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Figure 1: Our proposed Video Instance Lane Detection (VIL-100) dataset contains different real traffic scenarios, and
provides the high-quality instance-level lane annotations.

Abstract

Lane detection plays a key role in autonomous driving.
While car cameras always take streaming videos on the
way, current lane detection works mainly focus on individ-
ual images (frames) by ignoring dynamics along the video.
In this work, we collect a new video instance lane detection
(VIL-100) dataset, which contains 100 videos with in total
10,000 frames, acquired from different real traffic scenar-
ios. All the frames in each video are manually annotated to
a high-quality instance-level lane annotation, and a set of
frame-level and video-level metrics are included for quanti-
tative performance evaluation. Moreover, we propose a new
baseline model, named multi-level memory aggregation net-
work (MMA-Net), for video instance lane detection. In our
approach, the representation of current frame is enhanced
by attentively aggregating both local and global memory
features from other frames. Experiments on the new col-
lected dataset show that the proposed MMA-Net outper-
forms state-of-the-art lane detection methods and video ob-
ject segmentation methods. We release our dataset and code
at https://github.com/yujun0-0/MMA-Net.

1. Introduction
In recent years, autonomous driving has received numer-

ous attention in both academy and industry. One of the most

*Yujun Zhang and Lei Zhu are the joint first authors of this work.
†Wei Feng (wfeng@ieee.org) is the corresponding author.

fundamental and challenging task is lane detection in traf-
fic scene understanding. Lane detection assists car driving
and could be used in advanced driving assistance system
(ADAS) [28, 27, 42]. However, accurately detecting lanes
in real traffic scenarios is very challenging, due to many
harsh scenarios, e.g., severe occlusion, bad weather condi-
tions, dim or dazzle light.

With the advancement of deep learning, lane detection
has achieved significant progress in recent years by annotat-
ing and training on large-scale real data [25, 37, 14, 30, 33].
However, most of the existing methods are focused on
image-based lane detection, while in autonomous driving,
car camera always collects streaming videos. It is highly
desirable to extend deep-learning based lane detection from
image level to video level since the latter can leverage tem-
poral consistency to resolve many in-frame ambiguities,
such as occlusion, lane damage etc. The major obstacle
for this extension is the lack of a video dataset with ap-
propriate annotations, both of which are essential for deep
network training. Existing lane datasets (e.g., TuSimple
[43], Culane [33], ApolloScape [15] and BDD100K [49])
either support only image-level detection or lack temporal
instance-level labels. However, according to the United Na-
tions Regulation No.157 [1] for autonomous and connected
vehicles, continuous instance-level lane detection in videos
is indispensable for regular/emergency lane change, trajec-
tory planning, autonomous navigation, etc.

To address above issues, in this work, we first collect a
new video instance lane detection (VIL-100) dataset (see
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Figure 1 for examples). It contains 100 videos with 10,000
frames, covering 10 common line-types, multiple lane in-
stances, various driving scenarios, different weather and
lighting conditions. All the video frames are carefully an-
notated with high-quality instance-level lane masks, which
could facilitate the community to explore further in this
field. Second, we develop a new baseline model, named
multi-level memory aggregation network (MMA-Net).
Our MMA-Net leverages both local memory and global
memory information to enhance multiple CNN features ex-
tracted from the current key frame. To be specific, we
take past frames of the original video to form a local
memory and past frames of a shuffled ordered video as a
global memory, and the current video frame as the query
is segmented using features extracted from video frames
of both local memory and global memory. A local and
global memory aggregation (LGMA) module is devised
to attentively aggregate these multi-level memory features,
and then all CNN features are integrated together to pro-
duce the video instance lane detection results. Finally,
we present a comprehensive evaluation of 10 state-of-
the-art models on our VIL-100 dataset, making it the
most complete video instance-level lane detection bench-
mark. Results show that our MMA-Net significantly out-
performs existing methods, including single-image lane de-
tectors [25, 37, 14, 30, 33], and video instance object seg-
mentation methods [18, 50, 32, 24, 44].

2. Related Works
Lane detection datasets. Large-scale datasets are impor-
tant for deep learning methods. Several public datasets,
such as Caltech-Lanes [2], TuSimple [43], Culane [33],
ApolloScape [15] and BDD100K [49], have been used for
lane detection study. Table 1 provides a comparison of
VIL-100 and other public available datasets from different
perspectives. Caltech-Lanes only contains 1,224 images
and is usually not used for training deep networks, while
TuSimple and Culane provide large-scale image data with
instance-level lane annotations. However, we are interested
in video instance lane detection in this paper, for which both
TuSimple and Culane are not applicable. BDD100K and
ApolloScape are two large-scale video datasets for driving.
However, these two datasets do not provide annotations of
lane instances – on each frame, multiple lanes of the same
kind are not separated and annotated with one label. Lane-
instance detection is important for regular/emergency lane
change, trajectory planning, autonomous navigation in au-
tonomous driving, and we provide video-level lane-instance
annotations on our collected VIL-100 dataset. In our VIL-
100, we increase six lanes annotated at a time by including
more complex scenes. In addition, we annotate the rela-
tive location of each lane to the camera-mounted vehicle in
VIL-100 and such location information was not annotated

on any previous datasets.
Lane detection. Early lane detection methods mostly
relied on hand-crafted features, such as color [41, 45],
edge [9, 22, 27] and texture [23]. Recently, the use of deep
neural networks [39, 16, 30] has significantly boosted the
lane detection performance. In VPGNet [20], vanishing
points were employed to guide a multi-task network train-
ing for lane detection. SCNN [33] specifically considers the
thin-and-long shape of lanes by passing message between
adjacent rows and columns at a feature layer. SAD [14] and
inter-region affinity KD [13] further adopt the knowledge
distillation to improve lane detection. PolyLaneNet [3] for-
mulates the instance-level lane detection as a polynomial-
regression problem, and UFSA [37] provides ultra-fast lane
detection by dividing the image into grids and then scanning
grids for lane locations. Recently, GAN [10] and Trans-
former [25] are also used for detecting lanes. Different from
the above methods that detect lanes from individual im-
ages, this paper addresses video lane detection, for which
we propose a new VIL-100 dataset and a baseline MMA-
NET method.
Video object segmentation. General-purpose video ob-
ject segmentation (VOS) methods can also be adapted for
video lane detection. Existing VOS methods can be di-
vided into two categories: zero-shot methods and one-
shot methods. They differ in that the latter requires the
true segmentation on the first frame while the former does
not. For zero-shot VOS, traditional methods are usually
based on heuristic cues of motion patterns [19, 31], pro-
posals [21, 36] and saliency [8, 47]. Recent deep-learning
based methods include the two-stream FCN [7, 17] that in-
tegrates the target appearance and motion features. Recur-
rent networks [34, 44] are also used for video segmentation
by considering both spatial and temporal consistency. For
the one-shot VOS, earlier methods usually compute classi-
cal optical flow [29, 11, 46] for inter-frame label propaga-
tion. Recent deep-network based methods [4, 38, 32, 18, 50]
include GAM [18], which integrates a generative model
of the foreground and background appearance to avoid on-
line fine-tuning. TVOS [50] suggests a deep-learning based
approach for inter-frame label propagation by combining
the historical frames and annotation of the first frame.
STM [32] uses the memory network to adaptively select
multiple historical frames for helping the segmentation on
the current frame. STM exhibits superior performance on
many available tasks and we take it as the baseline to de-
velop our proposed MMA network.

3. Our Dataset

3.1. Data Collection and Split

VIL-100 dataset consists of 100 videos, 100 frames per
video, in total 10,000 frames. The fps rate of all the videos
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Table 1: Comparisons of our dataset and existing lane detection datasets. ‘#Frames’ column shows the number of annotated-
frames and the total number of frames. While TuSimple provides a video dataset, it only annotates the last frame of each
video and supports image-level lane detection.

Dataset Lane detecion on Size Diversity

#Videos #Frames Average
Length

Instance-level
Annotation

Maximum
#Lanes

Lane
Location Line-type Scenario Resolution

Caltech Lanes
2008 [2] Video 4

1224/
1224 - ! 4 - -

light traffic,
day 640 × 480

TuSimple
2017 [43] Image 6.4K

6.4K/
128K 1s ! 5 - -

light traffic,
day 1280 × 720

Culane
2017 [33] Image -

133K/
133K - ! 4 - -

multi-weather,
multi-traffic scene,

day & night
1640 × 590

ApolloScape
2019 [15] Video 235

115K/
115k 16s % - - 13

multi-weather,
multi-traffic scene,

day & night
3384 × 2710

BDD100K
2020 [49] Video 100K

100K/
120M 40s % - - 11

multi-weather,
multi-traffic scene,

day & night
1280 × 720

VIL-100(ours)
2021 Video 100

10K/
10K 10s ! 6 8 10

multi-weather,
multi-traffic scene,

day & night

640 × 368
∼

1920 × 1080

(a) (b)

Figure 2: (a) Co-occurrence of different scenarios. (b) Sce-
nario statistics of the proposed VIL-100.
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Figure 3: (a) Distributions of 10 line-types in our VIL-100.
(b) Video frame statistics of the number of annotated lanes
in our VIL-100.

is 10, by down-sampling from 30fps videos. Among these
100 videos, 97 are collected by monocular forward-facing
camera mounted near the rear-view mirror. The remaining 3
videos are collected from Internet and they are taken in hazy
weather, which increases the complexity and reality of the
collected dataset. We consider 10 typical scenarios in data
collection: normal, crowded, curved road, damaged road,
shadows, road markings, dazzle light, haze, night, cross-
road. Other than the normal one, the latter nine of them
usually bring more challenges to lane detection. We split
the dataset to training set and test set according to the ratio
of 8:2, and all 10 scenarios are presented in both training
and test sets. This can facilitate the consistent use of and
fair comparison of different methods on our dataset.

3.2. Annotation

For each video, we place a sequence of points positioned
along the center line of each lanes in each frame and store
them in json-format files. Points along each lane are stored
in one group, which provides the instance-level annotation
in our work. We then fit each group of points into a curve
by third-order polynomials, and expand it into a lane-region
with a certain width. Empirically, on 1,920× 1,080 frames,
we select the width to be 30 pixels. For lower-resolution
frames, the width is reduced proportionally. We further an-
notate each lane as one of the 10 line-types, i.e., single white
solid, single white dotted, single yellow solid, single yellow
dotted, double white solid, double yellow solid, double yel-
low dotted, double white solid dotted, double white dotted
solid, double solid white and yellow. In each frame, we
also assign an number label to reflect its relative position
to the ego vehicle, i.e., an even label 2i indicates the i-th
lane to the right of vehicle while an odd label 2i − 1 indi-
cates the i-th lane to the left of vehicle. In VIL-100, we set
i = 1, 2, 3, 4 that enables us to annotate as many as eight
lanes in a frame.

3.3. Dataset Features and Statistics

While we consider 10 scenarios in data collection, mul-
tiple scenarios may co-occur in the same video, or even in
the same frame. Actually 17% of the video frames contain
multiple scenarios, and Figure 2 (a) shows the frame-level
frequency of such co-occurrence of the 10 scenarios in VIL-
100. Meanwhile, one scenario may occur only in part of the
video. For example, in video, the scenario may change from
‘normal’ to ‘crossroad’, and then get back to ‘normal’ again
in the frames corresponding to ‘crossroad’, there should be
no lane detected. Figure 2 (b) shows the total number of
frames for each scenario – a frame with co-occurred sce-
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Figure 4: The schematic illustration of our multi-level memory aggregation network (MMA-Net) for video instance lane
detection. “LGMA” denotes the local-global memory aggregation module while “MR” module is the memory read module.

narios is counted for all present scenarios.
As shown in Table 1, our VIL-100 contains 10 line-types

and provides 6 annotated lanes at most in video frames.
Specifically, Figure 3(a) shows the number of annotated
lanes for 10 line-types,while Figure 3(b) presents the num-
ber of video frames with different annotated lanes, show-
ing that 3,371 video frames have 5 annotated lanes and 13
frames have 6 annotated lanes in our VIL-100.

4. Proposed Method

Figure 4 shows the schematic illustration of our multi-
level memory aggregation network (MMA-Net) for video
instance lane detection. Our motivation is to learn memory-
based features to enhance low-level and high-level features
of each target video frame for video instance lane detec-
tion. The memory features are obtained by integrating a lo-
cal attentive memory information from the input video and a
global attentive memory information from a shuffled video.

Our MMA-Net starts by randomly shuffling an ordered
video index sequence {1, ..., T} of the input video (T
frames) to obtain a shuffled index sequence, which is then
utilized to generating a shuffled video by taking all corre-
sponding video frames of the input video based on the shuf-
fled video index sequence. To detect lane regions of a tar-
get video frame (i.e., It of Figure 4), we then take five past
frames ({It−5, It−4, ..., It−1}) of the original video and five
past frames ({Ît−5, Ît−4, ..., Ît−1}) of the shuffled video as
the inputs. Then, we pass each video frame to a CNN en-
coder consisting of four CNN layers to obtain a high-level

feature map (H) and a low-level feature map (L). By doing
so, we can construct a local memory (denoted as Ml) by
storing five low-level features and five high-level features
from {It−5, It−4, ..., It−1}, and form a global memory (de-
noted as Mg) to contain five low-level features and five
high-level features from {Ît−5, Ît−4, ..., Ît−1}. After that,
we develop a local-global memory aggregation (LGMA)
module to integrate all low-level features at Ml and Mg ,
and another LGMA module to fuse all high-level features at
Ml andMg . We use Lma and Hma to denote output fea-
tures of two LGMA modules. Then, we pass Lma and the
low-level features Lt of the target video frame It to a mem-
ory read (MR) module for enhancing Lt by computing their
non-local similarities. We also refine the high-level features
Ht of the target video frame It by passing it and Hma into
another MR module. Finally, we follow other memory net-
works [32] to adopt a U-Net decoder to progressively fuse
features at different CNN layers and predict a video instance
lane detection map for the target video frame It.

4.1. Local and Global Memory Aggregation Module

Existing memory networks [32, 5, 26, 40, 48] utilized a
regular sampling on every N frames to include close and
distant frames, but all sampled frames are ordered, and ex-
tracted features may depend so much on temporal informa-
tion. In contrast, we devise a local-global memory aggre-
gation (LGMA) module to utilize five frames from a shuf-
fled video in global memory to remove the temporal order
and enhance the global semantic information for detecting
lanes. More importantly, due to varied contents of differ-
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Figure 5: Schematic illustration of (a) our local and global memory aggregation (LGMA) module, and (b) our attention block.
These input five features of LGMA module can be low-level features or high-level features; see Figure 4. And these input
features {Z1, Z2, . . . , Z5} of our attention block can be these five key maps or five value maps of our LGMA module.

ent video frames, memory features from different frames
should have varied contributions for helping the current
video frame to identify the background objects. Hence, we
leverage an attention mechanism to learn attention maps to
automatically assign different weights on both local mem-
ory features and global memory features.

Figure 5 (a) shows the schematic illustration of the devel-
oped LGMA module, which takes five features from the in-
put video and five features from the shuffled video. We first
follow the original memory network [32] to extract a pair
of key and value maps by applying two 3×3 convolutional
layers on each input feature map. Then, we pass key maps
of the local memory to an attention block for a weighted
average on them, fuse key maps of the global memory by
passing them into another block, add these features obtained
from two attention block to produce a output key map (de-
noted as Zk

att) of the LGMA module. Meanwhile, we gener-
ate of the output value map (denoted as Zv

att) of our LGMA
module by adding these generated features of two attention
blocks, which aim to aggregate the value maps of the local
memory and the global memory, respectively. Mathemat-
ically, the output key map Zk

att and the output value map
Zv

att of our LGMA module are computed as:

Zk
att = fatt(k

L
1 ,k

L
2 , . . . ,k

L
5 ) + fatt(k

G
1 ,kG

2 , . . . ,kG
5 ) ,

Zv
att = fatt(v

L
1 ,v

L
2 , . . . ,v

L
5 ) + fatt(v

G
1 ,vG

2 , . . . ,vG
5 ) ,

(1)
where fatt(·) denotes an attention block to atten-

tively integrate memory features. {kL
1 ,k

L
2 , . . . ,k

L
5} and

{vL
1 ,v

L
2 , . . . ,v

L
5 } denote key maps and value maps of five

input features of the local memory. {kG
1 ,kG

2 , . . . ,kG
5 } and

{vG
1 ,vG

2 , . . . ,vG
5 } are key maps and value maps of five in-

put features of the global memory. As shown in our frame-
work of Figure 4, we pass these low-level features of both
the local memory and the global memory into a LGMA
module to aggregate them for generating a pair of key map

and value map (denoted as L(Zk
att) and L(Zv

att)). Also, an-
other LGMA module is devised to aggregate the high-level
features of both the local memory and the global memory,
and these two output key and value maps are denoted as
G(Zk

att) and G(Zv
att); see Figure 4.

Attention block. Figure 5 (b) shows the developed atten-
tion block to attentively integrate input five feature maps
{Z1, Z2, . . . , Z5}, which can be the five key maps or five
value maps features of Figure 5 (a). Specifically, we first
concatenate five input maps and then utilize a 1×1 convolu-
tional layer, two successive 3×3 convolutional layer, a 1×1
convolutional layer, and a Softmax function on the concate-
nated feature map to produce an attention map W with five
feature channels. Then, we multiply each channel of W
with these input five maps, and then we add these multipli-
cation results together to produce an output map (Zatt) of
the attention block. Hence, Zatt is computed as

Zatt =

5∑
i=1

(Wi

⊗
Zi) , (2)

where {Z1, Z2, . . . , Z5} denotes all five input maps of our
attention block, and they can be five key maps or five value
maps of LGMA module; see Figure 5 (a). Wi is the i-th
channel of the attention map W.

⊗
is the multiplication of

Wi and Zi.

4.2. Implementation Details

Memory read module. Following the original memory
network [32], we also develop a memory read (MR) module
to retrieve the relevant memory information (i.e, the key and
value map of our LGMA module; see Figure 5 (a)) for the
query frame (i.e., the target video frame It of Figure 4).
Specifically, we first apply two 3×3 convolutional layers on
features of the query frame It to obtain a pair of key map
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and value map, Then, the MR module first obtains an non-
local affinity matrix by computing similarities between all
pixels of the output key map of our LGMA module and the
key map of It. After that, we multiple the affinity matrix
with the output value map of our LGMA module, and then
concatenate the multiplication result with the value map of
It to produce the output features of the MR module.

Decoder. As shown in Figure 4, our network employs two
memory read (MR) modules to read the corresponding at-
tentive memory features to enhance features at the 3rd CNN
layer and the 4-th CNN layer. After that, the decoder of our
network takes the output features of two MR modules to
predict the instance-level lane detection result of the target
video frame It. To do so, we first compress the output fea-
tures of two MR modules to have 256 channels by a convo-
lutional layer and a residual block. Then, three refinement
blocks (see [32] for the details of the refinement block) are
employed to gradually fuse two compressed feature maps
and these two encoder features at the first two CNN layer,
and each refinement block upscales the spatial resolution by
a factor of two. Finally, we follow [32] to produce the video
instance-level lane detection result from the output features
of the last refinement block.

Our training procedure. Like [32], we first train the fea-
ture extraction backbone (i.e., encoder of Figure 4) of our
network to extract features for each video frame. Specif-
ically, we take the past two frames (only from the input
video) of the current video frame (query frame) to construct
a local memory, and then employ a memory read (MR)
module to read the local memory feature for producing a
instance-level lane detection result of the query frame. After
that, we take five past frames from the input video and five
past frames of a shuffled video of the current video frame
(query frame), and the encoder trained in the first training
stage to obtain their feature maps, and then follow the net-
work pipeline of Figure 4 to predict an instance-level lane
detection result of the target video frame to train our net-
work. In these two training stages, we empirically add a
cross entropy loss and a IoU loss to compute the loss of
the predicted instance-level lane map and the correspond-
ing ground truth for training.

Training parameters. We implement our MMA-Net using
Pytorch and train our network on a NVIDIA GTX 2080Ti.
In the first training stage, we initialize the feature extraction
backbone by using pre-trained ResNet-50 [12], and employ
Adam optimizer with a learning rate of 10−5, a momentum
value of 0.9, and a weight decay of 5× 10−4. In the second
training stage, stochastic gradient descent optimizer is em-
ployed to optimize the whole network with the learning rate
as 10−3, a momentum value of 0.9, a weight decay of 10−6,
and a mini-batch size of 1. The first training stage takes
about 14 hours with 100 epochs while the second training

stages takes about 7 hours with 50 epochs.

5. Experiments
Dataset. Currently, there is no benchmark dataset dedi-
cated for training video instance lane detection by annotat-
ing instance-level lanes of all frames in videos. With our
VIL-100, we test the video instance lane detection perfor-
mance of our network and compared methods.

Evaluation metrics. To quantitatively compare different
methods, we first employ six widely-used image-level met-
rics, including three region-based metrics and three line-
based metrics. Three region-based metrics [33, 6] are
mIoU, F1(IoU>0.5) (denoted as F10.5), and F1(IoU>0.8)
(denoted as F10.8), while three line-based metrics are Ac-
curacy, FP, and FN. Apart from image-level metrics [43],
we also introduce video-level metrics to consider the tem-
poral stability of the segmentation results for further quan-
titatively comparing different methods. Video-level metrics
areMJ , OJ ,MF , OF , andMT ; please refer to [35] for
definitions of these video-level metrics. In general, a bet-
ter video instance lane detection method shall have larger
mIoU, F10.5, F10.8, and accuracy scores, as well as smaller
FP and FN scores. According to [35], a better video in-
stance segmentation method has larger scores for all video-
based metrics.

Comparative methods. To evaluate the effectiveness of
the developed video instance lane detection method, we
compare it against 10 state-of-the-art methods, including
LaneNet [30], SCNN [33], ENet-SAD [14], UFSA [37],
LSTR [25], GAM [18], RVOS [44], STM [32], AFB-
URR [24] and TVOS [50]. Among them, LaneNet, SCNN,
ENet-SAD, UFSA, and LSTR are image-level lane detec-
tion methods, while GAM, RVOS, STM, AFB-URR and
TVOS are instance-level video object detection. Since our
work focuses on video instance lane detection, we do not
include video binary segmentation methods (e.g., video
salient object detection, video shadow detection) for com-
parisons. For all comparing methods, we use their public
implementations, and re-train these methods on our VIL-
100 dataset for a fair comparison.

5.1. Comparisons with State-of-the-art Methods

Quantitative comparisons. Table 2 reports six image-level
quantitative results of our network and all compared meth-
ods. Basically, we can observe that lane detection meth-
ods have a better performance on line-based metrics, since
they often utilize line-related information (e.g., shape and
direction) to infer the lines. By contrast, the VOS meth-
ods formulate the lane detection task as a region-based seg-
mentation with abjectness constraint and thus perform bet-
ter on region-based metrics. Specifically, LaneNet has the
best mIoU score of 0.633, STM has the best F10.5 of 0.756,
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Table 2: Quantitative comparisons of our network and state-of-the-art methods in terms of image-based metrics.

Methods Year Region Line
mIoU↑ F10.5 ↑ F10.8 ↑ Accuracy ↑ FP ↓ FN ↓

LaneNet [30] 2018 0.633 0.721 0.222 0.858 0.122 0.207
SCNN [33] 2018 0.517 0.491 0.134 0.907 0.128 0.110

ENet-SAD [14] 2019 0.616 0.755 0.205 0.886 0.170 0.152
UFSA [37] 2020 0.465 0.310 0.068 0.852 0.115 0.215
LSTR [25] 2021 0.573 0.703 0.131 0.884 0.163 0.148
GAM [18] 2019 0.602 0.703 0.316 0.855 0.241 0.212
RVOS [44] 2019 0.294 0.519 0.182 0.909 0.610 0.119
STM [32] 2019 0.597 0.756 0.327 0.902 0.228 0.129

AFB-URR [24] 2020 0.515 0.600 0.127 0.846 0.255 0.222
TVOS [50] 2020 0.157 0.240 0.037 0.461 0.582 0.621

MMA-Net (Ours) 2021 0.705 0.839 0.458 0.910 0.111 0.105

(a) Input frames (e) GAM(d) STM(b) Ground truths (c) Our method (f) LaneNet (g) ENet-SAD (h) UFSA (i) LSTR

Figure 6: Visual comparison of video instance lane detection maps produced by our network (3rd column) and state-of-the-art
methods (4-th to 9-th columns) against ground truths (2nd column). Please refer to supp. material for more comparisons.

Table 3: Quantitative comparisons of our network and state-
of-the-art methods in terms of video-based metrics.

Methods MJ ↑ OJ ↑ MF ↑ OF ↑ MT ↑
GAM [18] 0.414 0.203 0.721 0.781 0.568
RVOS [44] 0.251 0.251 0.251 0.251 0.251
STM [32] 0.656 0.626 0.743 0.763 0.656

AFB-URR [24] 0.308 0.251 0.415 0.435 0.362
TVOS [50] 0.255 0.251 0.257 0.256 0.255
MMA-Net

(Ours) 0.679 0.735 0.848 0.873 0.764

and the best F10.8 of 0.327. Regarding Accuracy, FP, and
FN, RVOS has the best Accuracy of 0.909; UFSA has the
best FP of 0.115; and SCNN has the best FN of 0.110; see
Table 2. Compared to these best scores of different metrics,
our method has a mIoU improvement of 11.37%, a F10.5

improvement of 10.98%, a F10.8 improvement of 40.06%,
a Accuracy improvement of 0.11%, a FP improvement of
3.48%, and a FN improvement of 4.55%.

Moreover, Table 3 summaries video-based metric scores

of our network and compared methods. Among results of
compared video-based methods, we can find that GAM has
the largest OF score (i.e., 0.781), while STM has the best
performance of other four video-based metrics. These cor-
responding best four values of STM areMJ of 0.656, OJ
of 0.626, MF of 0.743, and MT of 0.656. More impor-
tantly, our method achieves a further improvement for all
five video-based metrics, showing that our method can more
accurately segment lanes of different videos. To be specific,
our method improvesMJ from 0.656 to 0.679; OJ from
0.626 to 0.735; MF from 0.743 to 0.848; OF from 0.781
to 0.873; andMT from 0.656 to 0.764.

Visual comparisons. Figure 6 visually compares video in-
stance lane detection maps produced by our network and
compared methods. Apparently, compared methods ne-
glect some lane regions or wrongly recognized parts of
road regions as target lane regions, as shown in 4-th to 9-
th columns of Figure 6. Moreover, instance labels of dif-
ferent lanes are also mistakenly detected in video instance
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Table 4: Quantitative results of our network with different
sampling numbers.

mIoU ↑ F10.5 ↑ Accuracy ↑ FP ↓ FN ↓
3 frames 0.678 0.816 0.904 0.125 0.116

5 frames (ours) 0.715 0.838 0.907 0.106 0.111
7 frames 0.705 0.839 0.910 0.111 0.105

Table 5: Quantitative results of our network and constructed
baseline networks of ablation study in terms of image-level
and video-level metrics.

Measure Basic +LM +GM +LGM Ours
mIoU ↑ 0.638 0.688 0.670 0.693 0.705
F10.5 ↑ 0.758 0.790 0.796 0.822 0.839
F10.8 ↑ 0.402 0.425 0.423 0.450 0.458

Accuracy ↑ 0.857 0.862 0.887 0.897 0.910
FP ↓ 0.195 0.128 0.150 0.122 0.111
FN ↓ 0.173 0.163 0.136 0.124 0.105
MT ↑ 0.708 0.706 0.721 0.760 0.764
MJ ↑ 0.627 0.632 0.640 0.678 0.679
OJ ↑ 0.664 0.676 0.679 0.729 0.735
MF ↑ 0.789 0.781 0.802 0.842 0.848
OF ↑ 0.811 0.795 0.826 0.865 0.873

lane detection results of compared methods. On the con-
trary, our method can more accurately detect lane regions
and has correct instance labels for all lanes, and our results
are more consistent with the ground truths of Figure 6 (b).
In addition, for these challenging cases (i.e, traffic scenes
at night or haze weather conditions) at the last two rows,
our method also predicts more accurate lane detection maps
than competitors, showing the robustness and effectiveness
of our video instance lane detection method.
Sampling number. Existing VOS methods usually sam-
pled 3/5/7 (less than 10) neighboring frames as the input
due to the limitation of GPU memory, while memory-based
methods (e.g., [30]) required 20 frames in the memory to
process a video with 100 frames. Moreover, we also pro-
vide an experiment of our network with 3/5/7 frames in
the Table 4, where our method with 5 frames outperforms
that with 3 frames significantly, and is comparable with the
one employing 7 frames. By balancing the GPU memory
and computation consuming, we empirically use 5 frames
in our method.

5.2. Ablation Study

Basic network design. Here, we construct four baseline
networks. The first one (denoted as “Basic”) is to remove
the attention mechanism from the local memory, the whole
global memory, and the multi-level aggregation mechanism
from our network. It means that “Basic” is equal to the
original STM but removes the mask initialization of the
first video frame. The second one (“+LM”) is to add the
attention mechanism to the local memory of “Basic” to
weighted average local memory features, while the third

one (“+GM”) is to add the attentive global memory to “Ba-
sic”. The last baseline network (“+LGM”) is to fuse the
global memory and the local memory together into “Basic”.
It means that we remove the multi-level integration mecha-
nism from our network to construct “LGM”. Table 5 reports
image-based and video-based metric results of our method
and compared baseline networks.
Effectiveness of the attention mechanism in memory.
As shown in Table 5, “+LM” outperforms “Basic” on all
image-level and video-level metrics. It indicates that lever-
aging the attention mechanism to assign different weights
for all memory features, which enables the local memory to
extract more discriminative memory features for the query
feature refinement, thereby resulting in a superior improv-
ing video instance lane detection performance.
Effectiveness of the global memory. “GM” has a better
performance of image-based metrics and video-based met-
rics than “Basic”, demonstrating that the global memory has
a contribution to the superior performance of our method.
Moreover, “LGM” has superior metrics on all metrics over
“LM” and “GM”. It shows that aggregating the local mem-
ory and the global memory can further enhance the query
features of the target video frame and thus incurs a superior
video instance lane detection performance.
Effectiveness of our multi-level mechanism. As shown
in the last two columns of Table 5, our method has larger
mIoU, F10.5, F10.8, and Accuracy, smaller FP and FN
scores, as well as larger video-based metric (MJ , OJ ,
MF , OF , andMT ) scores than “+LGM”. It indicates that
applying our LGMA modules on low-level and high-level
features of the target video frame enable our network to bet-
ter detect video instance lanes.

6. Conclusion
To facilitate the research on video instance lane detec-

tion, we collected a new VIL-100 video dataset with high-
quality instance-level lane annotations over all the frames.
VIL-100 consists of 100 videos with 10, 000 frames cover-
ing various line-types and traffic scenes. Meanwhile, we de-
veloped a video instance lane detection network MMA-Net
by aggregating local attentive memory information of the
input video and global attentive memory information of a
shuffled video as a new baseline on VIL-100. Experimental
results demonstrated that MMA-Net outperforms state-of-
the-art methods by a large margin. We agree that more di-
verse scenes/viewpoints could enhance the dataset, and we
definitely continue to collect more data in our future work.
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