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Abstract

The successful deployment of artiÞcial intelligence (AI)
in many domains from healthcare to hiring requires their
responsible use, particularly in model explanations and
privacy. Explainable artiÞcial intelligence (XAI) provides
more information to help users to understand model de-
cisions, yet this additional knowledge exposes additional
risks for privacy attacks. Hence, providing explanation
harms privacy. We study this risk for image-based model
inversion attacks and identiÞed several attack architectures
with increasing performance to reconstruct private image
data from model explanations. We have developed several
multi-modal transposed CNN architectures that achieve sig-
niÞcantly higher inversion performance than using the tar-
get model prediction only. These XAI-aware inversion mod-
els were designed to exploit the spatial knowledge in im-
age explanations. To understand which explanations have
higher privacy risk, we analyzed how various explana-
tion types and factors inßuence inversion performance. In
spite of some models not providing explanations, we further
demonstrate increased inversion performance even for non-
explainable target models by exploiting explanations of sur-
rogate models through attention transfer. This method Þrst
inverts an explanation from the target prediction, then re-
constructs the target image. These threats highlight the ur-
gent and signiÞcant privacy risks of explanations and calls
attention for new privacy preservation techniques that bal-
ance the dual-requirement for AI explainability and privacy.

1. Introduction

The recent success of artiÞcial intelligence (AI) is driv-
ing its application in many domains from healthcare to hir-
ing. With the increasing regulatory requirements for re-
sponsible AI, these applications will need to support both
explainability to justify important decisions and privacy to
protect personal information [36]. Indeed, many AI applica-
tions have this dual-requirement, such as driver drowsiness
detection from faces [13, 35] that can be used to limit the
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Figure 1. Demonstration of image reconstruction from XAI-aware
inversion attack with emotion prediction as target task, and face re-
construction as attack task. Three emotions from a single identity
shown from the iCV-MEFED dataset [28]. Reconstructions shown
with corresponding inputs (target prediction÷y t and explanations
÷E t as LRP [3],Gradients [43] or Grad-CAM [39] saliency maps).

Towards original images (a), reconstructions from Prediction only
(b) are poor and similar across different faces, and is signiÞcantly
improved when exploiting single (c) and multiple (d) explanations.
Demonstration reconstructions for other explanations and baseline
inversion models are shown in supplementary materials.

jobs of tired drivers, and classroom facial engagement pre-
diction [6, 49] for student grading or teacher performance
evaluation. Users need explanations to dispute or rectify
unfavorable model predictions, and need privacy to pre-
serve anonymity or reputation (e.g., of embarrassing ap-
pearances). Troublingly, using state-of-the-art model in-
version attacks [11, 50, 54], attackers can reconstruct sen-
sitive information (e.g., faces) merely from model predic-
tions. We hypothesize that since explanations provide more
information, they can be used by attackers for more effec-



tive reconstructions, and further harm privacy Ñ providing
explanations harms privacy.

Explainable artiÞcial intelligence (XAI) provides infor-
mation to help users to debug models [23], improve deci-
sion making [47], and improve and moderate trust in au-
tomation [10]. SpeciÞc to image-based deep learning, XAI
techniques include saliency maps [7, 34, 43, 39, 56], feature
visualization [4, 16, 32], and activations of neurons [18]
and concept vectors [19, 20]. These explanations provide
users with deeper insights into model reasoning and about
the data, but they can contain sensitive knowledge that can
be exploited for privacy attacks, especially with recent ma-
chine learning (ML)-based attacks [41, 46, 11]. We focus
on model inversion attacks that can reconstruct data from
model predictions [11, 15, 50, 54]. These methods typi-
cally require some privileged white-box access (to model
parameters) or background knowledge (such as blurred im-
ages) for effective attack, but this is unrealistic or uncom-
mon in deployed settings. Instead, because of the require-
ment for explainability, model explanations will be more
readily available and pose a more ubiquitous threat.

Recent work has begun to study the privacy threats of
model explanations, but their attack goals differ and their
use of explanations remains under-studied. Instead of at-
tacking training data [41] or model conÞdentiality [2, 30],
we focus on attacking the privacy of test instances. This will
compromise the trust of active users of the model. We pro-
pose attack methods based on the structure and generation
technique of explanations, focusing on saliency maps that
are highly popular for image-based AI. Furthermore, we
propose a method of leveraging on XAI techniques with at-
tention transfer to perform inversion attacks on models that
do not share explanations. We found that this performance
is close to inverting an explainable target model. Hence,
even non-explainable target models are at increased risk of
XAI-aware inversion attacks.

Our contributions are: 1) We determine the privacy
threat of model explanations for model inversion attacks.
We achieved signiÞcantly higher inversion performance by
proposing several architectures for XAI-aware model in-
version, through careful adapting of multi-modal, spatially-
aware transposed CNNs. This highlights that the present
privacy risk of providing explanations is signiÞcant (see
Figure 1). 2) We propose an XAI-aware attack on non-
explainable target models that can achieve improved in-
version performance using an explanation inversion model
with surrogate explanation attention transfer. This does not
need additional data leak or sharing from the target model,
and demonstrates a signiÞcantly increased risk due to expla-
nations in surrogate models instead of the target model.3)
We identify the privacy risk for different explanation types
(Gradients [43], Grad-CAM [39], and layer-wise relevance
propagation (LRP) [3]) and analyze how various factors in-

ßuence attack performance.
In this work, we provide the Þrst study into the privacy

risk of explanations for inversion attack, and defer their de-
fense to future work. This highlights the urgency to de-
velop privacy defense techniques and models that are co-
optimized for the dual-requirements of explainability and
privacy to achieve the objectives of Responsible AI.

2. Related Works

Our work relates to two research areas Ñ explainable AI
and machine learning-based privacy Ñ which we overview
separately, and discuss nascent work intersecting the two.

Explainable AI for image-based CNN models.While
there are many XAI techniques (see review [5, 14]), we fo-
cus on explanations of image-based convolutional networks
(CNN) (see review [53]) and speciÞcally saliency map ex-
planations that highlight important pixels for each predic-
tion [7, 34, 43, 39, 56]. Gradients [43] of the model predic-
tion with respect to input features, i.e., pixels in an image,
describe the model sensitivity. Though easy to calculate,
this suffers from several issues, which are addressed in ex-
tensions, such as robustness (SmoothGrad [44]), mislead-
ing saturated gradients (DeepLIFT [42]), and implementa-
tion invariance (Integrated Gradients [45]). For this work,
we study the exploitation of the general gradient technique
[43], and expect that our Þndings will generalize to the ex-
tensions. Strictly, these techniques produce sensitivity maps
and describe how much the prediction may change if the
pixels are altered. Alternatively, activation map explana-
tions show how inßuential each pixel for the prediction.
One simple approach is Gradient! Input [42] which is the
element-wise product of gradient and image to approximate
the model activation based on the image, but this highlights
Þne-grained details that may be hard to read.

Class activation maps [7, 34, 39, 56] provide class-
speciÞc coarse-grained explanations based on activation
maps of convolution Þlters. While CAM [56] required
model retraining, Grad-CAM [39] could be read from any
CNN without retraining. Extensions improved explanations
for robustness (Ablation-CAM [34]) and to handle multiple
objects (Grad-CAM++ [7]). For this work, we evaluated
with the original Grad-CAM [39] approach, and expect that
our Þndings will generalize to its extensions. While the
aforementioned techniques are model-speciÞc and require
white box access to model parameters, model-agnostic ap-
proaches can apply generally to any deep neural network,
such as perturbation-based sensitivity analysis [52], and
layer-wise relevance propagation (LRP) [3]. However, as
proxy explanations, these techniques are less faithful to the
model behavior, and we defer their study.

Other than helping user understanding, saliency map ex-
planations have also been used to improve model training
through transfer learning from a better model with student-



teacher networks [21]. Attention can also be indirectly
transferred by maximizing the loss between predicting on
an image and its variant ablated with its saliency mask
(GAIN [25]). Similarly, to attack non-explainable target
models, we exploit attention transfer to minimize the inter-
mediate explanation in the attack model and the explanation
of the surrogate target model.

Machine learning privacy and model inversion at-
tacks. Recent research on machine learning privacy has
identiÞed sophisticated attacks, such as model extraction
attacks [46, 38] to reconstruct parameters of proprietary
models, membership inference attacks [41] to identify if
users were part of a training dataset (e.g., of cancer patients
[17]), attribution inference attacks [12] to impute omitted
or obfuscated data to recover the sensitive information, and
model inversion attacks [11, 50, 54] to infer the original
data from the target prediction (e.g., reconstructing a face
from an emotion prediction). In this work, we focus on
the latter attack, which is relevant to image-based machine
learning, where private input images can be recovered, thus
de-anonymizing users or revealing sensitive details. While
the original model inversion attack has limited performance
[11], inversion performance is notably improved by lever-
aging deep architectures [15, 50] (speciÞcally, transposed
CNNs [8]). Further improvements exploit auxiliary knowl-
edge, such as white-box model access [54], feature embed-
dings [15], blurred images [54], or the joint probability dis-
tribution of features and labels [51], but such information
is not readily available in practice. However, the need for
explanations will increase their ubiquity and this will poses
increased privacy risk.

Privacy risk of model explanations. Membership in-
ference attacks can be improved by concatenating gradi-
ent explanations with model predictions [40]. Model ex-
traction attacks can be improved by regularizing the recon-
structed model with gradient explanations [30], and training
a surrogate model from counterfactual explanation exam-
ples [2]. However, exploiting explanations for model in-
version attacks remains unexplored; this conceals the pri-
vacy risk on user data at prediction time, i.e., of active
users. In this work, we investigate how to exploit differ-
ent saliency map explanations types to attack explainable
and non-explainable models for inversion attacks.

3. XAI-Aware Model Inversion Attack

We describe the general approach for model inversion
and describe how to exploit explanations for more aggres-
sive attacks through various architectures (see Figure2).

3.1. Threat Model

Consider a target model (M t ) that has been trained and
is deployed for use through an application programming
interface (API). It takes private datax " X p (e.g., face
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Figure 2. Architectures of inversion attack models. a) Baseline
threat model with target CNN modelM t to predict emotion÷y t

from facex , and inversion attack model to reconstruct faceöx r

from emotion. Emotion prediction conÞdences are input to a trans-
posed CNN (TCNN) for inversion attack (d). b) Threat model with
explainable target model that also provides instance explanation
÷E t of the target prediction, and XAI-aware multi-modal inversion

attack model that inputs÷E t via different input architectures: e)
Flattened ÷E t concatenated with÷y t , f) U-Net for dimensionality
reduction and spatial knowledge, g) combined Flatten and U-Net.
Additional input architectures shown in supplementary materials.
c) Threat model with non-explainable target model, and inversion
attack model that predicts a reconstructed surrogate explanation
öE r from target prediction÷y t and usesöE r for multi-modal image

inversion (e-g).

image) provided by a user to produce atarget prediction
÷yt (e.g., emotion) as a conÞdence probability vector. It is
trained with cross-entropy lossL t (yt , ÷y ), whereyt is the
ground truth label for the target task. To improve user trust
and veriÞcation, the target model also provides atarget ex-
planation ÷E t for each prediction (e.g., saliency map [39]).
Consider a model inversion attack at run time, where the at-
tacker obtains access to each tuple of the target prediction
vector and explanation tensor (e.g., due to breached storage,
intercepted in transit, shared via social media). We assume
that the attacker only has access to the breached data, an in-
dependent datasetx " X a, and the target model via its API
(i.e., black-box access, unlike white-box access in [11, 54]).
Furthermore, unlike [50, 54], we do not require privileged
background knowledge (e.g., blurred images). The attack
goal is to train an inversion attack modelM a

i to reconstruct
the original imagex from the model outputs( ÷yt , ÷E t ) such
that sensitive information can be predicted from the recon-
structed imageöx r . Using facial emotion recognition as the



running example for the target model, the attack goal is to
reconstruct the face image and re-identify the user. This
poses problems of consent and identity theft. In our case,
the target and attack tasks are not identical; this differs from
prior works that have identity prediction for both target and
attack tasks [11, 54, 50]. Figure2a illustrates the baseline
model inversion attack using only target model predictions.
We will next describe more serious attacks by exploiting
target model explanations.

3.2. Model Inversion with Target Explanations

To invert the target modelM t , [50], we trained the in-
version attack modelM a

i as a Transposed CNN (TCNN)
[9] to predict a 2D imageöx r from the 1D target predic-
tion vector ÷yt as input to the attack model (see Figure2a).
M a

i is trained with MSE loss for the image reconstruction
L r (x , öx r ). We illustrate the convolutional layers for up-
sampling in the TCNN in the supplementary materials. We
consider saliency map explanations (e.g., [43, 39]) and ex-
tend the TCNN model to be multi-modal to include the 2D
target explanation as a second input (Figure2b). A simple
approach is to ßatten the explanation into a 1D vector, con-
catenate with the prediction vector and input to the TCNN
(Figure2e). However, this neglects the spatial information
of the salient pixels. A simple way to leverage the 2D infor-
mation is with a CNN architecture that uses convolutional
kernels to interpret 2D patterns into a 1D feature embedding
vector which is put into the TCNN (see supplementary ma-
terials). This CNN-TCNN architecture is similar to the gen-
erator proposed in [54]. Inspired by CNN encoder-decoder
networks [33] and image super-resolution techniques [55],
we propose to use a U-Net architecture [37] in the inver-
sion model to improve its reconstruction performance (Fig-
ure2f). We hypothesize that this will have more accurate
reconstruction because of the retention in spatial informa-
tion that is transmitted through the bypass connectors from
the convolutional layers. We further propose a hybrid model
by combining the Flatten and U-Net input architectures as
the Flatten+U-Net inversion model (Figure2g); the 1D ßat-
tened explanation and prediction vectors are concatenated
with the latent layer of the U-Net architecture. The pro-
posed architectures demonstrate various methods to obtain
sensitive information for privacy attack; we heretofore call
them XAI Input Methods. The training loss function re-
gards image reconstruction task:

L r =
!

x

(M a
i (M t (x )) # x )2 (1)

wherex is the private input image,M t (x ) = ÷yt is the tar-
get model prediction, andM a

i (M t (x )) = öx r is the recon-
structed image from the inversion attack.

Later, we describe our experiments on how some archi-
tectures capture more knowledge from the explanations and
interpret why. The proposed architectures can be used for

any 2D explanations of the CNN target model, such as gra-
dients [43], class activation maps (CAM) [56], LRP [3], and
2D auxiliary data, such as blurred variants of the input im-
agesxb. We further conducted experiments on different Ex-
planation Types, described later.

3.3. Model Inversion with Multiple Explanations

While many explanations explainwhya model predicted
a classc " C, it is also important to explainwhy notan
alternative classc! $= c, i.e., to provide contrastive expla-
nations [26, 29]. To support this, some explanation tech-
niques, such as Grad-CAM [39], can provide class-speciÞc
explanations depending on user query. However, this fur-
ther raises the privacy risk, since more information is pro-
vided by the additional explanations. We exploit these Al-
ternative CAMs (! -CAM) by concatenating explanations
for |C| classes into a 3D tensor and training the inversion
models on this instead of the 2D matrix of a single explana-
tion. Supplementary Figure1f for detailed architecture.

To gain a deeper insight into a model decision, users may
be interested in understanding which speciÞc neurons of a
CNN were activated and how. In particular, although Grad-
CAM presents one saliency map per classc, this is com-
posed as a weighted sum of activation maps from the last
convolutional layer in the CNN, i.e., the saliency map ex-
planation isE c = ReLU

"#
k ! c

k Ak
$
, whereAk is thekth

activation map (k " K ), and! c
k = 1

HW

# H,W
i,j

!y c

!A k
ij

is the

gradient-based importance weight. Hence, the Grad-CAM
explanation is composed of|K | partial, constituent CAMs
(" -CAM). Combined with explanation techniques to under-
stand the role of each neuron (e.g., [4, 32]), these" -CAMs
can provide rich insights for developers. However, since
|K | >> 1 is large, this provides a multitude of explanations
that further leak privacy. Similar to Alternative CAMs, we
exploit these Constituent CAMs" -CAM by concatenating
them into a 3D tensor as input to the inversion model.

3.4. Model Inversion with Surrogate Explanations

While the XAI Input methods can increase privacy risk,
we further hypothesize that XAI techniques can be ex-
ploited for inversion attacks even for non-explainable tar-
get models (i.e., no target explanation). We propose an ar-
chitecture that predicts the target explanation and exploits
that explanation to invert the original target data. Figure
2c illustrates the architecture for this attack. First, we train
an explainable surrogate target modelM a

t on the attackerÕs
dataset to generate surrogate explanationÿE t . Then, as
X a % X , thenM a

t % M t and ÿE % ÷E.
However, ÿE t is only available during training not when

predicting. Hence, we train an explanation inversion model
M a

e to reconstructÿE t as öE r from the target prediction÷yt



by minimizing the surrogate explanation loss function:

L E =
!

x

(M a
e (M t (x )) # E(M a

t (x ))) 2 (2)

whereE(M ) is the explanation of the modelM , M a
t (x ) =

ÿyt is the surrogate target prediction,E (M a
t (x )) = ÿE t is the

surrogate explanation, andM a
e (M t (x )) = öE r is the recon-

structed surrogate explanation. This reconstructed explana-
tion is available at prediction time. Finally, we inputöE r

into the image inversion modelM a
i to complete the model

inversion attack. SinceöE r is the same format as÷E t , we
can apply any of the aforementioned XAI Input Methods.
Overall, the proposed architecture can also be described as
model inversion attack with attention transfer, where expla-
nations are transferred from surrogate target modelM a

t into
the intermediate layer betweenM a

e andM a
i . This guides

and constrains the inversion model to learn activations that
M a

t Þnds relevant forÿy as a proxy foröy. The training loss
involves two tasks: image reconstruction (Eq.1) and expla-
nation reconstruction (Eq.2).

4. Experiments

We conducted experiments to perform an ablation analy-
sis of our model inversion architectures and to compare with
existing work. We evaluated on multiple datasets for dif-
ferent use cases and evaluated image reconstruction quality
and accuracy to classify sensitive information from recon-
structed images. Figure3 demonstrates increased inversion
risk due to explanations and XAI-aware attention transfer.

4.1. Experiment Setup

Use Cases and Datasets.We evaluated on three datasets
representing three use cases with the simultaneous need
for model explanations and privacy. 1) iCV-MEFED face
expressions data [28] with 6 emotions and 115 identities
(10 omitted due to conÞdentiality) over 24,120 instances.
We evaluated a Þrst use case where an explainable target
model predicts emotion from faces (e.g., for classroom en-
gagement monitoring [6, 49], driver drowsiness detection
[13, 35]); and an attacker executes a data breach to obtain
the prediction and explanation data, and performs a model
inversion attack [11, 54] to reconstruct the face from the
emotion prediction to re-identify the user (e.g., leak embar-
rassing or compromising faces). Users can interpret expla-
nations to validate or dispute the emotion predictions (e.g.,
to defend their alertness), but they are at increasing risk of
being de-anonymized. We evaluated a second use case of
identity recognition from faces for biometrics as target task
with explainability to help human inspection (e.g., security
access and passport border control) and privacy to mitigate
identity theft. 2) CelebFaces Attributes Dataset (CelebA)
[27] with a balanced subset of 1000 identities over 30,000

instances. This enables testing with more realistic images
(Internet scraped vs. lab captured) and more varied labels
(1000 vs 115). For simplicity, all face images were cropped
to tighten on the face and exclude backgrounds. 3) MNIST
handwritten digits [24] with 10 labels and 70,000 instances
to test with another use case of explainable handwriting
biometrics. To Þt our models, we resized iCV-MEFED to
128&128, CelebA to 256&256, and MNIST to 32&32 pix-
els.

Protocol. We split each dataset into two disjoint sets:
50% as target dataset to train the target model, 50% as attack
dataset to train and test the attack models. We tested the
target model with the attack dataset. For the attack dataset,
we employ an 80/20 ratio for the train/test split.

Target models.We implemented different target models
for each use case. For the iCV-MEFED emotion task, and
identity tasks in iCV-MEFED and CelebA, our target model
has 3 convolutional and 3 pooling layers. For the MNIST
digit task, the target model has 2 convolutional and 2 pool-
ing layers. Instead of using state-of-the-art deeper models,
we limited to smaller deep networks so that CAM explana-
tions are not too small at 16&16 pixels. We use the ADAM
optimizer with learning rate10" 4, #1 = 0 .5, #2 = 0 .999.

Explanation types. We evaluated with four popular
saliency map XAI types. Gradient explanation (' x yt ) [43]
describes the sensitivity of the prediction toward input fea-
tures. By multiplying gradients and input features element-
wise, Gradient! Input (' x y t ! x ) [42] describes the in-
ßuence of each input feature on the prediction. The afore-
mentioned explanations are very Þne-grained. In contrast,
Grad-CAM (ReLU

"#
k ! c

k Ak
$
) [39] aggregates a weighted

sum of activation maps in the Þnal convolutional layer to
provide smoother attribution-based saliency maps that are
more related to features learned by the CNN. The last ex-
planation type we evaluated was layer-wise relevance prop-
agation (LRP) [3], which attributes the importance of pixels
by backpropagating the relevance of neurons in a neural net-
work while obeying the axiom of conservation of total rel-
evance. Furthermore, we evaluated multiple explanations
as Alternative CAMs (! -CAM) and Constituent CAMs (" -
CAM), and XAI-aware attention transfer with surrogate
CAM ( ÿE t = s-CAM) and reconstructed surrogate CAM
( öE r = rs-CAM).

Baseline inversion attack models. Since there are
no prior methods exploiting explanations for model inver-
sion attack, we compared our XAI-aware attack approaches
against Fredrikson et al.Õs original model inversion [11]
(Fredrikson), and Yang et al.Õs transposed CNN using only
the target prediction [50] (Prediction only).

4.2. Evaluation Metrics

We evaluated the privacy risk of model inversion attacks
quantitatively with multiple metrics to gather multiple ev-
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Figure 3. Demonstration of image reconstruction from XAI-aware inversion attack for different datasets with same target and attack tasks
for each case (iCV-MEFED [28] and CelebA [27]: identiÞcation, MNIST [24]: handwriting digit recognition). Same format as Figure1.

idences of how well the inversion reconstructs the private
target imagex (i.e., input instance put into the target model)
and how well sensitive informationys can be recovered.

Pixelwise Similarity (1 # MSE x ). Mean squared er-
ror (MSE) is commonly used to evaluate regression prob-
lems. We scale both target and reconstructed images to a
unit square, and normalize pixel values to [0,1] and calcu-
late their MSE. The similarity metric,s = 1 # MSE , is
image size invariant and increases with image similarity.

Image Similarity (SSIM). MSE does not linearly repre-
sent how humans perceive image similarity, so we also em-
ploy the perception-based Structural Similarity Index Mea-
sure (SSIM) [48] to evaluate image quality [57]:

SSIM(xa, xb) =
(2µaµb + Cµ ) (2$ab + C" )

(µ2
a + µ2

b + Cµ ) ($2
a + $2

b + C" )
, (3)

wherexa andxb are two images being compared,µ# and
$# represents the pixel value mean and standard deviation,
respectively,Cµ = ( K µ L)2 andC" = ( K " L )2 are con-
stants to control instability,L is the dynamic range of the
pixel values (255 for 8-bit images), andK µ = 0 .01 and
K " = 0 .03 are chosen to be small. To compare images at
different levels of granularity, we compare Gaussian kernels
for both images at speciÞed standard deviations,$ (smaller
$ for more precise comparison), and compute their mean.
We calibrated$ to match the human perceived similarity
as judged by two co-authors:$ = 1 .5 for iCV-MEFED,
$ = 2 .5 for CelebA, and$ = 1 .5 for MNIST.

Attack Accuracy. We trained an Attack Evaluation
CNN Model,M s, on the attack task (e.g., face identity) on
original images of the full dataset to represent a universal
capability to predict sensitive information from original im-
ages. If the classiÞer can correctly label a reconstructed
image, then that image leaks private information. The eval-
uation model is trained on identity (ID) labels for the iCV-
MEFED and CelebA datasets, and digit labels for MNIST.
Models are not trained on reconstructed images. Model ar-
chitectures as CNNs are described in supplementary materi-
als. The model accuracy on reconstructed images indicates

the loss of privacy due to the model inversion attack; this
represents the risk of de-anonymization and identity theft.

Attack Embedding Similarity ( e" MSE s ). While the
aforementioned similarity metrics are data-centric (for im-
ages), they are agnostic to the attack task. Poorly recon-
structed data can still leak much sensitive information, e.g.,
a reconstructed face with obfuscated nose and chin can still
be recognized well if the eyes or mouth features are pre-
served. After training the Attack Evaluation CNN Model
M s, we compute the feature embeddingz of the input im-
agex from the penultimate layer, and calculate the MSE be-
tween the embeddings of the reconstructed and original im-
ages,zr andz, respectively. The Attack Embedding Sim-
ilarity is computed ase"| z " z r |2

2 ; this decreases with dis-
tance and is bounded between 0 and 1. Zhang et al. [54]
computed Feature Distance and KNN Distance metrics be-
tween the reconstructed image and centroid of images for
the same class; these are quantitative proxies for the clas-
sifying the reconstructed image into identity classes, which
is what their Attack Accuracy metric measures. Instead,
our metric determines how closely the reconstructed image
matches the original image in terms of the attack task.

4.3. Experiment Results

We Þrst conducted an ablation study on the face-emotion
use case with iCV-MEFED to determine the most per-
formant XAI Input Method, and analyzed the interaction
effect between XAI Input Method and XAI Type. We
then conducted comparison studies with baselines [11, 50],
the best single-explanation XAI-aware inversion model
(Flatten+U-Net) with the popular Grad-CAM [39] explana-
tion, and its reconstructed, surrogate variant (rs-CAM) for
non-explainable target models. For generalization, the latter
studies were conducted across multiple datasets.

4.3.1 Attacking with different XAI Input Methods

We found that adding more spatially-aware architectures
improved the inversion attack performance in the order:












