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Abstract

Collecting labeled data for the task of semantic segmen-
tation is expensive and time-consuming, as it requires dense
pixel-level annotations. While recent Convolutional Neural
Network (CNN) based semantic segmentation approaches
have achieved impressive results by using large amounts of
labeled training data, their performance drops significantly
as the amount of labeled data decreases. This happens be-
cause deep CNNs trained with the de facto cross-entropy
loss can easily overfit to small amounts of labeled data. To
address this issue, we propose a simple and effective con-
trastive learning-based training strategy in which we first
pretrain the network using a pixel-wise, label-based con-
trastive loss, and then fine-tune it using the cross-entropy
loss. This approach increases intra-class compactness and
inter-class separability, thereby resulting in a better pixel
classifier. We demonstrate the effectiveness of the proposed
training strategy using the Cityscapes and PASCAL VOC
2012 segmentation datasets. Our results show that pretrain-
ing with the proposed contrastive loss results in large per-
formance gains (more than 20% absolute improvement in
some settings) when the amount of labeled data is limited.
In many settings, the proposed contrastive pretraining strat-
egy, which does not use any additional data, is able to match
or outperform the widely-used ImageNet pretraining strat-
egy that uses more than a million additional labeled images.

1. Introduction
In the recent past, various approaches based on Convo-

lutional Neural Networks (CNNs) [6, 8, 64] have reported
excellent results on several semantic segmentation datasets
by first pretraining their models on the large-scale Ima-
geNet [13] classification dataset and then fine-tuning them
with large amounts of pixel-level annotations. This training

*This work was done when Xiangyun Zhao was interning at Google.

strategy has several disadvantages: First, collecting a large,
pixel-level annotated dataset is time-consuming and expen-
sive. For example, the average time taken to label a single
image in the Cityscapes dataset is 90 minutes [11]. Second,
the ImageNet dataset can only be used for non-commercial
research, making the ImageNet pretraining strategy unsuit-
able for building real-world products. Collecting a propri-
etary large-scale classification dataset similar to ImageNet
would be expensive and time-consuming. Third, ImageNet
pretraining does not necessarily help segmentation of non-
natural images, such as medical images [44].

To reduce the need for large amounts of dense pixel-level
annotations and the additional large-scale labeled ImageNet
dataset, this work focuses on training semantic segmenta-
tion models using only a limited number of pixel-level an-
notated images (no ImageNet dataset). This is challenging
since CNN models can easily overfit to limited training data.

Typical semantic segmentation models consist of a deep
CNN feature extractor followed by a pixel-wise softmax
classifier, and are trained using a pixel-wise cross-entropy
loss. While these models perform well when trained with a
large number of pixel-level annotated images, their perfor-
mance drops significantly as the number of labeled train-
ing images decreases (see Fig. 1). This happens because
CNNs trained with the cross-entropy loss can easily overfit
to small amounts of labeled data, as the cross-entropy loss
focuses on creating class decision boundaries and does not
explicitly encourage intra-class compactness or large mar-
gins between classes [15, 37, 49].

To address this issue, we propose to first pretrain the
feature extractor using a pixel-wise, label-based contrastive
loss (referred to as contrastive pretraining), and then fine-
tune the entire network including the pixel-wise softmax
classifier using the cross-entropy loss (referred to as soft-
max fine-tuning). This approach increases both intra-class
compactness and inter-class separability as the label-based
contrastive loss [32] encourages the features of pixels from
the same class to be close to each other and the features of
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Figure 1. When trained with pixel-wise cross-entropy loss, the per-
formance of a semantic segmentation model drops significantly as
the number of labeled training images decreases. Here, we use a
DeepLabV3+ [8] model with the ResNet50-based encoder of [7].

pixels from different classes to be far away. The increased
intra-class compactness and inter-class separability natu-
rally lead to a better pixel classifier in the fine-tuning stage.
Figures 2 and 3 show the distributions of various classes in
the softmax input feature spaces of models trained with the
cross-entropy loss and the proposed strategy, respectively,
using 2118 labeled images from the PASCAL VOC 2012
dataset. The mean IOU values of the corresponding models
on the PASCAL VOC 2012 validation dataset are 39.1 and
62.7, respectively. The class support regions are more com-
pact and separated when trained with the proposed strategy,
leading to a better performance. We use t-SNE [52] for gen-
erating the visualizations.

Various existing semi-supervised and weakly-supervised
semantic segmentation approaches also focus on reducing
the need for pixel-level annotations by leveraging additional
unlabeled images [5, 20, 27, 41] or weaker forms of anno-
tations such as bounding boxes [12, 31, 42, 47] and image-
level labels [1, 34, 42]. In contrast to these approaches, the
proposed contrastive pretraining strategy does not use any
additional data, and is complimentary to them.

Pixel-wise cross-entropy loss ignores the relationships
between pixels. To address this issue, region-based loss
functions such as region mutual information loss [65] and
affinity field loss [30] have been proposed. Different from
these loss functions which model pixel relationships in the
label space, the proposed contrastive loss models pixel rela-
tionships in the feature space. Also, while these loss func-
tions only model relationships between pixels within a local
neighborhood, the proposed loss encourages the features of
same class pixels to be similar and features of different class
pixels to be dissimilar irrespective of their image locations.

Some recent works such as [4, 43, 55, 58, 59] also used
pixel-wise contrastive loss for the task of semantic segmen-
tation. However, these works focus on leveraging unlabeled
data through self-supervised contrastive learning, and make

Figure 2. Distribution of various classes in the softmax input fea-
ture space of a model trained using only cross-entropy loss on
2118 labeled images from the PASCAL VOC 2012 dataset.

Figure 3. Distribution of various classes in the softmax input fea-
ture space of a model trained using the proposed training strategy
on 2118 labeled images from the PASCAL VOC 2012 dataset.

use of the labels only in the fine-tuning stage. In contrast,
we focus on supervised contrastive learning, and make use
of the labels in both pretraining and fine-tuning stages.

We perform experiments on two widely-used semantic
segmentation benchmark datasets, namely, Cityscapes and
PASCAL VOC 2012, and show that pixel-wise, label-based
contrastive pretraining results in large performance gains
when the amount of labeled data is limited.

Our main contributions are as follows:
• New loss functions: We extend supervised contrastive

learning [32] to the task of semantic segmentation.
We propose and evaluate three variants of pixel-wise,
label-based contrastive loss.

• Simple training approach: We propose a simple con-
trastive learning-based pretraining strategy for improv-
ing the performance of semantic segmentation models.
We consider the simplicity of our pretraining strategy
as its main strength since it can be easily adopted by
existing and future semantic segmentation approaches.
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• Strong results: We show that label-based contrastive
pretraining results in large performance gains on two
widely-used semantic segmentation datasets when the
amount of labeled data is limited. We also show that,
in most settings, the proposed contrastive pretrain-
ing which does not use any additional data, outper-
forms the widely-used ImageNet pretraining which
uses more than a million additional labeled images.

• Detailed analyses: We show visualizations of class
distributions in the feature spaces of trained models to
provide insights into why the proposed training strat-
egy works better (Fig. 2 and 3). We also present abla-
tion studies that justify our two-stage training strategy.

2. Related works

Self-supervised contrastive learning These approaches
learn representations in a discriminative fashion by con-
trasting positive pairs against negative pairs. Recently, sev-
eral approaches based on contrastive loss [22] have been
proposed for self-supervised visual representation learn-
ing [9, 10, 14, 24, 35, 57, 60]. These approaches treat
each instance as a class and use contrastive loss-based in-
stance discrimination for representation learning. Specif-
ically, they use augmented version of an instance to form
the positive pair and other randomly sampled instances
to form negative pairs for the contrastive loss. Some re-
cent works [29, 45] also explored hard negative mining
strategies for contrastive learning. Noting that using a
large number of negatives is crucial for the success of
contrastive loss-based representation learning, various re-
cent approaches use memory banks to store the represen-
tations [24, 51, 57]. Inspired by the effectiveness of self-
supervised contrastive learning for image-level recognition
tasks, various recent approaches extended it to pixel-level
prediction tasks [4, 43, 55, 58, 59].

Supervised contrastive learning Recently, [32] pro-
posed supervised contrastive loss for the task of image clas-
sification. This loss can be seen as a generalization of the
widely-used metric learning losses such as N-pairs [46] and
triplet [56] losses to the scenario of multiple positives and
negatives generated using class labels. Different from [32],
this work focuses on much tougher pixel-level semantic
segmentation task, and proposes three variants of pixel-
wise, label-based contrastive loss. Since collecting labeled
data for the task of semantic segmentation is difficult, we
focus on the limited labeled data setting, and show that
label-based contrastive learning is highly effective. Concur-
rent to this work, (still unpublished) [54] also introduced
a pixel-wise, label-based contrastive loss for semantic seg-
mentation. However, [54] trains segmentation models using
both cross-entropy and contrastive losses simultaneously,

which is different from our contrastive pretraining followed
by softmax fine-tuning strategy. Our experiments show that
the proposed two-stage training is more effective than joint
training. Also, [54] does not demonstrate the effectiveness
of contrastive learning in the limited labeled data setting.

Semantic segmentation Since CNNs have been intro-
duced to solve the semantic segmentation problem [17, 38],
several deep CNN-based approaches have been proposed
that gradually improved the performance [6, 7, 8, 21, 53,
61, 62, 63, 64] using large amounts of pixel-level annota-
tions. However, collecting dense pixel-level annotations is
difficult and costly.

To address this issue, several existing works use the
large-scale ImageNet classification dataset for pretraining
their models, and also leverage additional weaker forms
of supervision such as image-level labels [1, 26, 34, 42],
bounding boxes [12, 31, 42, 47], scribbles [36, 50] and
points [2], or unlabeled images [5, 19, 39, 40, 48, 67]. In
contrast to these approaches, the proposed training strategy
does not require any additional data or annotations.

Another relevant line of work includes approaches that
use region-based loss functions [30, 65] to model pixel rela-
tionships. While [30] uses a pairwise affinity loss based on
KL divergence between predicted class probabilities of two
pixels, [65] uses a region Mutual Information (MI) loss that
maximizes the MI between predicted and groundtruth dis-
tributions of patch labels. While these losses model pixel re-
lationships in the label space, the proposed contrastive loss
models pixel relationships in the feature space.

A few existing works [3, 18, 23, 33] use metric learn-
ing based on independent pairwise similarity and dissimi-
larity losses for the tasks of semantic and instance segmen-
tation. However, these works only model relationships be-
tween pixels within a local image neighborhood or an object
instance. Different from these works, the proposed con-
trastive loss models relationships between pixels irrespec-
tive of their image locations, and contrasts a similar pair
with a large number of dissimilar pairs. Also, these works
do not demonstrate the effectiveness of contrastive pretrain-
ing in the limited labeled data setting.

Recently, [28] proposed to train the feature extractor of
a semantic segmentation model by maximizing the log like-
lihood of extracted pixel features under a mixture of vMF
distributions model. During inference, they first segment
the pixel features using spherical K-Means clustering, and
then perform k-nearest neighbor search for each segment
to retrieve labels from segments in the training set. While
this approach is shown to improve the performance when
compared to the widely-used pixel-wise softmax training,
it is very complicated as it uses a two-stage expectation-
maximization algorithm for training. In comparison, the
proposed approach is simple, and can be easily adopted by
existing and future semantic segmentation approaches.
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3. Proposed approach
3.1. Pixel-wise label-based contrastive loss

In this work, we extend supervised contrastive learning
to pixel-level tasks such as semantic segmentation, and pro-
pose three pixel-wise, label-based contrastive losses to pre-
train a semantic segmentation model.

Let I denote an image and Î its distorted version (e.g.,
color jittering). Let yIp denote the class label of pixel p

in I , N I
c denote the number of pixels in I with class la-

bel c, and N I denote the total number of pixels in I . Let
f I
p be a d-dimensional, unit-normalized feature extracted

from I at pixel p, Let 1AB
pk = 1

[
yAp = yBk

]
and eAB

pk =

exp
(
fA
p · fB

k

/
τ), where τ is a temperature parameter.

Within-image loss Our within-image, pixel-wise, label-
based contrastive loss which encourages features of pixels
in an image to cluster according to their labels is given by

− 1

N I

NI∑
p=1

1

N Î
yI
p

N Î∑
q=1

1
IÎ
pq log

 eIÎpq
N Î∑
k=1

eIÎpk

 , (1)

In our experiments, image Î is generated from I by ap-
plying distortions with probability p = 0.8. Hence, for
some samples in a minibatch the contrastive loss is between
features of original and distorted pixels, and for other sam-
ples, the loss is between features of original pixels. We
compute this contrastive loss separately for each image, and
then average it across the images in a minibatch.

Cross-image loss Our cross-image, pixel-wise, label-
based contrastive loss extends the within-image loss (1) by
using additional positives from another image J . Positive
pixels from J can be interpreted as harder positives since
they come from a different image. We do not use additional
negatives from J since negatives from a different image can
be interpreted as easier negatives 1. The cross-image loss
for an image pair I and J is given by

− 1

N I

NI∑
p=1

N Î∑
q=1

1
IÎ
pq

N Î
yI
p
+N Ĵ

yI
p

log

 eIÎpq
N Î∑
k=1

eIÎpk +
N Ĵ∑
k=1

1
IĴ
pke

IĴ
pk



− 1

N I

NI∑
p=1

N Ĵ∑
q=1

1
IĴ
pq

N Î
yI
p
+N Ĵ

yI
p

log

 eIĴpq
N Î∑
k=1

eIÎpk +
N Ĵ∑
k=1

1
IĴ
pke

IĴ
pk

 .

(2)

1When we experimented with adding negatives from another image J ,
we observed some performance drop in our initial experiments.
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Figure 4. Proposed training strategy: Pixel-wise supervised con-
trastive pretraining followed by softmax fine-tuning.

For each image in a minibatch, we compute the cross-
image contrastive loss by pairing the image with another
random image from the minibatch, and average the loss
across all the images.

Batch loss We also considered a batch variant that treats
all the pixels in a minibatch as a single bag of pixels for
computing the contrastive loss (1). While one would expect
this batch variant to outperform within-image and cross-
image variants (due to interactions across multiple images),
our experimental results indicate the opposite. Please see
Section 4.4 for further details.

3.2. Proposed training strategy

Typical semantic segmentation models consist of a deep
CNN feature extractor followed by a pixel-wise softmax
classifier. We first pretrain the CNN feature extractor from
scratch with a pixel-wise, class label-based contrastive loss.
Following [9, 10, 32] we use a projection head while train-
ing with contrastive loss, i.e., the features f I

p used in loss (1)
and (2) are the outputs of a projection head rather than the
original feature extractor (see Fig. 4). After contrastive pre-
training, we discard the projection head, add a pixel-wise
softmax classifier on top of the feature extractor, and fine-
tune the entire network with pixel-wise cross-entropy loss.

Note that there is no interaction between pixels from dif-
ferent images in the within-image contrastive loss. So, it is
crucial to train the entire network in the fine-tuning stage.
While within-image loss-based contrastive pretraining en-
courages pixels within an image to cluster according to their
labels, softmax fine-tuning rearranges these clusters so that
they fall on the correct side of the decision boundary.

4. Experiments

4.1. Datasets and metrics

PASCAL VOC 2012 [16]: This dataset consists of 10,582
training, 1,449 validation, and 456 test images with annota-
tions for one background and 20 foreground object classes.
The performance is measured in terms of pixel Intersection-
Over-Union (IOU) averaged across the 21 classes.
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Figure 5. Improvement on the Cityscapes dataset due to contrastive
pretraining.

Cityscapes [11]: This dataset consists of 2975 training, 500
validation, and 1525 test images. Following the evaluation
protocol of [6], 19 semantic labels are used for evaluation,
and the void label is ignored. The performance is measured
in terms of pixel IOU averaged across the 19 classes.

All the results reported in this section correspond to the
validation splits of these datasets. Please refer to the sup-
plementary material for results on the test splits.

4.2. Model architecture

Our feature extractor follows DeepLabV3+ [8] encoder-
decoder architecture with the ResNet50-based encoder of
DeepLabV3 [7]. The output spatial resolution of the feature
extractor is four times lower than the input resolution. Our
projection head consists of three 1 × 1 convolution layers
with 256 channels followed by a unit-normalization layer.
The first two layers in the projection head use the ReLU
activation function.

4.3. Training and inference

Following [7, 8], we use 513 × 513 random crops ex-
tracted from preprocessed (random left-right flipping and
scaling) input images for training. All the models are
trained from scratch using stochastic gradient descent on
8 replicas with minibatches of size 16, momentum of 0.9,
weight decay of 4e−5, and cosine learning rate decay. When
we use softmax training without contrastive pretraining, we
use an initial learning rate of 0.03 and 600K 2 training steps
when the number of labeled images is above 2500 in the
case of PASCAL VOC 2012 dataset and above 1000 in
the case of Cityscapes dataset, and 300K training steps in
other settings3. For contrastive pretraining, we use an ini-
tial learning rate of 0.1 and 300K training steps. For soft-
max fine-tuning after contrastive pretraining, we use an ini-
tial learning rate of 0.007 and 300K training steps except

2600K steps were chosen after trying 300K, 600K and 1M with differ-
ent learning rates.
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Figure 6. Improvement on the PASCAL VOC 2012 dataset due to
contrastive pretraining.

when the number of labeled images is below 2500 in the
case of PASCAL VOC 2012. In this case, we use 50K train-
ing steps3. The temperature τ of contrastive loss is set to
0.07. We use color distortions from [9] for contrastive pre-
training, and random brightness and contrast adjustments
for softmax fine-tuning 4.

For 513 × 513 input, our feature extractor produces a
129 × 129 feature map. Since the memory complexity of
our contrastive loss is quadratic in the number of pixels, to
avoid GPU memory issues, we resize the feature map to
65 × 65 using bilinear resizing before computing the con-
trastive loss. The corresponding low-resolution label map is
obtained from the original label map using nearest neighbor
downsampling. For softmax training, we follow [8] and up-
sample the logits from 129×129 to 513×513 using bilinear
resizing before computing the pixel-wise cross entropy loss.

Since the model is fully-convolutional, during inference,
we directly run it on an input image and upsample the output
logits to input resolution using bilinear resizing.

4.4. Performance gain by contrastive pretraining

Figures 5 and 6 show the performance improvements on
the validation splits of Cityscapes and PASCAL VOC 2012
datasets, respectively, obtained by contrastive pretraining.
Both within-image and cross-image contrastive loss-based
pretraining consistently improve the performance on both
the datasets for different amounts of training data. On the
Cityscapes dataset, we see large gains (more than 4 points)
when the number of labeled training images is less than
600, and a decent gain (1.2 points) even when using the
entire training set of 2975 images. On the PASCAL VOC
2012 dataset, we see huge gains (up to about 30 points) for
all label counts, and we are able to reduce the labeling re-

3 We observed overfitting with longer training when the number of la-
beled images is low.

4Using hue and saturation adjustments from [9] while training the soft-
max classifier resulted in a slight drop in the performance.
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Figure 7. Improvement on the Cityscapes dataset due to different
pretraining strategies.

quirements by 2× while improving the performance. No-
tably, by using 1059 images, we are able to outperform the
model trained using only cross-entropy loss on 5× more
data (5295 images). These results clearly demonstrate the
effectiveness of the proposed contrastive pretraining.

Cross-image contrastive loss outperforms within-image
contrastive loss since it makes use of positives from other
images which can be seen as harder positives when com-
pared to within-image positives. In most of the settings, the
cross-image loss outperforms the within-image loss by 0.8
or more points. Specifically, on the Cityscapes dataset, the
cross-image loss outperforms the within-image loss by 1.8
points when only 343 labeled images are available.

We also conducted experiments with the batch variant of
our contrastive loss which considers all the pixels in a mini-
batch as a single bag of pixels for computing the loss (1).
Note that the memory complexity of loss (1) is quadratic in
the number of pixels. Hence, to avoid GPU memory issues,
we randomly sample 10K pixels from the entire minibatch
for computing the batch contrastive loss. Table 1 compares
the performance of the batch variant with the other two vari-
ants. While one would expect the batch variant to perform
better because of the pixel interactions across multiple im-
ages, the results indicate the opposite. Note that, while we
have contrastive loss terms for every pixel in the within-
image and cross-image variants, only a subset of pixels con-
tribute to the loss in the batch variant. We believe this to be
the reason for the poor performance of the batch variant. In
the near future, we plan to explore hybrid variants that will
have loss terms for as many pixels as possible while still
forming pixel pairs across multiple images.

The performance improvements seen on the PASCAL
VOC 2012 dataset are much higher than those seen on the
Cityscapes dataset. We conjecture that this is because of the
presence of an additional background category in the PAS-
CAL VOC 2012 dataset. This category is comprised of di-
verse visual content from a wide variety of object classes
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Figure 8. Improvement on the PASCAL VOC 2012 dataset due to
different pretraining strategies.

Table 1. Performance of different contrastive loss variants.

Dataset Cityscapes PASCAL VOC
Training images 596 images 2118 images

No contrastive loss 63.6 39.1

Batch loss (↑ 2.4) 66.0 (↑ 22.6) 61.7
Within-image loss (↑ 3.3) 66.9 (↑ 23.6) 62.7
Cross-image loss (↑ 4.2) 67.8 (↑ 24.4) 63.5

(everything other than the 20 foreground object classes).
Hence, explicit enforcement of intra-class compactness and
inter-class separability by contrastive pretraining is helping
more in the case of PASCAL VOC 2012 dataset. To verify
our conjecture experimentally, we trained the segmentation
model on PASCAL VOC 2012 dataset (2118 labeled im-
ages) ignoring the background category. When evaluated
on the foreground categories, within-image loss-based con-
trastive pretraining improved the mean IOU by 3.6 points,
which is much lower than the 23.6 points gain achieved in
the presence of background category. This suggests that the
presence of additional background category is contributing
to the huge gains on the PASCAL VOC 2012 dataset.

4.5. Comparison with ImageNet pretraining

Most of the existing semantic segmentation approaches
pretrain their models on the large-scale ImageNet classifi-
cation dataset [13] to achieve state-of-the-art results. Even
works such as [25, 66] which show that ImageNet pretrain-
ing can be omitted for the task of object detection on some
datasets, acknowledge that ImageNet pretraining is impor-
tant for semantic segmentation. While it can lead to signif-
icant performance gains, ImageNet pretraining may not be
used for building commercial products. Collecting such a
large-scale proprietary dataset is also time-consuming and
expensive. In contrast, the proposed strategy achieves per-
formance gains without using any additional data. Figures 7
and 8 compare the performances of ImageNet-pretrained
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Table 2. Comparison of different training strategies.

Strategy
Cityscapes PASCAL VOC

(596 images) (2118 images)

Only cross-entropy 63.6 39.1

Joint training (↑ 1.0) 64.6 (↑ 0.7) 39.8
Proposed (↑ 3.3) 66.9 (↑ 23.6) 62.7

Table 3. Effect of distortions for contrastive pretraining.

Distortions
Cityscapes PASCAL VOC

(596 images) (2118 images)

✗ 66.5 62.9
✓ (1.0 ↑) 67.5 62.7

and contrastive-pretrained models. Contrastive pretraining
matches or outperforms ImageNet pretraining in most of
the cases except when the number of labeled images is be-
low 600 for the Cityscapes dataset. This is a significant
result given that the proposed contrastive pretraining does
not use any additional data and ImageNet pretraining uses
more than a million additional labeled images.

4.6. Ablation studies

In this section, we perform ablation studies on the
Cityscapes (596 training images) and PASCAL VOC 2012
(2118 training images) datasets using the within-image con-
trastive loss.

4.6.1 Joint training

The proposed approach first pretrains the feature extractor
using a label-based contrastive loss, and then fine-tunes the
entire network using the cross-entropy loss. An alternative
training strategy is to train with both losses at the same time.
Table. 2 compares these two training strategies. While joint
training with both losses performs slightly better than train-
ing with only cross-entropy loss, it performs significantly
worse when compared to the proposed approach 5.

4.6.2 Importance of distortions for contrastive loss

In the case of contrastive loss-based self-supervised learn-
ing, distortions are necessary to generate positive pairs [9].
But, in the case of label-based contrastive learning, posi-
tive pairs can be generated using labels, and hence, it is un-
clear how important distortions are. In this work, we use
the color distortions from a recent self-supervised learning
method [9] that worked well for the downstream task of im-
age classification. Table 3 shows the effect of using these
distortions in the contrastive pretraining stage. We can see

5Contrastive loss weight for joint training was chosen using grid search.

Table 4. Contrastive pretraining with OCR [61] approach.

Contrastive pretraining
Cityscapes

(343 images) (596 images)

✗ 57.1 62.2
✓ (↑ 6.3) 63.4 (↑ 3.4) 65.6

a small performance gain on the Cityscapes dataset and no
gain on the PASCAL VOC 2012 dataset 6. These results
suggest that distortions that work well for image recognition
may not work for semantic segmentation. This also warrants
a careful study of various distortions to find the ones that are
most suitable for the task of semantic segmentation.

4.7. Additional results

4.7.1 Contrastive pretraining with OCR [61] approach

While we use DeepLabV3+ [8] as the baseline model in all
our experiments, the proposed contrastive pretraining strat-
egy can be easily adopted by other existing or future seman-
tic segmentation models. To demonstrate this, we combine
(within-image) contrastive loss-based pretraining strategy
with the recent OCR [61] approach using the code provided
by its authors 7. Table 4 shows the corresponding results
on the Cityscapes dataset. Contrastive pretraining leads to
significant performance gains demonstrating that it can be
effective with multiple segmentation models.

Note that the OCR [61] approach performs worse than
our DeepLab V3+ baseline (62.2 vs 63.6 for 596 training
images and 57.1 vs 59.6 for 343 training images). This may
be because the OCR model has more learnable parameters,
and is more prone to overfitting when the number of training
images is low.

4.7.2 Comparison with region-based loss functions

As pixel-wise cross-entropy loss ignores the relationships
between pixels, region-based loss functions [30, 65] have
been proposed which model pixel relationships in the la-
bel space. Different from these loss functions, the pro-
posed contrastive loss models pixel relationships in the
feature space. Table 5 compares the proposed approach
with [30, 65]. For fair comparison, we train [30, 65] with
ResNet50-based DeepLabV3+ model using the code pro-
vided by authors of [65] 8. The proposed training approach
(which does not use any additional data) clearly outper-
forms the region-based loss functions [30, 65] even when
they use ImageNet pretraining. This suggests that modeling
pixel relationships with a loss in the feature space is more
effective than modeling with losses in the label space.

6Differences lower than 0.5 are too small to draw any conclusion.
7https://github.com/openseg-group/openseg.

pytorch?v=2
8https://github.com/ZJULearning/RMI
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Table 5. Comparison with region loss-based approaches. Here, IN
and CT refer to ImageNet and contrastive pretraining, respectively.

Approach
Pretraining PASCAL VOC
IN CT (1059 images) (2118 images)

AF [30]
✗ ✗ 27.8 43.0
✓ ✗ 57.4 60.4

RMI [65]
✗ ✗ 27.9 37.5
✓ ✗ 58.0 61.9

Proposed ✗ ✓ 59.4 63.5

4.7.3 Comparison with self-supervised learning

Recently, [55, 58, 59] explored pixel-wise self-supervised
contrastive learning for the task of semantic segmentation.
They first pretrain their networks on the ImageNet dataset
using pixel-wise self-supervised contrastive loss, and then
fine-tune them end-to-end on the target semantic segmen-
tation dataset. Using the full labeled dataset, [55] reported
a mean IOU of 69.4 for the PASCAL VOC 2012 dataset,
and [55], [58] and [59] reported mean IOUs of 75.7, 76.5
and 77.2, respectively, for the Cityscapes dataset. In com-
parison, using the full labeled dataset, we achieve 79.0 and
74.6 on the Cityscapes and PASCAL VOC 2012 datasets,
respectively 9. In fact, we match the results of [55] by using
50% fewer labeled images (69.7 for PASCAL using 5.9K
images and 75.5 for Cityscapes using 1.5K images).

4.7.4 Semi-supervised setting

While we mainly focus on the supervised setting, the pro-
posed training strategy can be easily extended to the semi-
supervised setting where we have access to additional unla-
beled images. We demonstrate this using a simple pseudo
labeling strategy. In this setting, we first train a model with
labeled images using the proposed approach. Then, we gen-
erate pseudo labels for the unlabeled images by running the
trained model on them and thresholding the output predic-
tions. Specifically, we assign a pixel to a class if that class
receives the highest score for that pixel and that score is
above a threshold T 10. If the model does not produce a
score above T for any of the classes for a pixel, then that
pixel is ignored. Once we generate pseudo labels for the
unlabeled images, we retrain the model on both labeled and
pseudo-labeled images using the proposed approach.

Table 6 compares the proposed approach with the recent
semi-supervised CCT [41] approach which has been shown

9This is not necessarily a fair comparison since the network architec-
tures used by [55, 58, 59] are different from ours, and these approaches use
additional unlabeled ImageNet dataset.

10For our experiments, we use a threshold of 0.8 for all the foreground
classes of the PASCAL VOC 2012 and Cityscapes datasets, and a threshold
of 0.97 for the background class of the PASCAL VOC 2012 dataset.

Table 6. Performance in the semi-supervised setting. Here, IN and
CT refer to ImageNet and contrastive pretraining, respectively.

Approach
Pretraining PASCAL VOC
IN CT (1059 images) (2118 images)

CCT [41] ✗ ✗ 27.1 40.3
Proposed ✗ ✗ 28.6 41.4
Proposed ✗ ✓ 60.4 65.2

CCT [41] ✓ ✗ 62.9 65.1

to outperform several existing semi-supervised and weakly-
supervised approaches. The proposed approach with con-
trastive pretraining outperforms CCT by a huge margin (25-
35 points). When we train the proposed pseudo label-based
semi-supervised approach only with cross-entropy loss, i.e.,
no contrastive pretraining, its performance is similar to CCT
verifying that the gap between CCT and the proposed ap-
proach is mainly due to contrastive pretraining despite some
architectural differences between the networks 11. Also, the
proposed approach performs competitively when compared
to ImageNet-pretrained CCT, reaffirming the effectiveness
of supervised contrastive pretraining.

Please refer to the supplementary material for additional
results in the semi-supervised setting.

5. Conclusions and future work
Deep CNN-based semantic segmentation models trained

with cross-entropy loss perform poorly when trained with
limited labeled data. To address this issue, we proposed
a simple and effective contrastive learning-based training
strategy in which we first pretrain the feature extractor of
the model using a pixel-wise label-based contrastive loss
and then fine-tune the entire network including the soft-
max classifier using the cross-entropy loss. This training
approach increases both intra-class compactness and inter-
class separability, thereby enabling a better pixel classifier.
We performed experiments on PASCAL VOC 2012 and
Cityscapes datasets, and achieved large performance gains
by using contrastive pretraining. Specifically, in many set-
tings, the proposed contrastive pretraining strategy which
does not use any additional data, matches or outperforms
the widely-used supervised ImageNet pretraining strategy.

In this work, we used a pseudo labeling-based approach
to leverage unlabeled images. In the future, we plan to
explore the proposed contrastive loss in conjunction with
consistency-based loss functions [20, 40, 41] which are
commonly-used for semi-supervised learning.

Acknowledgements We thank Yukun Zhu and Liang-
Chieh Chen from Google Research for their support with
the DeepLab codebase.

11While CCT uses PSPNet [64], we use DeeplabV3+ model [8]
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