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Abstract

The successful deployment of artificial intelligence (Al)
in many domains from healthcare to hiring requires their
responsible use, particularly in model explanations and
privacy. Explainable artificial intelligence (XAl) provides
more information to help users to understand model de-
cisions, yet this additional knowledge exposes additional
risks for privacy attacks. Hence, providing explanation
harms privacy. We study this risk for image-based model
inversion attacks and identified several attack architectures
with increasing performance to reconstruct private image
data from model explanations. We have developed several
multi-modal transposed CNN architectures that achieve sig-
nificantly higher inversion performance than using the tar-
get model prediction only. These XAI-aware inversion mod-
els were designed to exploit the spatial knowledge in im-
age explanations. To understand which explanations have
higher privacy risk, we analyzed how various explana-
tion types and factors influence inversion performance. In
spite of some models not providing explanations, we further
demonstrate increased inversion performance even for non-
explainable target models by exploiting explanations of sur-
rogate models through attention transfer. This method first
inverts an explanation from the target prediction, then re-
constructs the target image. These threats highlight the ur-
gent and significant privacy risks of explanations and calls
attention for new privacy preservation techniques that bal-
ance the dual-requirement for Al explainability and privacy.

1. Introduction

The recent success of artificial intelligence (Al) is driv-
ing its application in many domains from healthcare to hir-
ing. With the increasing regulatory requirements for re-
sponsible Al, these applications will need to support both
explainability to justify important decisions and privacy to
protect personal information [ :0]. Indeed, many Al applica-
tions have this dual-requirement, such as driver drowsiness
detection from faces [, 5] that can be used to limit the
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Figure 1. Demonstration of image reconstruction from XAl-aware
inversion attack with emotion prediction as target task, and face re-
construction as attack task. Three emotions from a single identity
shown from the iCV-MEFED dataset [ ]. Reconstructions shown
with corresponding inputs (target prediction y; and explanations
E, asLRP [],Gradients [ ] or Grad-CAM [:"] saliency maps).
Towards original images (a), reconstructions from Prediction only
(b) are poor and similar across different faces, and is significantly
improved when exploiting single (c) and multiple (d) explanations.
Demonstration reconstructions for other explanations and baseline
inversion models are shown in supplementary materials.

jobs of tired drivers, and classroom facial engagement pre-
diction [0, /9] for student grading or teacher performance
evaluation. Users need explanations to dispute or rectify
unfavorable model predictions, and need privacy to pre-
serve anonymity or reputation (e.g., of embarrassing ap-
pearances). Troublingly, using state-of-the-art model in-
version attacks [! |, 50, 5], attackers can reconstruct sen-
sitive information (e.g., faces) merely from model predic-
tions. We hypothesize that since explanations provide more
information, they can be used by attackers for more effec-
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tive reconstructions, and further harm privacy — providing
explanations harms privacy.

Explainable artificial intelligence (XAI) provides infor-
mation to help users to debug models [”*], improve deci-
sion making [7], and improve and moderate trust in au-
tomation [ 0]. Specific to image-based deep learning, XAl
techniques include saliency maps [/, 5+, <3, 39, 50], feature
visualization [/, 0, 7], and activations of neurons [!®]
and concept vectors [!©, 20]. These explanations provide
users with deeper insights into model reasoning and about
the data, but they can contain sensitive knowledge that can
be exploited for privacy attacks, especially with recent ma-
chine learning (ML)-based attacks [, <0, | 1]. We focus
on model inversion attacks that can reconstruct data from
model predictions [ !, 15, 50, 54]. These methods typi-
cally require some privileged white-box access (to model
parameters) or background knowledge (such as blurred im-
ages) for effective attack, but this is unrealistic or uncom-
mon in deployed settings. Instead, because of the require-
ment for explainability, model explanations will be more
readily available and pose a more ubiquitous threat.

Recent work has begun to study the privacy threats of
model explanations, but their attack goals differ and their
use of explanations remains under-studied. Instead of at-
tacking training data [ |] or model confidentiality [, 30],
we focus on attacking the privacy of test instances. This will
compromise the trust of active users of the model. We pro-
pose attack methods based on the structure and generation
technique of explanations, focusing on saliency maps that
are highly popular for image-based Al. Furthermore, we
propose a method of leveraging on XAl techniques with at-
tention transfer to perform inversion attacks on models that
do not share explanations. We found that this performance
is close to inverting an explainable target model. Hence,
even non-explainable target models are at increased risk of
XAl-aware inversion attacks.

Our contributions are: 1) We determine the privacy
threat of model explanations for model inversion attacks.
We achieved significantly higher inversion performance by
proposing several architectures for XAl-aware model in-
version, through careful adapting of multi-modal, spatially-
aware transposed CNNs. This highlights that the present
privacy risk of providing explanations is significant (see
Figure 1). 2) We propose an XAl-aware attack on non-
explainable target models that can achieve improved in-
version performance using an explanation inversion model
with surrogate explanation attention transfer. This does not
need additional data leak or sharing from the target model,
and demonstrates a significantly increased risk due to expla-
nations in surrogate models instead of the target model. 3)
We identify the privacy risk for different explanation types
(Gradients [ ], Grad-CAM [ "], and layer-wise relevance
propagation (LRP) []) and analyze how various factors in-

fluence attack performance.

In this work, we provide the first study into the privacy
risk of explanations for inversion attack, and defer their de-
fense to future work. This highlights the urgency to de-
velop privacy defense techniques and models that are co-
optimized for the dual-requirements of explainability and
privacy to achieve the objectives of Responsible Al

2. Related Works

Our work relates to two research areas — explainable Al
and machine learning-based privacy — which we overview
separately, and discuss nascent work intersecting the two.

Explainable AI for image-based CNN models. While
there are many XAl techniques (see review [5, |“]), we fo-
cus on explanations of image-based convolutional networks
(CNN) (see review []) and specifically saliency map ex-
planations that highlight important pixels for each predic-
tion [/, 34, 43, 39, 50]. Gradients [/ 7] of the model predic-
tion with respect to input features, i.e., pixels in an image,
describe the model sensitivity. Though easy to calculate,
this suffers from several issues, which are addressed in ex-
tensions, such as robustness (SmoothGrad [/“]), mislead-
ing saturated gradients (DeepLIFT [ ”]), and implementa-
tion invariance (Integrated Gradients [/°]). For this work,
we study the exploitation of the general gradient technique
[2], and expect that our findings will generalize to the ex-
tensions. Strictly, these techniques produce sensitivity maps
and describe how much the prediction may change if the
pixels are altered. Alternatively, activation map explana-
tions show how influential each pixel for the prediction.
One simple approach is Gradient ® Input [ 7] which is the
element-wise product of gradient and image to approximate
the model activation based on the image, but this highlights
fine-grained details that may be hard to read.

Class activation maps [/, 34, 39, 50] provide class-
specific coarse-grained explanations based on activation
maps of convolution filters. While CAM [50] required
model retraining, Grad-CAM [:9] could be read from any
CNN without retraining. Extensions improved explanations
for robustness (Ablation-CAM []) and to handle multiple
objects (Grad-CAM++ [/]). For this work, we evaluated
with the original Grad-CAM [:"] approach, and expect that
our findings will generalize to its extensions. While the
aforementioned techniques are model-specific and require
white box access to model parameters, model-agnostic ap-
proaches can apply generally to any deep neural network,
such as perturbation-based sensitivity analysis [5”], and
layer-wise relevance propagation (LRP) []. However, as
proxy explanations, these techniques are less faithful to the
model behavior, and we defer their study.

Other than helping user understanding, saliency map ex-
planations have also been used to improve model training
through transfer learning from a better model with student-
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teacher networks [7/]. Attention can also be indirectly
transferred by maximizing the loss between predicting on
an image and its variant ablated with its saliency mask
(GAIN [25]). Similarly, to attack non-explainable target
models, we exploit attention transfer to minimize the inter-
mediate explanation in the attack model and the explanation
of the surrogate target model.

Machine learning privacy and model inversion at-
tacks. Recent research on machine learning privacy has
identified sophisticated attacks, such as model extraction
attacks [0, 3%] to reconstruct parameters of proprietary
models, membership inference attacks [/ ] to identify if
users were part of a training dataset (e.g., of cancer patients
[17]), attribution inference attacks [!”] to impute omitted
or obfuscated data to recover the sensitive information, and
model inversion attacks [! |, 50, 54] to infer the original
data from the target prediction (e.g., reconstructing a face
from an emotion prediction). In this work, we focus on
the latter attack, which is relevant to image-based machine
learning, where private input images can be recovered, thus
de-anonymizing users or revealing sensitive details. While
the original model inversion attack has limited performance
[1 1], inversion performance is notably improved by lever-
aging deep architectures [/ 5, 50] (specifically, transposed
CNNs [©]). Further improvements exploit auxiliary knowl-
edge, such as white-box model access [], feature embed-
dings [ | 5], blurred images [>-], or the joint probability dis-
tribution of features and labels [5 ], but such information
is not readily available in practice. However, the need for
explanations will increase their ubiquity and this will poses
increased privacy risk.

Privacy risk of model explanations. Membership in-
ference attacks can be improved by concatenating gradi-
ent explanations with model predictions [/()]. Model ex-
traction attacks can be improved by regularizing the recon-
structed model with gradient explanations [ ()], and training
a surrogate model from counterfactual explanation exam-
ples []. However, exploiting explanations for model in-
version attacks remains unexplored; this conceals the pri-
vacy risk on user data at prediction time, i.e., of active
users. In this work, we investigate how to exploit differ-
ent saliency map explanations types to attack explainable
and non-explainable models for inversion attacks.

3. XAI-Aware Model Inversion Attack

We describe the general approach for model inversion
and describe how to exploit explanations for more aggres-
sive attacks through various architectures (see Figure 2).

3.1. Threat Model

Consider a target model (M) that has been trained and
is deployed for use through an application programming
interface (API). It takes private data x € X, (e.g., face
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Figure 2. Architectures of inversion attack models. a) Baseline
threat model with target CNN model M; to predict emotion y;
from face «, and inversion attack model to reconstruct face &,
from emotion. Emotion prediction confidences are input to a trans-
posed CNN (TCNN) for inversion attack (d). b) Threat model with
explainable target model that also provides instance explanation
E, of the target prediction, and XAl-aware multi-modal inversion
attack model that inputs E, via different input architectures: e)
Flattened Et concatenated with g, f) U-Net for dimensionality
reduction and spatial knowledge, g) combined Flatten and U-Net.
Additional input architectures shown in supplementary materials.
¢) Threat model with non-explainable target model, and inversion
attack model that predicts a reconstructed surrogate explanation
E, from target prediction y; and uses E,. for multi-modal image
inversion (e-g).

image) provided by a user to produce a target prediction
y; (e.g., emotion) as a confidence probability vector. It is
trained with cross-entropy loss L;(y:, §), where y; is the
ground truth label for the target task. To improve user trust
and verification, the target model also provides a target ex-
planation E, for each prediction (e.g., saliency map ["]).
Consider a model inversion attack at run time, where the at-
tacker obtains access to each tuple of the target prediction
vector and explanation tensor (e.g., due to breached storage,
intercepted in transit, shared via social media). We assume
that the attacker only has access to the breached data, an in-
dependent dataset € X, and the target model via its API
(i.e., black-box access, unlike white-box accessin [ ! |, 54]).
Furthermore, unlike [50, 5], we do not require privileged
background knowledge (e.g., blurred images). The attack
goal is to train an inversion attack model M to reconstruct
the original image @ from the model outputs (g, Et) such
that sensitive information can be predicted from the recon-
structed image &,.. Using facial emotion recognition as the
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running example for the target model, the attack goal is to
reconstruct the face image and re-identify the user. This
poses problems of consent and identity theft. In our case,
the target and attack tasks are not identical; this differs from
prior works that have identity prediction for both target and
attack tasks [/ |, 54, 50]. Figure 2a illustrates the baseline
model inversion attack using only target model predictions.
We will next describe more serious attacks by exploiting
target model explanations.

3.2. Model Inversion with Target Explanations

To invert the target model M, [50], we trained the in-
version attack model M* as a Transposed CNN (TCNN)
[“] to predict a 2D image @, from the 1D target predic-
tion vector y; as input to the attack model (see Figure 2a).
M is trained with MSE loss for the image reconstruction
L.(x,&,). We illustrate the convolutional layers for up-
sampling in the TCNN in the supplementary materials. We
consider saliency map explanations (e.g., [, 3“]) and ex-
tend the TCNN model to be multi-modal to include the 2D
target explanation as a second input (Figure 2b). A simple
approach is to flatten the explanation into a 1D vector, con-
catenate with the prediction vector and input to the TCNN
(Figure 2e). However, this neglects the spatial information
of the salient pixels. A simple way to leverage the 2D infor-
mation is with a CNN architecture that uses convolutional
kernels to interpret 2D patterns into a 1D feature embedding
vector which is put into the TCNN (see supplementary ma-
terials). This CNN-TCNN architecture is similar to the gen-
erator proposed in [5-]. Inspired by CNN encoder-decoder
networks [*7] and image super-resolution techniques [55],
we propose to use a U-Net architecture [/] in the inver-
sion model to improve its reconstruction performance (Fig-
ure 2f). We hypothesize that this will have more accurate
reconstruction because of the retention in spatial informa-
tion that is transmitted through the bypass connectors from
the convolutional layers. We further propose a hybrid model
by combining the Flatten and U-Net input architectures as
the Flatten+U-Net inversion model (Figure 2g); the 1D flat-
tened explanation and prediction vectors are concatenated
with the latent layer of the U-Net architecture. The pro-
posed architectures demonstrate various methods to obtain
sensitive information for privacy attack; we heretofore call
them XAI Input Methods. The training loss function re-
gards image reconstruction task:

Ly = (M} (My(x)) — x) (1)
T

where « is the private input image, M;(x) = y; is the tar-
get model prediction, and M (M;(x)) = &, is the recon-

structed image from the inversion attack.
Later, we describe our experiments on how some archi-
tectures capture more knowledge from the explanations and
interpret why. The proposed architectures can be used for

any 2D explanations of the CNN target model, such as gra-
dients [ 7], class activation maps (CAM) [56], LRP [], and
2D auxiliary data, such as blurred variants of the input im-
ages xp,. We further conducted experiments on different Ex-
planation Types, described later.

3.3. Model Inversion with Multiple Explanations

While many explanations explain why a model predicted
aclass ¢ € C, it is also important to explain why not an
alternative class ¢’ # ¢, i.e., to provide contrastive expla-
nations [0, “9]. To support this, some explanation tech-
niques, such as Grad-CAM [ "], can provide class-specific
explanations depending on user query. However, this fur-
ther raises the privacy risk, since more information is pro-
vided by the additional explanations. We exploit these Al-
ternative CAMs (3X-CAM) by concatenating explanations
for |C| classes into a 3D tensor and training the inversion
models on this instead of the 2D matrix of a single explana-
tion. Supplementary Figure 1f for detailed architecture.

To gain a deeper insight into a model decision, users may
be interested in understanding which specific neurons of a
CNN were activated and how. In particular, although Grad-
CAM presents one saliency map per class ¢, this is com-
posed as a weighted sum of activation maps from the last
convolutional layer in the CNN, i.e., the saliency map ex-
planation is E° = ReLU(Y", a{A*), where A" is the kth
HW 9y .
ij DAL is the
gradient-based importance weight. Hence, the Grad-CAM
explanation is composed of |K | partial, constituent CAMs
(0-CAM). Combined with explanation techniques to under-
stand the role of each neuron (e.g., [, 2”]), these 0-CAMs
can provide rich insights for developers. However, since
| K| >> 1is large, this provides a multitude of explanations
that further leak privacy. Similar to Alternative CAMs, we
exploit these Constituent CAMs 0-CAM by concatenating
them into a 3D tensor as input to the inversion model.

activation map (k € K), and aff = 75 >

3.4. Model Inversion with Surrogate Explanations

While the XAI Input methods can increase privacy risk,
we further hypothesize that XAI techniques can be ex-
ploited for inversion attacks even for non-explainable tar-
get models (i.e., no target explanation). We propose an ar-
chitecture that predicts the target explanation and exploits
that explanation to invert the original target data. Figure
2c illustrates the architecture for this attack. First, we train
an explainable surrogate target model M} on the attacker’s
dataset to generate surrogate explanation E,. Then, as
X, — X, then M — M, and E — E.

However, E, is only available during training not when
predicting. Hence, we train an explanation inversion model
M¢ to reconstruct E,; as ET from the target prediction y,
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by minimizing the surrogate explanation loss function:

Lp =Y (M (My(z)) - E(M] (2)))* 2

x

where E(M) is the explanation of the model M, M (x) =
¥y is the surrogate target prediction, F(M¢(z)) = E; is the
surrogate explanation, and M®(M;(x)) = E, is the recon-
structed surrogate explanation. This reconstructed explana-
tion is available at prediction time. Finally, we input E,
into the image inversion model ;' to complete the model
inversion attack. Since ET is the same format as Et, we
can apply any of the aforementioned XAI Input Methods.
Overall, the proposed architecture can also be described as
model inversion attack with attention transfer, where expla-
nations are transferred from surrogate target model M* into
the intermediate layer between M¢ and M. This guides
and constrains the inversion model to learn activations that
M finds relevant for g as a proxy for §. The training loss
involves two tasks: image reconstruction (Eq. 1) and expla-
nation reconstruction (Eq. 2).

4. Experiments

We conducted experiments to perform an ablation analy-
sis of our model inversion architectures and to compare with
existing work. We evaluated on multiple datasets for dif-
ferent use cases and evaluated image reconstruction quality
and accuracy to classify sensitive information from recon-
structed images. Figure 3 demonstrates increased inversion
risk due to explanations and XAl-aware attention transfer.

4.1. Experiment Setup

Use Cases and Datasets. We evaluated on three datasets
representing three use cases with the simultaneous need
for model explanations and privacy. 1) iCV-MEFED face
expressions data [“] with 6 emotions and 115 identities
(10 omitted due to confidentiality) over 24,120 instances.
We evaluated a first use case where an explainable target
model predicts emotion from faces (e.g., for classroom en-
gagement monitoring [0, <V], driver drowsiness detection
[12, 25]; and an attacker executes a data breach to obtain
the prediction and explanation data, and performs a model
inversion attack [! |, 5] to reconstruct the face from the
emotion prediction to re-identify the user (e.g., leak embar-
rassing or compromising faces). Users can interpret expla-
nations to validate or dispute the emotion predictions (e.g.,
to defend their alertness), but they are at increasing risk of
being de-anonymized. We evaluated a second use case of
identity recognition from faces for biometrics as target task
with explainability to help human inspection (e.g., security
access and passport border control) and privacy to mitigate
identity theft. 2) CelebFaces Attributes Dataset (CelebA)
[277] with a balanced subset of 1000 identities over 30,000

instances. This enables testing with more realistic images
(Internet scraped vs. lab captured) and more varied labels
(1000 vs 115). For simplicity, all face images were cropped
to tighten on the face and exclude backgrounds. 3) MNIST
handwritten digits [7-] with 10 labels and 70,000 instances
to test with another use case of explainable handwriting
biometrics. To fit our models, we resized iCV-MEFED to
128 %128, CelebA to 256256, and MNIST to 32x 32 pix-
els.

Protocol. We split each dataset into two disjoint sets:
50% as target dataset to train the target model, 50% as attack
dataset to train and test the attack models. We tested the
target model with the attack dataset. For the attack dataset,
we employ an 80/20 ratio for the train/test split.

Target models. We implemented different target models
for each use case. For the iCV-MEFED emotion task, and
identity tasks in iCV-MEFED and CelebA, our target model
has 3 convolutional and 3 pooling layers. For the MNIST
digit task, the target model has 2 convolutional and 2 pool-
ing layers. Instead of using state-of-the-art deeper models,
we limited to smaller deep networks so that CAM explana-
tions are not too small at 16x 16 pixels. We use the ADAM
optimizer with learning rate 1074, 51 = 0.5, 2 = 0.999.

Explanation types. We evaluated with four popular
saliency map XAl types. Gradient explanation (V y;) [ ]
describes the sensitivity of the prediction toward input fea-
tures. By multiplying gradients and input features element-
wise, Gradient ® Input (V,y; ® x) [1] describes the in-
fluence of each input feature on the prediction. The afore-
mentioned explanations are very fine-grained. In contrast,
Grad-CAM (ReLU(Z k oziAk)) [$9] aggregates a weighted
sum of activation maps in the final convolutional layer to
provide smoother attribution-based saliency maps that are
more related to features learned by the CNN. The last ex-
planation type we evaluated was layer-wise relevance prop-
agation (LRP) [ ], which attributes the importance of pixels
by backpropagating the relevance of neurons in a neural net-
work while obeying the axiom of conservation of total rel-
evance. Furthermore, we evaluated multiple explanations
as Alternative CAMs (2-CAM) and Constituent CAMs (0-
CAM), and XAl-aware attention transfer with surrogate
CAM (Et = s-CAM) and reconstructed surrogate CAM
(E, = rs-CAM).

Baseline inversion attack models. Since there are
no prior methods exploiting explanations for model inver-
sion attack, we compared our XAl-aware attack approaches
against Fredrikson et al.’s original model inversion [! ]
(Fredrikson), and Yang et al.’s transposed CNN using only
the target prediction [©0] (Prediction only).

4.2. Evaluation Metrics

We evaluated the privacy risk of model inversion attacks
quantitatively with multiple metrics to gather multiple ev-
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Figure 3. Demonstration of image reconstruction from XAlI-aware inversion attack for different datasets with same target and attack tasks
for each case (iCV-MEFED [ ] and CelebA [ 7]: identification, MNIST [”]: handwriting digit recognition). Same format as Figure 1.

idences of how well the inversion reconstructs the private
target image x (i.e., input instance put into the target model)
and how well sensitive information 3, can be recovered.

Pixelwise Similarity (1 — M SE,). Mean squared er-
ror (MSE) is commonly used to evaluate regression prob-
lems. We scale both target and reconstructed images to a
unit square, and normalize pixel values to [0,1] and calcu-
late their MSE. The similarity metric, s = 1 — M SE, is
image size invariant and increases with image similarity.

Image Similarity (SSIM). MSE does not linearly repre-
sent how humans perceive image similarity, so we also em-
ploy the perception-based Structural Similarity Index Mea-
sure (SSIM) [ ¢] to evaluate image quality [>7/]:

(QMaMb + Cu) (20'ab + CU)
(ug + pp + Cp) (07 + 07 + Co)
where z, and z; are two images being compared, p, and
o, represents the pixel value mean and standard deviation,
respectively, C;, = (K, L)? and C, = (K,L)? are con-
stants to control instability, L is the dynamic range of the
pixel values (255 for 8-bit images), and K, = 0.01 and
K, = 0.03 are chosen to be small. To compare images at
different levels of granularity, we compare Gaussian kernels
for both images at specified standard deviations, o (smaller
o for more precise comparison), and compute their mean.
We calibrated o to match the human perceived similarity
as judged by two co-authors: o = 1.5 for iCV-MEFED,
o = 2.5 for CelebA, and o = 1.5 for MNIST.

Attack Accuracy. We trained an Attack Evaluation
CNN Model, M, on the attack task (e.g., face identity) on
original images of the full dataset to represent a universal
capability to predict sensitive information from original im-
ages. If the classifier can correctly label a reconstructed
image, then that image leaks private information. The eval-
uation model is trained on identity (ID) labels for the iCV-
MEFED and CelebA datasets, and digit labels for MNIST.
Models are not trained on reconstructed images. Model ar-
chitectures as CNNs are described in supplementary materi-
als. The model accuracy on reconstructed images indicates

SSIM (24, 73) = )

the loss of privacy due to the model inversion attack; this
represents the risk of de-anonymization and identity theft.
Attack Embedding Similarity (e~ *5F:), While the
aforementioned similarity metrics are data-centric (for im-
ages), they are agnostic to the attack task. Poorly recon-
structed data can still leak much sensitive information, e.g.,
a reconstructed face with obfuscated nose and chin can still
be recognized well if the eyes or mouth features are pre-
served. After training the Attack Evaluation CNN Model
My, we compute the feature embedding z of the input im-
age x from the penultimate layer, and calculate the MSE be-
tween the embeddings of the reconstructed and original im-
ages, z, and z, respectively. The Attack Embedding Sim-
ilarity is computed as e“z_z”g; this decreases with dis-
tance and is bounded between 0 and 1. Zhang et al. [5]
computed Feature Distance and KNN Distance metrics be-
tween the reconstructed image and centroid of images for
the same class; these are quantitative proxies for the clas-
sifying the reconstructed image into identity classes, which
is what their Attack Accuracy metric measures. Instead,
our metric determines how closely the reconstructed image
matches the original image in terms of the attack task.

4.3. Experiment Results

We first conducted an ablation study on the face-emotion
use case with iCV-MEFED to determine the most per-
formant XAI Input Method, and analyzed the interaction
effect between XAI Input Method and XAI Type. We
then conducted comparison studies with baselines [ |, 50],
the best single-explanation XAl-aware inversion model
(Flatten+U-Net) with the popular Grad-CAM [ "] explana-
tion, and its reconstructed, surrogate variant (rs-CAM) for
non-explainable target models. For generalization, the latter
studies were conducted across multiple datasets.

4.3.1 Attacking with different XAI Input Methods

We found that adding more spatially-aware architectures
improved the inversion attack performance in the order:
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Figure 4. Inversion attack performance for different XAl input
methods and XAI types of iCV-MEFED (Emotion target task) in-
creases for a) more spatially-aware architectures and with multi-
explanations, and b) explanation types that include sharper details
of the input image. Error bars indicate 90% confidence interval.

Prediction only < Flatten < CNN < U-Net < Flatten+U-
Net (see Figure 4a). As expected, with the least information
provided, the Prediction only inversion model had lowest
performance in terms of reconstruction similarity and attack
accuracy. Exploiting explanation through any method sig-
nificantly improved the inversion performance. However,
the Flatten input method achieved the lowest performance
among XAl-aware inversion models. This could be due
to the lack of spatial information and high dimensionality
(e.g., 256 x 256 for CelebA). The CNN input method im-
proved inversion performance by performing dimensional-
ity reduction to infer features that are used for model in-
version. Although the information is reduced and only the
latent embedding is provided to the TCNN module, the
learned features are clearly more useful for encoding con-
cepts in the original image to help to improve the inversion
attack. However, the TCNN still does not have explicit spa-
tial information from the explanations and remains limited
in performance. On the other hand, by adding bypass con-
nectors, the U-Net architecture is able to leverage on pixel
information from the raw information at multiple levels of
convolution to learn an inversion function. Hence, U-Net is
a more successful architecture than CNN and Flatten. Fi-
nally, combining Flatten and U-Net is able to allow the in-
version model to acquire raw pixel information and seman-
tic features for a more knowlegeable model inversion attack.
Therefore, this provided the strongest attack performance.

4.3.2 Attacking multi-explanation target models

We evaluated whether providing richer CAM explanations
increased inversion performance. As expected, models that
provide more explanations are at greater privacy risk in the
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Figure 5. Inversion attack performance across different datasets
showing increased privacy risk when exploiting target explana-
tions (CAM) and with attention transfer. Even without target ex-
planations, inversion performance with reconstructed, surrogate
explanations (rs-CAM) was similar to exploiting target explana-
tions. Surrogate explanations (s-CAM) are not available at pre-
diction time and is only shown as intermediate comparison. Error
bars indicate 90% confidence interval. Performance with baseline
method by Fredrikson et al. [/ !] is significantly poorer and re-
ported in supplementary materials.

order: CAM < ¥X-CAM < 9-CAM. Alternative explana-
tions (3-CAM) support contrastive explanations with more
information, but this poses further privacy risk. Hence,
developers should limit access to too many alternative ex-
planations to limit leakage. 0-CAMs are useful for model
debugging but are unlikely to be provided to end-users to
avoid information overload. However, if the API does not
restrict access to such explanations, an attacker can discover
them and perform very accurate inversion attacks.

4.3.3 Attacking target models with different XAl types

Inversion performance improved in the order: Prediction
only < LRP < Gradient < CAM < Gradient ® Input. This
trend was consistent for different XAI Input Methods (Fig-
ure 4b). LRP and Gradient explanations provide the least
information for attack since they only communicate the sen-
sitivity per pixel and do not have direct information about
the input image. In contrast, Gradient® Input encodes much
knowledge about the original image, due to the element-
wise multiplication of the Hadamard operator, which the
inversion model can more easily learn to recover. CAM ex-
planations combine gradient information in its importance
weights «f, and a transformation of the original image in
the activation maps A* of convolution kernels. Thus, they
leak more private information than Gradient, but less than
Gradient © Input because of the weighted average aggre-
gation that obfuscates information. In contrast, Constituent
CAMs (0-CAM) that retain knowledge of individual ker-
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Figure 6. Investigation of the influence of target explanation and
prediction factors on attack performance. Cubic spline fit to data
points with 90% confidence interval.

nels leak much more information for inversion attacks (see
Figure 4a).

4.3.4 Attacking non-explainable target models

We found that inverting predictions of non-explainable tar-
get models with surrogate explanations can increase inver-
sion performance in the order: Prediction only < rs-CAM
< s-CAM < CAM (see Figure 5). s-CAM represents the
CAM from the surrogate model, and inversion with s-CAM
represents an upper bound of the explanation-inversion at-
tack. While rs-CAM performance is slightly lower than
CAM, it is significantly higher than Prediction only. We fur-
ther found that attack models trained on out-of-distribution
(OOD) data [ 1] can still increase inversion attack perfor-
mance, albeit weaker (see Supplementary Figure 5a). This
demonstrates the significant threat that inversion attack can
be made much more aggressive even when target models
provide no explanation. This is due to the ability to train
more knowledgeable attack models with attention transfer.

4.3.5 Impact of explanation quality on attack accuracy

We investigated the influence of multiple factors in explana-
tion quality on the inversion attack accuracy (see Figure 0),
in terms of image reconstruction performance (SSIM) and
attack accuracy. This analysis was performed on the iCV-
MEFED dataset with the emotion target task, CAM expla-
nation, and re-identification attack task.

Some CAM explanations highlight irrelevant regions
such as the black masked region of the face image. We
quantify Explanation Relevance as normalized Intersection
over Union (IoU) between the CAM and valid face region
(Mask). We found that more relevant explanations improve
attack performance, though Flatten+U-Net can achieve high

accuracy for less relevant explanations (Figure 6a).

Some explanations can be atypical for a class predic-
tion. We quantify Explanation Typicalness as the Pear-
son correlation coefficient (PCC) between the CAM and
the pixelwise average CAM of its class (u-CAM). We used
PCC since it is more appropriate for lower-dimensionality
saliency maps [!]. We found that attack performance de-
creased for less typical explanations (Figure 6b).

We found a slight effect that the prediction confidence
in the target model increased attack performance (Figure
6¢). Unlike [54] which showed that target model perfor-
mance is correlated with attack performance, we found that
target model accuracy (Figure 6d) did not affect attack per-
formance. This apparent contradiction is due to differing
attack objectives: [5-] sought to invert the prototypical im-
age representing a class label to leak knowledge about the
training dataset, while we sought to invert the original im-
age of a test instance. Our objective is similar to [50].

5. Conclusion

We have presented several methods for model inver-
sion attack to exploit model explanations to demonstrate in-
creased privacy risk. This highlights the conflict between
explainability and privacy, and is a critical first step to-
wards finding an optimal balance between these two re-
quirements for responsible Al. Our approach trains a multi-
modal transposed CNN with a Flatten input layer and U-
Net architecture to acquire detailed information of the ex-
planation, lower-dimension semantic concepts from latent
features, and multi-scale spatial information from bypass
connectors. With this as the core XAl-aware inversion
model, we further train a meta-architecture to increase the
inversion performance even against non-explainable target
models. This approach trains an explainable surrogate tar-
get model, then trains an explanation inversion model from
the target predictions, which reconstructs an explanation to
be used as a surrogate input for the XAl-aware inversion
model. Our experiment results show an increased attack ac-
curacy when exploiting target explanations (up to 33x for
iCV-MEFED emotion task, and 2.4 for CelebA ID task),
even higher for multi-explanations such as contrastive or
detailed constituent explanations (up to 39x, 42x for iCV
emotion task, respectively), and, concerningly, even with-
out target explanations (with surrogate, up to 2.15x). We
found that activation-based (attribution saliency map) ex-
planations leak more privacy than sensitivity-based (gra-
dients) explanations, resulting in higher inversion perfor-
mance, and so do explanations that are more relevant and
typical. For future work, we will the inversion attack ap-
proach can be extended for different explanations (e.g.,
feature visualizations, concept activation vectors), different
data modalities (e.g., spectrograms of audio) and investigate
techniques for privacy defense.
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