr, Martin Heusel, Markus Hofmarcher, Michael
Widrich, et al. Speeding up semantic segmentation for au-
tonomous driving. In NeurIPS, 2016.

[50] Frederick Tung and Greg Mori. Similarity-preserving knowl-
edge distillation. In ICCV, 2019.

[51] Gregor Urban, Krzysztof J Geras, Samira Ebrahimi Kahou,
Ozlem Aslan Shengjie Wang, Rich Caruana, Abdelrahman
Mohamed, Matthai Philipose, and Matt Richardson. Do deep
convolutional nets really need to be deep (or even convolu-
tional)? In ICLR, 2016.

[52] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep high-
resolution representation learning for visual recognition. In
TPAMI, 2020.

[53] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In CVPR, 2018.

[54] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and
Xilin Chen. Self-supervised equivariant attention mech-
anism for weakly supervised semantic segmentation. In
CVPR, 2020.

[55] Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel.
Wider or deeper: Revisiting the resnet model for visual
recognition. In PR, 2019.

[56] Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy.
Knowledge distillation meets self-supervision. In ECCV,
2020.

[57] Kunran Xu, Lai Rui, Yishi Li, and Lin Gu. Feature nor-
malized knowledge distillation for image classification. In
ECCV, 2020.

[58] Ting-Bing Xu and Cheng-Lin Liu. Data-distortion guided
self-distillation for deep neural networks. In AAAI, 2019.

[59] Yang Xu, Zebin Wu, Jocelyn Chanussot, and Zhihui Wei.
Nonlocal patch tensor sparse representation for hyperspec-
tral image super-resolution. In TIP, 2019.

[60] Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi
Zhang, and Andrew Willis. Mutualnet: Adaptive convnet
via mutual learning from network width and resolution. In
ECCV, 2020.

[61] Fisher Yu and Vladlen Koltun. Multi-scale context aggrega-
tion by dilated convolutions. In ICLR, 2016.

[62] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
ECCV, 2020.

[63] Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hy-
pernetworks for neural architecture search. In ICLR, 2019.

[64] Dong Zhang, Hanwang Zhang, Jinhui Tang, Xiansheng Hua,
and Qianru Sun. Causal intervention for weakly-supervised
semantic segmentation. In NeurIPS, 2020.

[65] Dong Zhang, Hanwang Zhang, Jinhui Tang, Meng Wang, Xi-
ansheng Hua, and Qianru Sun. Feature pyramid transformer.
In ECCV, 2020.

[66] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,
Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Con-
text encoding for semantic segmentation. In CVPR, 2018.

[67] Hang Zhang, Han Zhang, Chenguang Wang, and Junyuan
Xie. Co-occurrent features in semantic segmentation. In
CVPR, 2019.

[68] Li Zhang, Xiangtai Li, Anurag Arnab, Kuiyuan Yang, Yun-
hai Tong, and Philip HS Torr. Dual graph convolutional net-
work for semantic segmentation. In BMVC, 2019.

[69] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chen-
glong Bao, and Kaisheng Ma. Be your own teacher: Im-
prove the performance of convolutional neural networks via
self distillation. In ICCV, 2019.

[70] Zhenli Zhang, Xiangyu Zhang, Chao Peng, Xiangyang Xue,
and Jian Sun. Exfuse: Enhancing feature fusion for semantic
segmentation. In ECCV, 2018.

[71] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, 2017.

6962

[72] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
CVPR, 2019.

[73] Zhen Zhu, Mengde Xu, Song Bai, Tengteng Huang, and Xi-
ang Bai. Asymmetric non-local neural networks for semantic
segmentation. In ICCV, 2019.

6963

