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Abstract

Pretraining on large labeled datasets is a prerequisite to
achieve good performance in many computer vision tasks
like image recognition, video understanding etc. However,
pretraining is not widely used for 3D recognition tasks
where state-of-the-art methods train models from scratch.
A primary reason is the lack of large annotated datasets be-
cause 3D data labelling is time-consuming. Recent work
shows that self-supervised learning is useful to pretrain
models in 3D but requires multi-view data and point corre-
spondences. We present a simple self-supervised pretrain-
ing method that can work with single-view depth scans ac-
quired by varied sensors, without 3D registration and point
correspondences. We pretrain standard point cloud and
voxel based model architectures, and show that joint pre-
training further improves performance. We evaluate our
models on 9 benchmarks for object detection, semantic seg-
mentation, and object classification, where they achieve
state-of-the-art results. Most notably, we set a new state-of-
the-art for object detection on ScanNet (69.0% mAP) and
SUNRGBD (63.5% mAP). Our pretrained models are label
efficient and improve performance for classes with few ex-
amples.

1. Introduction
Pretraining visual features on large labeled datasets is a

pre-requisite to achieve good performance when access to
annotations is limited [27, 46, 52, 87]. More recently, self-
supervised pretraining has become a popular alternative to
supervised pretraining especially for tasks where annota-
tions are time-consuming, such as detection and segmenta-
tion in images [9, 36, 37, 56, 93] or tracking in videos [41].
In 3D vision too, annotations are difficult to acquire. Label-
ing a 3D scene composed of thousands of 3D points is time-
consuming and can take around 22 minutes per scene [18].

This cumbersome annotation process results in a lack of
large annotated 3D datasets. However, acquiring 3D data
in the form of single-view depth maps has become easier
than ever due to the advent of consumer grade depth sen-
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Figure 1: Label-efficiency of our self-supervised pretraining.
We finetune detection models from scratch or using our pretraining
as initialization. Our pretraining which uses unlabeled single-view
3D data, outperforms training from scratch, and achieves the same
detection performance with about half the detection labels.

sors, e.g., in phones [24, 73, 83]. While these depth maps
can be leveraged to pretrain self-supervised 3D features,
there is surprisingly little work that can be applied. Recent
work [105] applies self-supervised pretraining to 3D mod-
els but uses multi-view depth scans with point correspon-
dences. Since 3D sensors only acquire single-view depth
scans, multi-view depth scans and point correspondences
are typically obtained via 3D reconstruction. Unfortunately,
even with good sensors, 3D reconstruction can fail easily for
a variety of reasons such as non-static environments, fast
camera motion or odometry drift [16].

In this paper, we introduce a simple contrastive frame-
work, DepthContrast, to representations from single-view
depth scans. From a practical perspective, self-supervised
learning from single-view depth scans is more broadly ap-
plicable for 3D data. It is also an interesting scientific ques-
tion whether just using single-view information can provide
benefits for self-supervised learning in 3D. Our approach
is based on the Instance Discrimination method by Wu et
al. [103] applied to depth maps. We side-step the need of
registered point clouds or correspondences, by considering
each depth map as an instance and discriminating between
them, even if they come from the same scene. Since differ-
ent 3D applications require different 3D scene representa-
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tions such as voxels for segmentation [17], point clouds for
detection [64], we use our method for both voxels and point
clouds. We jointly learn features by considering voxels and
point clouds of the same 3D scene as data augmentations
that are processed with their associated networks [93].

Our contributions can be summarized as follows:

• We show that single-view 3D depth scans can be used for
self-supervised learning.

• Our single-view representations perform comparably, or
in some settings better than their multi-view counterparts,
showing that single-view depth scans are indeed powerful
for learning features.

• Our method is applicable across different model architec-
tures, indoor/outdoor 3D data, single/multi-view 3D data.
We also show that it can be used to pretrain high capac-
ity 3D architectures which otherwise overfit on tasks like
detection and segmentation.

• We show that joint training of different input representa-
tions like points and voxels is important for learning good
representations, and a naive application of contrastive
learning may not yield good results.

• We show performance improvements over nine down-
stream tasks, and set a new state-of-the-art for two object
detection tasks (ScanNet and SUNRGBD). Our models
are efficient few-shot learners.

2. Related Work
Our method builds on the work from the self-supervised

learning literature, with 3D data as an application. In this
section, we give an overview of the recent advances in both
self-supervision and 3D representations.
Self-supervised learning for images. Self-supervised
learning is a well studied problem in machine learning and
computer vision [53, 60, 69, 72, 95]. There are many classes
of methods for learning representations - clustering [7, 8,
43], GANs [20, 55], pretext tasks [19, 59, 97] etc. Recent
advances [9, 13, 30, 36, 37, 47, 56, 94] have shown that
self-supervised pretraining is a viable alternative to super-
vised pretraining for 2D recognition tasks. Our work builds
upon contrastive learning [34, 61] where models are trained
to discriminate between each instance [21] with no explicit
classifier [103]. These instance discrimination methods can
be extended to multiple modalities [57, 62, 93]. Our method
extends the work of Wu et al. [103] to multiple 3D input
formats following Tian et al. [93] using a momentum en-
coder [36] instead of a memory bank.
Self-supervised learning for 3D data. Most methods on
self-supervised learning focus on single 3D object represen-
tation with different applications to reconstruction, classifi-
cation or part segmentation [1, 2, 25, 33, 35, 44, 49, 74, 99,
110]. Recently, Xie et al. [105] proposed a self-supervised

method to build representations of scene level point clouds.
Their method relies on the complete 3D reconstruction of
a scene with point-wise correspondences between the dif-
ferent views of a point cloud. These point-wise correspon-
dences requires post-processing the data by registering the
different depth maps into a single 3D scene. Their method
can only be applied to static scenes that have been regis-
tered, which greatly limits the applications of their work.
We show a simple self-supervised method that learns state-
of-the-art representations from single-view 3D data, and can
also be applied to multi-view data.
Representations of 3D scenes. There are multiple ways to
represent 3D information in different vectorized forms such
as point-clouds, voxels or meshes. Point-cloud based mod-
els [66, 68] are widely used in classification and segmen-
tation tasks [6, 40, 45, 66, 68, 91, 98, 100, 106, 107], 3D
reconstruction [23, 90, 110] and 3D object detection [63,
64, 77, 98, 112, 112, 114]. Since many 3D sensors acquire
data in terms of 3D points, point clouds are a convenient
input for deep networks. However, since using convolu-
tion operations on point-clouds directly is difficult [31, 66],
voxelized data is another popular input representation. 3D
convolutional models [3, 17, 28, 31, 38, 50, 70, 85, 92] are
widely used in 3D scene understanding [32, 82, 109, 116].
There are also efforts to combine different 3D input repre-
sentations [29, 76, 96, 113–115]. In this work, we propose
to jointly pretrain two architectures for points and voxels,
that are PointNet++ [68] for points and Sparse Convolution
based U-Net [17] for voxels.

3D transfer tasks and datasets. We use shape classifica-
tion, scene segmentation, and object detection as the recog-
nition tasks for transfer learning. Shape classification tech-
niques [11, 54, 66–68, 86] are widely evaluated on the Mod-
elNet [102] dataset, which we use. It contains synthetic
3D data and each sample contains exactly one object. We
also evaluate on complete 3D scenes using the more general
3D scene understanding task. Scene-centric datasets can be
broadly divided into indoor scens [5, 10, 18, 39, 58, 63, 75,
81, 84, 104], and outdoor (self-driving focussed) scenes [26,
71, 88]. We use these datasets and evaluate the performance
of our methods on the indoor detection [12, 22, 64, 65, 114],
scene segmentation [17, 68, 92, 101, 108], and outdoor de-
tection tasks [15, 48, 76–78, 109, 111].

3. DepthContrast
We present our approach to unsupervised 3D represen-

tation learning. DepthContrast can learn from either unpro-
cessed single-view or multi-view depth maps. Our method,
illustrated in Fig 2, is based on the instance discrimina-
tion framework from Wu et al. [103] with a momentum en-
coder [36]. We also show an extension of DepthContrast
built upon [93] that learns representations across 3D input
formats like points and voxels, and across 3D architectures.
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Figure 2: Approach Overview. We propose DepthContrast - a simple 3D representation learning method that uses large amounts of
unprocessed single/multi-view depth maps. Given a depth map we construct two augmented versions using data augmentation and represent
them with selected input formats (point coordinates or voxels). We use format-specific encoders to get spatial features which are pooled
and projected to obtain global features v. The global features are used to setup an instance discrimination task and pretrain the encoders.

3.1. Instance Discrimination
Given a dataset D = {X}Ni=1 containing N samples X,

we wish to learn a function g(X) that produces useful rep-
resentations v = g(X) of the input sample. As shown
in Fig 2, our method uses 3D data where X can be rep-
resented by point coordinates or voxels1. We apply a data
augmentation t sampled randomly from a large set of aug-
mentations T , to obtain an augmented sample X̃ = t(X).
The augmented sample is input to a deep network g that ex-
tracts unit-norm global features v = g(X̃) by pooling over
the 3D spatial coordinates. We setup an instance discrim-
ination problem where the features vi,1 and vi,2 obtained
from two data augmented versions of sample i must be sim-
ilar to each other, and different from features vj obtained
using K other (negative) samples j in the dataset. We use a
contrastive loss [34, 61, 80] to achieve this goal:

li = − log
exp(v⊤

i,1vi,2/τ)

exp(v⊤
i,1vi,2/τ) +

∑K
j ̸=i exp(v

⊤
i,1vj/τ)

, (1)

where τ is the temperature that controls the smoothness
of the softmax distribution. This loss encourages features
from different augmentations of the same scene to be simi-
lar, while being dissimilar to features of other scenes. Thus,
it learns features that focus on discriminative regions of a
scene that make it different from other scenes in the dataset.
Minimal assumptions on input data. Our method makes
minimal assumptions about the input X, i.e., it is an unpro-
cessed single-view depth map. It does not require careful
sampling of overlapping multi-view 3D inputs [105] or ob-
ject centric depth maps [35, 44]. These minimal assump-
tions enable us to learn from large scale single-view 3D
depth maps in § 4 and outdoor 3D depth maps obtained from
different sensors without relying on 3D calibration in § 5.3.
Momentum encoder. As using a large number of negatives
is important for contrastive learning [13, 36, 56, 103], we
use the method of He et al. [36] where the features of the
other augmentation vi,2 and negative samples vj in Eq 1 are
obtained using a momentum encoder and a queue respec-

1Points in a depth map are a set, but for simplicity we denote them as a
matrix. Our method does not rely on any specific ordering of the points.

tively. This allows us to use a large number K of negative
samples without increasing the training batch size.

3.2. Extension to Multiple 3D Input Formats
Multiple input formats are commonly used to represent

3D data - point clouds, voxels, meshes etc. Different in-
put formats can be easily transfered from one to another
and have their specific deep learning architectures and ap-
plications. Our self-supervised method can be naturally ex-
tended to accommodate these input formats and architec-
tures. For each input format f , we denote the corresponding
input sample as Xf , the format-specific encoder network as
gf , and the extracted feature as vf . Extending Eq 1, we can
minimize a single objective that performs instance discrim-
ination within and across input formats a, b:

labi = − log
exp(va⊤

i,1 v
b
i,2/τ)

exp(va⊤
i,1 v

b
i,2/τ) +

∑K
j ̸=i exp(v

a⊤
i,1 v

b
j/τ)

. (2)

When the input formats a, b are identical, this objec-
tive reduces to the within format loss of Eq 1, and when
a ̸= b this objective aligns the feature representations vf =
gf (Xf ) obtained across formats f using different network
architectures gf . As illustrated in Fig 3, we use two popu-
lar input formats - point clouds and voxels, and train these
format-specific models with a single joint loss function

Li = labi + lbai︸ ︷︷ ︸
across format

+ laai + lbbi︸ ︷︷ ︸
within format

. (3)

Similar techniques have been explored in the context of
different modalities of data, e.g., color and grayscale im-
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Figure 3: Multiple 3D Input Formats We extend our approach
to joint training with point and voxel input formats.
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ages [93], audio and video [57, 62] etc. While these meth-
ods use different modalities, our extension uses the same
3D data and only changes the input format.

3.3. Model Architecture
We describe the model architecture used for our input

format-specific encoders. Both encoders operate on the
same augmented input 3D data, and differ only in the way
the input is represented. We provide the full, layer-wise ar-
chitecture details in the supplemental material.
Point input. We use PointNet++ [64] as the backbone net-
work which takes XYZ coordinates as input. Our network
takes in 20K points, and produces C dimensional per-point
features for 1024 points after aggregation. We obtain the
scene level 256 dimensional feature v in Eq 2 by global
max pooling to these last layer features, followed by a two
layer MLP as in [13] and L2 normalization.
Voxel input. We use a sparse convolution U-Net model [17]
as the backbone for the voxel 3D input. The network takes
a 3D occupancy grid and corresponding RGB values as the
input representation of the 3D data. We use a voxel size of
5cm to voxelize the input data following [17].To obtain the
scene level 256 dimensional feature v ( Eq 2), similar to the
point input, we apply global max-pooling to the last layer
feature, followed by a two layer MLP and L2 normalization.

3.4. Data Augmentation for 3D
Data augmentation is as an essential component of our

framework. We first adopt standard pointcloud data argu-
mentation methods proposed in [64], which are random
point up/down sampling, random flip in xy axis, and ran-
dom rotation. However, after adding these methods, it is
still easy for the network to distinguish different training
instances. Thus, we add two new data augmentation meth-
ods: random cuboid and random drop patches. Inspired by
the random crop in 2D images [89], we define a random
cuboid augmentation that extracts random cuboids from the
input point cloud. Cuboids are sampled using a random
scale [0.5, 1.0] of the original scene, and a random aspect
ratio [0.75, 1.0]. We also drop (erase) cuboids to force the
network learn local geometric features. The dropped cuboid
is randomly cropped with 0.2 of the scene scale. The per-
formance boost from each augmentation is analyzed in § 5.
For voxelized inputs, in addition to all the point augmenta-
tions, we use the augmentations from [17].

3.5. Implementation Details
We use 130K negatives for contrastive learning in Eq 3

and a momentum of 0.9 for the momentum encoder follow-
ing [36]. As noted in § 3.3, we follow Chen et al. [13] and
use an additional non-linear projection and L2 normaliza-
tion to obtain the features v. The features v are 128 dimen-
sional and we use a temperature value of 0.1 while comput-
ing the non-parametric softmax in Eq 1. We use a standard

Dataset Stats Task Gain of
DepthContrast

Self-supervised Pretraining
ScanNet-vid [18] 190K single-view depth maps (Indoor)
Redwood-vid [16] 370K single-view depth maps (Indoor/Outdoor)

Transfer tasks
ScanNet [18] 1.2K train, 312 val (Indoor) Det. +3.6% mAP

Seg. +0.9% mIOU†
SUNRGBD [81] 5.2K train, 5K val (Indoor) Det +3.3% mAP
S3DIS [4] 199 train, 67 val (Indoor) Det +12.1% mAP

Seg. +2.4% mIOU
Synthia [71] 19.8K train, 1.8K val (Synth.) Seg. +2.4% mIOU
Matterport3D [10] 1.4K train, 232 val (Indoor) Det. +3.9% mAP
Shape Classification [102] 9.8K train, 2.4K val (Synth.) Cls. +3.1% Acc†

Det.: Object Detection, Seg: Semantic Segmentation
Cls: Classification, Synth.: Synthetic, †Results in supplemental.

Table 1: Pretraining datasets and transfer tasks used in this paper.
We use two different pretraining datasets without post-processing
like 3D registration, camera calibration. We use 8 different trans-
fer tasks for evaluation where our DepthContrast pretraining gives
consistent gains (last column) over scratch pretraining. Additon-
ally, we show evaluation results on LiDAR data in § 5.3.

SGD optimizer with momentum 0.9, cosine learning rate
scheduler [51] starting from 0.12 to 0.00012 and train the
model for 1000 epochs with a batch size of 1024.

4. Experiments
We evaluate DepthContrast pretraining by transfer learn-

ing, i.e., fine-tuning the learned representation on down-
stream tasks and datasets. As Table 1 shows, we use a
diverse set of 3D understanding tasks like object classifi-
cation, semantic segmentation, and object detection. We
first study a single input 3D format and a single network
architecture in § 4.1. We show DepthContrast’s perfor-
mance on multiple downstream tasks, even when compared
to multi-view methods [105]; further improvements by scal-
ing amount of pretraining data and model capacity; as well
as its benefits in few-shot downstream tasks with limited la-
beled data. Finally, in § 4.2, we show the benefits of our
pre-training across different 3D input formats.

Pretraining Details. We use single-view depth map videos
from the popular ScanNet [18] dataset and term it as
ScanNet-vid. ScanNet-vid contains about 2.5 million RGB-
D scans for more than 1500 indoor scenes. Following the
train/val split from [64], we extract around 190K RGB-D
scans (2FPS) from about 1200 video sequences in the train
set. We do not use camera calibration or 3D registration
methods and operate directly on single-view depth maps.
We use our data augmentation described in § 3.4 and use
the training objectives from § 3. Additional details are pro-
vided in § 3.5 and the supplemental material.

Downstream Tasks. We evaluate our pretrained model
by transfer learning and finetune it on different down-
stream datasets and tasks summarized in Table 1. We
use diverse downstream datasets - full scenes/object cen-
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Figure 4: Scaling the model size and pretraining data. We increase the model capacity of the PointNet++ model by increasing the width
by {2×, 3×, 4×}. When training from scratch, increasing the model capacity increases the performance but ultimately leads to overfitting.
Overfitting is more pronounced on small datasets like S3DIS. Our DepthContrast pretraining on ScanNet-vid improves the performance
for larger models and reduces overfitting. We increase the pretraining data by combining the readily available single-view depth maps from
ScanNet-vid and Redwood-vid. DepthContrast’s performance improves significantly when using both large data and large models.

Initialization ScanNet SUNRGBD Matterport3D S3DIS
Scratch 58.6 57.4 38.8 31.2
Supervised - 59.1 (+1.7) 41.7 (+2.9) 48.5 (+17.3)

DepthContrast (Ours) 61.3 (+2.7) 60.4 (+3.0) 41.9 (+3.1) 43.3 (+12.1)

PointContrast [105] 59.2(+2.5) 57.5(+1.9) - -

Table 2: Detection AP25 using VoteNet [64]. We evaluate differ-
ent pretrained models - random initialization, supervised VoteNet
on ScanNet, our self-supervised DepthContrast using the point in-
put format, and self-supervised with PointContrast. We provide in
green the improvements over a detector trained from scratch. Note
that PointContrast uses a UNet backbone. DepthContrast outper-
forms the scratch model on all benchmarks and is better than the
detection-specific supervised pretraining on two datasets.

tric; single/multi-view; real/synthetic; indoor/outdoor. On
these diverse datasets, we use three major tasks, which are
classification, semantic segmentation, and object detection.
These tasks test different aspects of the pretrained model -
while object detection and semantic segmentation use local
features, classification is performed on global features.

4.1. Pretraining with Point Input Format

Setup. We pretrain a PointNet++ model using the instance
discrimination objective in Eq 1 on the single-view depth
maps from ScanNet-vid. We study the transfer perfor-
mance of the pretrained model on object detection using the
VoteNet [64] framework that uses a PointNet++ backbone.
Baselines. Scratch - Training from scratch or random ini-
tialization is standard practice in VoteNet [64] and serves as
a baseline for comparing other pretraining methods. Super-
vised - We introduce a supervised pretraining baseline by
pretraining a PointNet++ backbone on the ScanNet detec-
tion task. As the supervised baseline is pretrained specif-
ically on object detection, it serves as a strong baseline.
PointContrast - We compare with a PointContrast [105] pre-
trained model that uses strictly more information (multi-

view) than our model (single-view) and serves as an im-
portant upper bound. We note that the architecture of this
model is different, and as reported in their work [105],
PointContrast performs poorly with single-view data.

In Table 2 we report the detection results by finetun-
ing the VoteNet model with different backbone initializa-
tions. We use the implementation of [64] for finetuning
and report the detection performance using the mean Aver-
age Precision at IoU=0.25 (AP25) metric. Scratch training
provides competitive results on the larger detection datasets
like ScanNet and SUNRGBD [42, 79, 81, 104], however, its
performance on the smaller S3DIS dataset is low. In com-
parison, supervised pretraining provides large gains in the
detection performance across all datasets. DepthContrast
outperforms training from scratch on all the four datasets,
and improves performance by 12.1% mAP on the small
S3DIS dataset that has only 200 labeled training samples.
We further analyze label efficiency of our model in § 4.1.4.
Interestingly, despite using no labels during pretraining,
DepthContrast is better than the detection-specific super-
vised pretraining for two datasets (SUNRGBD and Matter-
port3D). Compared to PointContrast, our model achieves a
similar gain over the scratch baseline. This shows that our
single-view DepthContrast can learn representations that
are at par with a multi-view method for object detection.

4.1.1 Training Higher Capacity Models

We now apply DepthContrast to higher capacity models.
Following standard practice in 2D self-supervised learn-
ing [47], we increase the capacity of PointNet++ model by
multiplying the channel width of all the layers by {2, 3, 4}.
We pretrain all models on the ScanNet-vid dataset and mea-
sure their transfer performance in Fig 4. Training large
models from scratch provides some benefit, but quickly
leads to reduced or plateauing performance. We observe
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Method ScanNet SUNRGBD
AP25 AP50 AP25 AP50

F-PointNet [65] 54.0 - - -
VoteNet [64] 58.6 33.5 57.7 32.9
H3DNet [114] 67.2 48.1 60.1 39.0
HGNet [12] 61.3 34.4 61.6 34.4
3D-MPA [22] 64.2 49.2 - -
PointContrast (VoteNet) [105] 59.2 38.0 57.5 34.8
DepthContrast (VoteNet) 64.0 42.9 61.6 35.5
DepthContrast (H3DNet) 69.0 50.0 63.5 43.4

Table 3: Transfer using state-of-the-art detection frameworks.
We use our pretrained model (PointNet++ 3× on Redwood-vid
+ScanNet-vid) and transfer it using two state-of-the-art detection
frameworks - H3DNet [114] and VoteNet [64]. Our DepthContrast
pretraining outperforms all prior work and sets a new state-of-the-
art on both ScanNet and SUNRGBD detection datasets.

overfitting on the small datasets like S3DIS where increas-
ing the model capacity does not improve performance.
However, our self-supervised pretraining on ScanNet-vid
reduces this overfitting and performance improves or stays
the same for larger models. This suggests that pretraining
is crucial for training large 3D detection models and Depth-
Contrast can provide an easy way to train such models.

4.1.2 Using More Single-view Pretraining Data
We increase the pretraining data by using readily available
single-view 3D data from the Redwood-vid dataset [16].
Redwood-vid contains over 23 million depth scans from
RGB-D videos taken in both indoor and outdoor settings.
As this dataset is extremely large, we use a subset of 2500
video sequences consisting of 10 categories and extract
370K RGB-D scans. Since the Redwood-vid dataset does
not contain camera extrinsic parameters, multi-view meth-
ods like PointContrast [105] cannot be used to such dataset.

Combining the Redwood-vid and ScanNet-vid datasets
allows us to triple our pretraining data. We pretrain all mod-
els on this combined dataset and report their performance
(AP25) in Fig 4. DepthContrast’s performance improves
with both model capacity and number of pretraining sam-
ples across all four detection datasets. The higher capacity
models show a larger improvement in performance particu-
larly on the smaller S3DIS dataset. These results highlight
that DepthContrast can leverage large amounts of readily
available single-view data to train high capacity 3D models.
Compared to multi-view methods [105], this makes Depth-
Contrast more broadly applicable.

4.1.3 State-of-the-art Detection Frameworks
We use two state-of-the-art detection frameworks -
H3DNet [114] and VoteNet [64] and study the benefit of us-
ing our pretrained model. We use our PointNet++ 3× model
pretrained on the combined Redwood-vid and ScanNet-vid

Figure 5: Pretraining benefits long tail classes. We analyze
the gain of our pretraining across different classes for SUNRGBD
object detection. The training data has a long tailed distribution
where the least frequent classes occur 50× less than the most fre-
quent classes. Our pretraining improves performance for classes
with fewer labeled instances by 4− 8%. (Trending line in green.)

dataset and transfer it using these detection frameworks.
The detection results in Table 3 show that our pretrained
model achieves state-of-the-art performance on SUNRGBD
and ScanNet. In particular, as the gains are larger on stricter
mAP at IoU=0.5, our pretrained models result in detection
models that are better at localization.

4.1.4 Label Efficiency of Pretrained Models
Pretraining allows models to be finetuned with small
amount of labeled data. In Table 2, we observe that small
labeled datasets benefit more from pretraining. We study
the label efficiency of DepthContrast pretrained models by
varying the amount of labeled data used for finetuning.
While varying the data, we draw 3 independent samples and
report average results. We use the PointNet++ models pre-
trained on ScanNet-vid ( § 4.1) and report the detection per-
formance in Fig 1. DepthContrast pretraining provides large
gains in performance at every setting. On both the ScanNet
and SUNRGBD datasets, our model with just 50% samples
gets the same performance as training from scratch with the
full dataset. When using 20% samples for finetuning, our
pretrained models provide a gain of over 10% mAP. This
shows that our pretraining is label efficient and can improve
performance especially on tasks with limited supervision.
Does pretraining benefit tail classes? 3D detection
datasets like SUNRGBD and ScanNet exhibit a long tailed
distribution where many ‘tail’ classes have few training in-
stances. In SUNRGBD, the ‘tail’ classes like bathtub,
toilet, dresser have less than 200 training instances,
while classes like chair have over 9000 instances. Fig 5
shows the gain of our pretrained model over the scratch
model across object classes on SUNRGBD. Our pretraining
improves the performance of classes with fewer instances,
i.e., the tail classes, by 4−8% AP. This suggests that Depth-
Contrast pretraining is especially effective in few-shot set-
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Loss Point Transfer Voxel Transfer
SUNRGBD ScanNet S3DIS Synthia

Scratch 57.4 58.6 68.2 78.9
Within Format only 60.4 (+3.0) 61.3 (+1.7) 66.5 (-2.7) 80.1 (+1.2)

Across format only 60.0 (+2.6) 61.1 (+2.5) 69.9 (+1.7) 81.2 (+2.3)

Both (Ours) 60.7 (+3.3) 62.2 (+3.6) 70.6 (+2.4) 81.3 (+2.4)

PointContrast [105] 59.2(+2.5) 57.5(+1.9) 70.9(+2.7) 83.1(+3.3)

Table 4: Multiple input formats. We study the importance of
training 3D representations jointly using multiple input formats -
points and voxels. We vary the within format and across format
loss terms in Eq 3. We report detection mAP@0.25 on the point
transfer tasks and segmentation mIOU for the voxel transfer tasks.
We observe that performing instance discrimination across the in-
put formats (third row) greatly improves over the within format
loss term. Note that PointContrast is trained with ScanNet multi-
view scans.

tings and can partially address the long tailed label distribu-
tions of current 3D scene understanding benchmarks.

4.2. Pretraining with Multiple Input Formats
We pretrain DepthContrast using both the point and

voxel input formats and use two format-specific encoders
- PointNet++ for points and UNet for voxels.
Baselines. As explained in Eq 3, when using multiple 3D
input formats, we can define two loss terms - a within for-
mat loss and an across format loss. To analyze which loss
terms matter for pretraining, we consider three variants - (1)
Within format which independently trains format-specific
models for each input format and is a straightforward ap-
plication of instance discrimination to 3D; (2) Across for-
mat which trains the format-specific models jointly us-
ing the second term of Eq 3; (3) Ours which trains the
format-specific models jointly using our combined loss
function. PointContrast - Similar to § 4.1, we use a pre-
trained PointContrast [105] UNet model trained with multi-
view data. This model is trained with multi-view point
correspondences to enable it to learn better point features.
Since PointContrast uses strictly more information than our
single-view method, it serves as an important upper bound.
Setup. We evaluate the pretrained models by transfer learn-
ing. As in § 4.1, we finetune the pretrained point input for-
mat PointNet++ models on SUNRGBD and ScanNet detec-
tion using VoteNet. We finetune the voxel UNet models on
segmentation using the framework from Spatio-Temporal
Segmentation [17] which uses a UNet backbone network.
The results are summarized in Table 4.

Compared to training from scratch, the within format
pretraining only provides a benefit for the point input format
PointNet++ models. For the voxel models, this pretraining
does not improve consistently over training from scratch,
which is in line with observations from recent work [105].
This shows that a naive application of instance discrimina-
tion to 3D representation learning may not yield good pre-
trained models. The across format loss improves perfor-
mance for both the point and voxel models, suggesting the

Task VoteNet [64] +Rand. +Rand.
Cuboid Drop

Shape Classification Linear (Accuracy) 80.6 85.4 85.0
SUNRGBD Detection (mAP) 58.6 59.5 60.7

Table 5: Data augmentation. We vary the data augmentation
used for pretraining DepthContrast point models and report their
transfer performance. The standard data augmentation used in su-
pervised learning (VoteNet) is not sufficient to learn good self-
supervised models. Our proposed Random Cuboid and Random
Drop augmentations improve performance.

benefit of using multiple input formats. Our proposed joint
loss provides the best transfer performance. The gains are
particularly significant on the voxel format model which im-
proves by 4% over the within format loss. In the supple-
mental material, we show that this benefit of joint training
over the within format loss also holds across different pre-
training data and architectures.

Compared to the multi-view PointContrast upper
bound [105], our results on the voxel transfer task are
slightly worse. PointContrast uses multi-view point corre-
spondences to enforce point-level supervision during pre-
training. This enables their model to learn point features
that are more suitable for point prediction tasks like seg-
mentation. However, despite not relying on multi-view in-
formation, DepthContrast pretraining still provides compet-
itive performance. We believe these results are encourag-
ing given the broad applicability of DepthContrast to vast
amounts of single-view data captured by modern sensors.
We note that our UNet architecture is different from [105]
since their architecture underfit on our pretraining task.

5. Analysis
In this section we present a series of experiments de-

signed to understand DepthContrast better. We first pre-
train point format (PointNet++) models on the ScanNet-vid
dataset following the settings from § 4.1. We use two trans-
fer tasks for evaluation - (1) object detection on SUNRGBD
using VoteNet [64] where we finetune the full model and
test the quality of the pretraining; (2) object classification on
Shape Classification dataset [102] where we keep the model
fixed and only train linear classifiers on fixed features, thus
testing the quality of the learned representations [30, 47].
Finally, we also evaluate DepthContrast’s generalizability
to outdoor 3D data.

5.1. Importance of Data Augmentation

Data augmentations play an important role for self-
supervised representation learning and have been studied
extensively in the case of 2D images [9, 14, 56, 93, 94].
However, the impact of data augmentation for 3D represen-
tation learning is less well understood. Thus, we analyze the
effect of our proposed augmentations from § 3.4 on transfer
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Pretraining
Task Scratch ScanNet ScanNet-vid Redwood-vid

(Multi-view) (Single-view) (Single-view)
Shape Classification Linear (Accuracy) 50.7 85.1 85.0 86.4
SUNRGBD Detection (mAP) 57.4 60.5 60.7 60.4

Table 6: Single-view or multi-view 3D data. We study whether
our pretraining is sensitive to single-view or multi-view data. We
use ScanNet and ScanNet-vid which are multi-view and single-
view versions of the same dataset [18], and Redwood-vid [16]
which is a single-view only 3D dataset. Our pretrained model is
robust to 3D preprocessing, and using single-view or multi-view
data gives similar performance.

performance. We train different DepthContrast point mod-
els with the same training setup and only vary the data aug-
mentation used. Our results are summarized in Table 5.

The widely used VoteNet [64] augmentations perform
worse than our proposed augmentations. Our augmenta-
tions lead to both a better feature representation: a gain of
5% accuracy on Shape Classification [102], and a better pre-
trained model: 2% mAP on SUNRGBD detection. We also
consistently observe gains from our improved data augmen-
tation on all the downstream tasks from § 4 which under-
scores the importance of designing good data augmentation.

5.2. Impact of Single-view or Multi-view 3D Data
We now study whether pretraining on reconstructed

multi-view 3D scenes impacts the downstream perfor-
mance. We use the ScanNet [18] dataset which contains
multi-view 3D data obtained by 3D registration of the
ScanNet-vid depth maps. As another single-view dataset,
we pretrain on the Redwood-vid dataset from § 4.1.2. We
pretrain DepthContrast point models on these datasets and
compare their performance by transfer learning in Table 6.

The transfer performance is similar when models are pre-
trained on ScanNet-vid or ScanNet. Since ScanNet-vid and
ScanNet only differ in the 3D preprocessing involved, the
result suggests that DepthContrast is not sensitive to single-
view or multi-view input data. This is not surprising given
that our objective does not rely on multi-view information.
Pretraining on the single-view Redwood-vid dataset also
gives similar performance suggesting that DepthContrast is
robust to different data distributions during pretraining. All
the DepthContrast models outperform the scratch model.

5.3. Generalization to Outdoor LiDAR data
We test DepthContrast’s generalization to outdoor Li-

DAR data by pretraining on the Waymo Open Dataset [88]
where we extract 79K single-view scans from the videos.
We use the same data augmentation parameters from § 3.4
and only modify random cuboid to work on the full scale of
the Z dimension of the scene. We use the standard LiDAR-
specific model architectures as our format-specific encoders
- PointnetMSG [77] for point clouds and Spconv-UNet [78]
for voxels. Similar to § 3.5, we obtain features from these

Same perf.
2x fewer labels

Same perf.
5x fewer labels

Figure 6: Using outdoor LiDAR data. We finetune detection
models from scratch or using our pretraining and report mAP (with
40 recall positions) on the cyclist class at moderate difficulty
level of the KITTI val split. Our models are pretrained using
unlabeled outdoor data from the Waymo dataset and outperform
scratch training using either point (left) or voxel (right) inputs.

models after global max pooling and a two layer MLP. The
models are optimized jointly with Eq 3 using both within
and across-format losses. For transfer learning, we use
the standard KITTI [26] object detection benchmark, and
PointRCNN [77] and Part-A2 [78] for down-stream models.
We report results on the cyclist class since it has fewer ex-
amples in the training set compared to the other classes. We
provide results for other classes and finetuning details in the
supplemental material. Similar to § 4.1.4, while varying the
fraction of pretraining data, we report average performance
across 3 independent runs. Fig 6 shows that our pretrained
models outperform training from scratch especially when
finetuning on fewer training samples. For Spconv-Unet,
we achieve a 20% gain with 5% of labeled data. This
suggests that DepthContrast pretraining generalizes across
multiple input formats, and our proposed data augmentation
generalizes to different depth sensors and scene types.

6. Conclusion

We propose DepthContrast- an easy to implement self-
supervised method that works across model architectures,
input data formats, indoor/outdoor, single/multi-view 3D
data. DepthContrast pretrains high capacity models for 3D
recognition tasks, and leverages large scale 3D data that
may not have multi-view information. We show state-of-
the-art performance on detection and segmentation bench-
marks, outperforming all prior work on detection. We pro-
vide crucial insights that make our simple implementation
work well - training jointly with multiple input data for-
mats and novel data augmentations. We hope DepthCon-
trast helps future work in 3D self-supervised learning.
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