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Figure 1. When only using a single frame, predicting object masks from bounding boxes often leads to failures (left), since the outline of
an object is difficult to resolve. By using video, our approach aggregates information across several frames. In this example, it identifies
the car as background through the neighboring frames, while the scooter remains within the box, allowing it to be accurately segmented.

Abstract

Segmenting objects in videos is a fundamental computer
vision task. The current deep learning based paradigm of-
fers a powerful, but data-hungry solution. However, current
datasets are limited by the cost and human effort of annotat-
ing object masks in videos. This effectively limits the per-
formance and generalization capabilities of existing video
segmentation methods. To address this issue, we explore
weaker form of bounding box annotations.

We introduce a method for generating segmentation
masks from per-frame bounding box annotations in videos.
To this end, we propose a spatio-temporal aggregation mod-
ule that effectively mines consistencies in the object and
background appearance across multiple frames. We use our
predicted accurate masks to train video object segmenta-
tion (VOS) networks for the tracking domain, where only
manual bounding box annotations are available. The ad-
ditional data provides substantially better generalization
performance, leading to state-of-the-art results on standard
tracking benchmarks. The code and models are available at
https://github.com/visionml/pytracking.

1. Introduction

Segmenting objects in videos is an important but chal-
lenging task with many applications in autonomous driv-
ing [51, 55], surveillance [11, 15] and video editing. The
field has been driven by the astonishing performance of
deep learning based approaches [7, 44, 58]. However, these
methods require large amount of training images with pixel-
wise annotations. Manually annotating segmentation masks
in videos is an extremely time-consuming and costly task.
Existing video datasets with segmentation labels [49, 63]
therefore do not provide the large-scale diversity desired in
deep learning. This effectively limits the potential of cur-
rent state-of-the-art approaches.

To address this issue, it is tempting to consider weaker
forms of human annotations. In particular, object bound-
ing boxes offer an interesting alternative. Boxes provide
horizontal and vertical constraints on the extent of the seg-
mentation mask, while also being substantially faster to an-
notate. Hence, a method of effectively leveraging bound-
ing box annotations for training video segmentation models
would greatly simplify the process of deploying these mod-
els for novel domains. Ideally, simply converting the video
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box annotations to object masks would allow existing video
segmentation approaches to integrate these annotations us-
ing standard supervised techniques, without requiring any
modification of losses or architectures. Such a conversion
network can itself be trained using available mask annotated
data. We therefore investigate the problem of generating ob-
ject segmentations from box-annotations in videos.

Generating masks from box-annotated videos is a decep-
tively challenging task. The background scene is often clut-
tered or contains similar objects. Objects can change ap-
pearance rapidly and often undergo heavy occlusions. Ex-
isting approaches [38, 60] only address the single frame
case, where these ambiguities are difficult, or sometimes
impossible to resolve due to the limited information. How-
ever, the aforementioned problems can be greatly alleviated
if we can utilize multiple frames in the video. As the object
moves relative to the background, we can find consistencies
over several example views of the object and background.
While object regions should consistently stay inside the
box, background patches can move from inside to outside
the object box over the duration of the video sequence. For
instance, in Fig. 1 the single frame approach fails to prop-
erly segment the scooter due to the background car. In con-
trast, our video-based approach can identify the car as back-
ground in earlier and later frames while the scooter is con-
sistently within the box for all frames. The car is therefore
easily excluded from the final segmentation in all frames.

Effectively exploiting the information encoded in the
temporal information is however a highly challenging prob-
lem. Since the object and background moves and changes
in each frame, standard fusion operations cannot extract the
desired consistencies and relations. Instead, we propose a
spatio-temporal aggregation module by taking inspiration
from the emerging direction of deep declarative networks
[17]. Our module is formulated as an optimization problem
that aims to find the underlying object representation that
best explains the observed object and background appear-
ance in each frame. It allows our approach to mine spatio-
temporal consistencies by jointly reasoning about all image
patches in all input frames. The resulting mask embeddings
for each frame are then processed by a decoder to generate
the final segmentation output.

Contributions: Our main contributions are as follows.
(i) We propose a method for predicting object masks from
bounding boxes in videos. (ii) We develop a spatio-
temporal aggregation module that effectively mines the ob-
ject and background information over multiple frames. (iii)
Through an iterative formulation, we can further refine the
masks through a second aggregation module. (iv) We utilize
our method to annotate large-scale tracking datasets with
object masks, which are then utilized to extend Video Ob-
ject Segmentation (VOS) to the tracking domain.

We perform extensive experiments, demonstrating the

effectiveness of our approach in the limited data domain.
Moreover, we show that the data generated by our approach
allows VOS methods to cope with challenges posed by the
tracking setting. An existing VOS approach [7] trained on
our pseudo-annotated tracking videos achieves state-of-the-
art performance on standard tracking benchmarks, achiev-
ing an EAO score of 0.510 on VOT2020, and 86.7 AO on
GOT-10k validation set. Code, models and generated anno-
tations will be made publicly available.

2. Related Work

Semi-supervised video object segmentation: Semi-
supervised video object segmentation (VOS) is the task of
classifying all pixels in a video sequence into foreground
and background, given a target ground-truth mask in the
first frame. A number of different approaches have been
proposed for VOS in recent years, including detection based
methods [8, 40, 59], propagation based approaches [27, 35,
46, 62], feature matching techniques [10, 22, 44, 58], and
meta-learning based methods [3, 7, 50]. A crucial factor
that has enabled the recent advancements in VOS has been
the release of high quality datasets such as DAVIS [49] and
YouTube-VOS [63]. However, performing pixel-wise mask
annotations for VOS datasets is an extremely time consum-
ing task. As a result, VOS datasets are still relatively smaller
in size and contain limited number of object classes, motion
types, etc. compared to other fields such as object detection
and tracking. This poses significant challenges in training
general VOS models for real-world applications.

Weakly supervised segmentation: Due to the high cost
of collecting pixel-wise labels, different types of weak an-
notations have been utilized to guide segmentation tasks re-
cently, such as image-level supervision [1, 24, 29, 47, 66],
points [2, 41], scribbles [37, 57] and bounding boxes
[12, 21, 26, 31, 45]. Recent work [21] designs a multi-
ple instance learning (MIL) loss by leveraging the tight-
ness property of bounding boxes. Our work is more re-
lated to bounding box supervised segmentation. In [12, 26],
pseudo segmentation masks for training are generated us-
ing GrabCut [52] and the MCG proposals [48]. Voigtlaen-
der et al. [61] employed the box to mask conversion model
introduced in [38] to generate pseudo segmentation masks
for box annotated videos, using a single mask annotation
per video. In a similar spirit to [61], our approach uti-
lizes a pool of mask annotated videos to train a video box
to mask conversion network, which is then used to gener-
ate pseudo-labels using box annotations. However, unlike
in [61], our approach does not require any additional mask
annotations when labelling box annotated videos. More-
over, the masks are generated by utilizing spatio-temporal
consistencies across video frames

Converting boxes to segmentation masks: Generating
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Figure 2. An overview of our architecture for segmenting an object from a box-annotated video. We extract deep features from each frame.
Features xt and boxes bt are then given to the object encoder (Sec. 3.1) to generate an object-aware representation et. The spatio-temporal
aggregation module (Sec. 3.2) inputs object encodings and deep features from all frames. Its output st is decoded to an object mask yt. We
refine the masks by iterating the process (Sec. 3.3) with a secondary object encoder and aggregation module to generate the final output ŷt.

a segmentation mask from the given object bounding box
is an essential sub-task in instance segmentation, especially
detection-based methods [13, 18, 19, 36]. These approaches
follow a multi-task learning strategy where a backbone net-
work first extracts deep features and generates a set of pro-
posals. Then detection and segmentation heads are used
separately to predict an accurate bounding box and seg-
mentation mask for the proposal. ShapeMask [32] takes a
bounding box detection as the initial shape estimate and re-
fines it gradually, using a collection of shape priors. Luiten
et al. [38] train a modified DeepLabv3 [9] model to out-
put a mask, given a crop containing the object as input. In
contrast to the previous approaches which only operate on
single images, we address the task generating masks given
box annotated videos as input. Our approach can exploit the
additional temporal information in the video to predict more
accurate masks, as compared to single image approaches.
Object Co-segmentation: Object co-segmentation is the
task of segmenting the common objects from a set of im-
ages. This concept was first introduced by Rother et al.
in [53], which minimizes an energy function containing
an MRF smoothness prior and a histogram matching term.
Subsequent work [54] combines visual saliency and dense
SIFT matching to capture the sparsity and visual variabil-
ity of the common object in a group of images. The work
[34] integrates a mutual correlation layer into a CNN-based
Siamese architecture to perform co-segmentation. Similar
to co-segmentation method, we segment objects using mul-
tiple images. However, our images are obtained from the
same video. This enables exploiting strong temporal con-
sistency in videos to improve segmentation accuracy.

3. Method

We propose an end-to-end trainable architecture for the
problem of segmenting an object in a video, given its
bounding boxes in each frame. Our complete architecture
is shown in Fig. 2. To fully exploit the temporal dimen-
sion, we aim to use detailed information of not only the tar-
get, but also the background context. Our backbone feature
network F therefore first separately encodes video frames
{It}T1 containing the object as well as substantial back-
ground. The extracted deep features xt = F (It) along
with the corresponding bounding box bt are given to the
object encoder B, which provides an object-aware repre-
sentation et of each individual frame. By integrating the
object bounding box, it provides information about hypo-
thetical object and background regions.

The object encodings and deep features xt from all
frames are input to the spatio-temporal aggregation mod-
ule S. The goal of this module is to generate an encoding
of the object segmentation st for each frame. The mod-
ule S aggregates appearance and box information from all
frames and locations through an efficient and differentiable
optimization processes. The iterative procedure fuses the
different observations of the appearance {(xt, et)} by find
an underlying representation of the object. This representa-
tion then generates the segmentation encoding st, which is
processed by the segmentation decoder D to predict prelim-
inary object masks as yt = D(st, xt). Our flexible archi-
tecture allows us to further improve the masks by feeding
the results into a second spatio-temporal aggregation mod-
ule, which predicts a set of refined segmentation encodings
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ŝt. The final segmentation masks ŷt = D(ŝt, xt) are then
generated by the same decoder network. Our entire archi-
tecture is trained end-to-end in a fully supervised manner.
In the next section, we first detail our object encoder.

3.1. Object Encoder

Accurately segmenting a specified object given only a
single frame is a challenging problem. Since our goal is
generic object segmentation, the type of object specified
during inference may not even be represented in the train-
ing set. In general, it is therefore difficult to assess which
image region inside a single bounding box belongs to the
object in question. This is further complicated by cluttered
scenes or presence of distractor regions in the background
that are similar to the object itself. In these cases, deter-
mining object boundaries is particularly difficult. Moreover,
multiple objects often overlap, making even the decision of
which object to segment given the bounding box an ambigu-
ous task. All aforementioned issues are greatly alleviated if
we can exploit several frames from a video sequence. As
the object moves relative to the background, we can search
for consistencies over several views of the object appear-
ance. While object regions should consistently stay inside
the box, background patches can move from inside to out-
side the box over the duration of the sequence. This search
for consistency is performed by our spatio-temporal aggre-
gation S through an iterative optimization process. It oper-
ates on information extracted from the individual frames by
the object encoder, which we first detail here.

Directly extracting the segmentation from a single frame
is difficult and prone to errors. We can however generate
an object encoding from a single frame, capturing multiple
possible segmentation hypotheses. Each frame gives de-
tailed information about image patches, structures and pat-
terns that are certainly not part of the object itself. These
are image regions that are strictly outside the bounding box,
which provide important cues when combined with other
frames in the sequence. To extract such frame-wise object
information, we integrate an object encoder B. It takes in-
formation available in frame t by inputting the deep image
representation xt = F (It) along with the object bounding
box bt. We first convert the box bt to a corresponding rect-
angular mask representation in the input image coordinates.
This is then processed by several convolutional and pool-
ing layers, which increase the dimensionality while reduc-
ing the spatial resolution to be the same of the deep features
xt. The resulting activations are then concatenated with the
features xt and further processed by several residual blocks.

Through the deep features xt, the object encoder B
can extract candidate object shapes, which are used when
searching for consistency over several frames. Specifically,
the object encoder has three outputs,

(et, wt,mt) = B(xt, bt) , et, wt,mt ∈ RH×W×C . (1)

All outputs have the same spatial resolution H ×W as the
features xt. The abstract embedding et holds information
about the candidate object shapes, and background regions
in image It. Intuitively, at spatial location (i, j), the activa-
tion vector et[i, j] ∈ RC encodes probable segmentations
of the corresponding image region. Note that the certainty
of this encoding et[i, j] can vary spatially and over the fea-
ture channels. For instance, regions outside the bounding
box are certainly not part of the object, while regions inside
the box can be ambiguous. To model this uncertainty in
et[i, j], we also predict a corresponding confidence weight
wt for each element in et. The output mt also contains
single-frame object encoding, similar to et. However, mt

is directly input to the segmentation decoder D. In con-
trast, the encoding et and its confidence wt are given to the
spatio-temporal aggregation module, detailed next.

3.2. Spatio-Temporal Aggregation

It is the task of the spatio-temporal aggregation mod-
ule to mine the object information over multiple frames.
However, designing a neural network module capable of
effectively integrating information from multiple frames is
a challenging and intricate problem as the object changes
location and pose in each frame. As a result, temporal
pooling, concatenation, or convolutions cannot find the de-
sired consistencies. Moreover, these operations do not con-
sider detailed global information. When deciding whether a
patch corresponds to foreground or background, we need to
find and reason about all similar patches in the given frames.

The main idea of our formulation is to find an underly-
ing object representation z that best explains the observed
object embedding et. That is, the representation z should
indicate consistent local correlations between the deep im-
age features xt and the corresponding object embedding et.
We formulate this as the problem of finding the best fitting
local linear mapping from features vectors xt[i, j] ∈ RD

to corresponding embedding vectors et[i, j] ∈ RC . This is
most conveniently expressed as a convolution with the filter
z ∈ RK×K×D×C , where K is the kernel size. Using the
squared error to measure the fit, our temporal aggregation
module is formulated as

{st}T1 = S
(
{(xt, et, wt)}T1

)
= {xt ∗ z∗}T1 where (2a)

z∗ = argmin
z

1

T

T∑
t=1

∥∥wt · (xt ∗ z − et)
∥∥2 + λ∥z∥2. (2b)

The filter z is thus optimized to predict the embedding et
from the features xt. In order to minimize the objective, the
filter must focus on consistent local correlations between xt

and et, while ignoring accidental relations that do not reoc-
cur. The predicted confidence wt actively weights the er-
ror at each spatio-temporal location and channel dimension
through an element-wise multiplication. Our network can
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therefore learn to ignore information in et that is deemed
uncertain by predicting a low weight wt, while emphasiz-
ing other information by giving a large importance weight.
The regularization weight λ is learned during training.

During both inference and training, the optimization
problem (2b) needs to be solved for every forward pass of
the network. The solver thus needs to be efficient in order
to ensure practical training and inference times. Moreover,
the solution z∗ needs to be differentiable w.r.t. to the in-
puts {(xt, et, wt)}T1 and λ. While it is possible to directly
compute the closed-form solution of (2b), it involves large-
scale matrix operations which are computationally heavy.
Thus, we employ unrolled steepest-descent based optimiza-
tion strategy utilized in [5, 7] to yield a simple and fast
solution. As the algorithm employs iterative updates to z
through a differentiable closed-form expression, backprop-
agation is automatically achieved through the standard auto-
differentiation implemented in deep learning libraries.

After mining for spatio-temporal consistencies through
the iterative minimization of (2b), the filter z∗ contains a
strong representation of the object. It encapsulates the con-
sistent patterns and correlations of the object, integrating
both spatial and temporal information. The output segmen-
tation encoding st of the spatio-temporal aggregation mod-
ule is achieved by applying the optimized representation z∗

to the deep features xt of each frame in (2a) as st = xt ∗z∗.
This is then input to our decoder yt = D(st,mt, xt), which
generates a final object segmentation yt.

Relation to [7]: Our approach can be seen as an exten-
sion of the internal learner employed in the LWL VOS
method [7]. LWL tackles a few-shot learning problem
where the goal is to learn a parametric target model for
VOS, using the mask annotation provided in the first frame.
The model is then applied on subsequent test frames to seg-
ment the target. In contrast, our formulation (2) does not
assume access to any segmentation annotation. Instead,
we exploit the spatio-temporal consistencies within input
frames to output segmentation encoding st for each frame,
using only the box annotation. Thus, formulation (2) serves
the purpose of spatio-temporal fusion in our approach, as
opposed to a few-shot learning objective in LWL.

3.3. Iterative Refinement

In this section, we describe a method to further refine the
object segmentations using existing components in our ar-
chitecture. The decoder module learns powerful segmenta-
tion priors by integrating deep features from different levels.
It is able to extract accurate object boundaries and filter out
potential errors. The segmentation embedding st predicted
by the spatio-temporal aggregation module (2) is thus en-
riched with these priors in order to generate the output seg-
mentation yt. Note that this represents new knowledge not
seen by the aggregation module in the first pass. We can

therefore utilize this information by feeding the output seg-
mentation masks back into the aggregation step.

To this end, we create a secondary object encoder B̂,
taking the predicted mask yt. Since the preliminary mask
yt already encapsulates a detailed representation of the ob-
ject extent, we found it to be sufficient for generating the
object embedding êt and confidence weights ŵt used by the
aggregation module. Thus for each frame we predict,

(êt, ŵt) = B̂(yt) , et, wt ∈ RH×W×C . (3)

Note that we do not re-generate the single-frame informa-
tion mt later used by the decoder. Instead, we employ the
one stemming from the original object encoder (1).

The object encoding êt and corresponding weights ŵt

now include new and more accurate information about the
object. We integrate this for mask prediction by inputting it
to our spatio-temporal aggregation module (2) to generate
new segmentation encodings {ŝt}T1 = S

(
{(xt, êt, ŵt)}T1

)
.

Note that this implies solving a new optimization problem
(2b), which mines spatio-temporal consistencies. The final
segmentation mask ŷt is obtained using the same decoder
module as ŷt = D(ŝt,mt, xt). While the process could be
repeated several times, we did not observe noticeable im-
provement from a third iteration. This is however expected
as the strong segmentation priors of the decoder is already
exploited by the aggregation module in the second iteration.

3.4. Training

Our complete model is fully differentiable and hence can
be trained end-to-end using existing mask annotated video
datasets. From a ground truth mask yGT

t , we extract a cor-
responding bounding box bt by taking smallest axis-aligned
box containing the mask yGT

t . Our network is trained on
sub-sequences of length T by minimizing the loss,

L =
1

T

T∑
t=1

ℓ(yt, y
GT
t ) +

1

T

T∑
t=1

ℓ(ŷt, y
GT
t ) . (4)

Here, yt and ŷt are the segmentation outputs generated by
the initial prediction and the refinement respectively. Fur-
ther, ℓ denotes a generic segmentation loss.

For our experiments, we use the YouTube-VOS [63] and
DAVIS 2017 [49] datasets. We sample sequences from both
datasets using a 6 times higher probability for YouTube-
VOS compared to DAVIS 2017 training set. We then ran-
domly sample sub-sequences of length T = 3 frames within
a temporal window of length 100. For each frame, we first
crop a patch that is 5 times larger than the ground-truth
bounding box, while ensuring the maximal size to be equal
to the image itself. We then resize the cropped patch to
832 × 480 with the same aspect ratio. Only random hori-
zontal flipping is employed for data augmentation.
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We initialize our backbone ResNet-50 with Mask R-
CNN weights from [42]. All the remaining modules are
initialized using [20]. We use the Lovasz [4] loss as our
segmentation loss ℓ in (4). The network parameters are
learned using the ADAM [28] optimizer with a batch size
of 4. We train our network for 80k iterations with the back-
bone weights fixed. The learning rate is initialized as 10−2

and then reduced by a factor of 5 after 30k and 60k itera-
tions. The entire training takes 32 hours on a single GPU.

3.5. Implementation Details

Architecture: Here, we give further details about our ar-
chitecture. We use a ResNet-50 backbone network as fea-
ture extractor. For the object encoder B and spatio-temporal
aggregation module S, we employ the third residual block
and add another convolutional layer which reduces the di-
mensionality to 512. The object encoder generates outputs
(1) with a dimension C = 16. We adopt the segmentation
decoder used in [7, 50]. We first concatenate the segmenta-
tion embedding st from (2) with the single-frame informa-
tion mt from (1). The decoder then progressively increases
the resolution while integrating deep features from differ-
ent levels in F . For the spatio-temporal aggregation module
(2), we first initialize the object representation z to zero. We
then apply 5 steepest descent iterations [7] to optimize (2b)
during training. The kernel size of z is set to K = 3.
Inference: For a given input video, we extract a sequence
of T frames. Since our method benefits from using differ-
ent views of the target and background, we do not extract
directly subsequent frames as they are highly correlated.
Instead, we take T frames with an inter-frame interval of
∆. In order to segment all frames, we simply proceed by
shifting the sub-sequence one step each time. We generally
employ T = 9 and ∆ = 15. We analyze the impact of the
sequence length T in Sec. 4.1. For the spatio-temporal ag-
gregation (4), we found it beneficial to increase the number
of steepest-descent iterations to 15 during inference.

4. Experiments
We perform comprehensive experiments to validate our

contributions. A detailed ablative analysis of our architec-
ture is provided in Sec. 4.1. We demonstrate the effec-
tiveness of our approach for partially supervised training of
VOS in Sec 4.2. Finally, in Sec. 4.3, we use our network to
annotate large-scale tracking datasets and show improved
tracking performance using the generated annotations.

4.1. Ablation Study

We perform a detailed ablative study, analysing the im-
pact of key components in our approach. The analysis is
performed on DAVIS 2017 validation set, as well as YT300
set which has been previously utilized in [7, 25]. YT300

Num. Frames 1 3 5 7 9 11

YT300 84.2 85.2 85.5 85.6 85.6 85.6
DAVIS2017 val 78.7 80.4 80.9 81.1 81.2 81.2

Table 1. Impact of using multiple frames for box to mask conver-
sion. Results are shown in terms of Jaccard J index.

consists of 300 sequences which are sampled randomly
from the YouTube-VOS 2019 training set and not used for
training our models. The methods are evaluated using the
mean Jaccard J index. Unless specified, inference is per-
formed using the settings described in Sec. 3.5. We only
employ a different ∆ = 5 for DAVIS due to faster motions.

Impact of using multiple frames: We investigate the im-
pact of exploiting information from multiple frames to con-
vert boxes to masks by evaluating our approach using differ-
ent number of input frames. The result of this comparison
is shown in Table 1, and qualitative examples are provided
in Fig. 3. When using a single frame as input, our approach
obtains a J score of 84.2 and 78.7 on YT300 and DAVIS
2017 validation set, respectively. The performance of our
approach improves substantially when using multiple input
frames. The best results are obtained when using 9 frames,
with a J score of 81.2 on the DAVIS 2017. These results
clearly demonstrate the advantages of using multiple frames
to perform accurate box to mask conversion.

Analysis of architecture: Here, we analyse the impact of
different components in our architecture. We evaluate four
variants of our method; i) SingleImage: A single image
baseline which only uses the single-frame object represen-
tation mt to independently convert boxes to masks in each
frame. ii) MultiFrame: Our spatio-temporal aggregation
module is used to obtain the segmentation encoding st by
exploiting multiple frames. iii) MultiFrame+: The single-
frame object representation mt is passed to the segmenta-
tion decoder, in addition to the segmentation encoding st.
iv) MultiFrameIterative: We employ the iterative refine-
ment strategy described in Sec 3.3 to refine the initial seg-
mentation prediction obtained using MultiFrame+. Results
are shown in Tab. 2. The SingleImage achieves a J score
of 83.3 and 77.2 on YT300 and DAVIS 2017 validation set,
respectively. The MultiFrame model, which exploits ob-
ject information from multiple frames achieves significantly
better results, with an improvement of +2.6 in J score on
DAVIS 2017. This demonstrates the effectiveness of our
spatio-temporal aggregation module in effectively combin-
ing the information from multiple frames. Using the single-
frame object representation mt in combination with the seg-
mentation encoding st provides a slight improvement. Fi-
nally, performing iterative refinement of the initial segmen-
tation prediction provides a further improvement of +1.1 in
J score on DAVIS 2017. This shows that the segmentation
decoder contains rich prior information which can comple-
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Figure 3. Qualitative results of our box to mask conversion network when using single (second row) and multiple (third row) images during
inference. Our approach can effectively exploit multiple frames to handle challenging cases by mining spatio-temporal consistencies.

mt st Iter. YT300 DAVIS2017 val
SingleImage ✓ 83.3 77.2
MultiFrame ✓ 84.6 79.8
MultiFrame+ ✓ ✓ 84.8 80.1
MultiFrameIterative ✓ ✓ ✓ 85.6 81.2

Table 2. Impact of different components in the proposed approach.
Results are reported in terms of Jaccard J score.

ment our spatio-temporal aggregation module.

Spatio-temporal aggregation: Here, we compare our ap-
proach with alternate strategies for aggregating information
from multiple frames. We replace our aggregation module
with two different approaches; i) STA: We perform dense
space-time matching utilized in [44] to aggregate informa-
tion over frames, using the features xt as keys, and encod-
ings et as values; ii) Concat: We concatenate et over all
frames along the channel dimension and pass it through a
small network to obtain the fused segmentation encoding
st. Additionally, we include our SingleImage variant, as
well as an off-the-shelf single frame box to mask conversion
network Box2Seg (proposal refinement network from [38])
for comparison. Results are shown in Tab. 3. Both STA
and Concat approaches fail to effectively fuse information
from multiple frames, providing only minor improvement
over the SingleImage baseline. In contrast, our approach
outperforms the single frame Box2Seg network by +1.9 in
J score on DAVIS2017 val, demonstrating that it can effec-
tively integrate information from multiple frames.

4.2. Partially Supervised VOS Training

In this section, we validate the effectiveness of our ap-
proach to generate pseudo-labels for partially supervised
training of VOS models. We consider the scenario where
pixel-wise segmentation labels are only available for a small
number of training sequences, while the rest of the se-
quences have bounding box annotation for the objects. This
is a highly practical scenario as generating bounding box la-
bels is significantly faster compared to obtaining pixel-wise

Box2Seg [38] SingleImage Concat. STA Ours

YT300 - 83.3 83.4 83.2 85.6
DAVIS2017 val 79.3 77.2 77.8 78.5 81.2

Table 3. Comparison with alternate approaches of integrating in-
formation from multiple frames, in terms of Jaccard J score. Re-
sults for Box2Seg are from [60].

Only A MIL MIL+CRF Ours FS

J 76.9 77.7 77.8 78.9 79.8

Table 4. Comparison with other partially supervised training meth-
ods on the YT300 dataset, in terms of Jaccard J Index.

mask annotations. In such cases, it is desirable to exploit
the bounding box annotations to perform partially super-
vised training in order to benefit from more training data.
In order to evaluate our approach for this setting, we simu-
late the training scenario using YouTube-VOS 2019 training
set. We randomly split YouTube-VOS training set into two
subsets A and B in the ratio 1:9. The segmentation labels
are available for set A, while only the bounding box anno-
tations are made available for videos in set B.

We use the mask annotated videos from set A to train our
video box to mask conversion network. The trained model
is then used to generate pseudo-labels for video in set B, us-
ing only the bounding box annotation. A VOS model is then
trained using the combined datasets A and B. We compare
our approach of generating pseudo labels using video with
two alternative; i) MIL We use the recently introduced mul-
tiple instance learning (MIL) loss [21] to compute training
loss on the box annotated videos from set B. ii) MIL+CRF
We use the MIL loss in combination with the CRF regular-
izer introduced in [56] to compute training loss. Addition-
ally, we also report the results obtained when using only
the fully annotated set A for training (Only A), as well as
the upper bound attained when using the complete YouTube
VOS training set with mask annotations (FS). We use the re-
cently introduced LWL [7] approach as our VOS model for
this experiment. The LWL network is trained using each of
the partially supervised methods, for 100k iterations. The
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STM[44] AlphaRef[64] OceanPlus[65] RPT[39] LWL LWL-Ours

EAO 0.308 0.482 0.491 0.530 0.463 0.510
Accuracy 0.751 0.754 0.685 0.700 0.719 0.732
Robustness 0.574 0.777 0.842 0.869 0.798 0.824

Table 5. State-of-the-art comparison on VOT2020 in terms of ex-
pected average overlap (EAO), accuracy, and robustness.

SiamRPN++ [33] DiMP-50 [5] PrDiMP-50 [14] LWL LWL-Ours

SR0.5 (%) 82.8 88.7 89.6 92.4 95.1
SR0.75 (%) - 68.8 72.8 82.2 85.2
AO (%) 73.0 75.3 77.8 84.6 86.7

Table 6. State-of-the-art comparison on the GOT-10k validation set
in terms of average overlap (AO) and success rates (SR) at overlap
thresholds 0.5 and 0.75

result of this comparison is shown in Table 4, on the YT300
set. Both the MIL and MIL+CRF approaches obtain an
improvement of around +0.9 in J score, compared to the
naiv̈e baseline using only the mask annotated videos from
set A for training. Our approach of generating pseudo la-
bels obtains the best results, achieving a substantial im-
provement of over +1 in J score over the MIL baselines.
These results demonstrate the quality and effectiveness of
the masks generated from our approach for performing par-
tially supervised training for VOS.

4.3. VOS in the Tracking Domain

We utilize the capability of performing partially super-
vised VOS training using box annotations to train a VOS
method on large-scale tracking datasets in order to obtain
improved tracking performance. We use our network to
annotate tracking datasets LaSOT [16] and GOT10k [23]
containing 1120 and 9340 training sequences, respectively.
These datasets contain a variety of object classes and mo-
tion types which are not often included in standard VOS
datasets [49, 63]. The pseudo annotated tracking sequences,
along with the fully annotated YouTube-VOS and DAVIS
datasets are then used to fine-tune a VOS model. We
start with the LWL [7] model trained with fixed backbone
weights. The complete model, including the backbone
feature extractor, is then trained on combined YouTube-
VOS, DAVIS, LaSOT, and GOT-10k datasets for 120k iter-
ations. We compare this model, denoted LWL-Ours, with
the state-of-the-art on VOT2020 [30], GOT10K [23], and
TrackingNet [43] datasets. For comparison, we also report
results for the standard LWL model fine-tuned using only
the YouTube-VOS and DAVIS datasets.

VOT2020 [30]: We evaluate our LWL-Ours model on
VOT2020 dataset consisting of 60 challenging sequences.
Similar to semi-supervised VOS, the trackers are provided
an initial object mask. In order to obtain robust performance
measures, the trackers are evaluated multiple times on each
sequence, using different starting frames. The trackers are
compared using the accuracy, robustness, and expected av-
erage overlap EAO measure. Accuracy denotes the aver-
age overlap between tracker prediction and the ground truth

SiamRPN++
[33]

DiMP-50
[5]

KYS
[6]

SiamRCNN
[60] LWL LWL-Ours

Precision (%) 69.4 68.7 68.8 80.0 78.4 79.1
Norm. Prec. (%) 80.0 80.1 80.0 85.4 84.4 84.7
Success (AUC) (%) 73.3 74.0 74.0 81.2 80.7 81.2

Table 7. State-of-the-art comparison on the TrackingNet test set in
terms of precision, normalized precision, and success.

over the successfully tracked frames, while robustness mea-
sures the fraction of sequence tracked on average before
tracking loss. Both these measures are combined to obtain
the EAO score. LWL-Ours fine-tuned on tracking datasets,
obtains a relative improvement of over 10% in EAO score,
compared to the LWL baseline (see Tab. 5). Furthermore,
despite performing vanilla VOS, LWL-Ours outperforms
existing tracking approaches, achieving the second best
EAO score. These results show that the masks generated
from our approach can be utilized to improve the general-
ization of VOS model on generic tracking datasets.

GOT10k [23]: We evaluate LWL-Ours on the validation
split of GOT10k dataset, consisting of 180 videos. Unlike
VOT2020, trackers are only provided an initial box and re-
quired to output a target box for each frame. Thus, we use
our box to mask conversion network to obtain the initial seg-
mentation mask. The VOS model is then run using the gen-
erated mask. In each subsequent frame, we simply compute
the target box using the extreme points of the predicted seg-
mentation mask, without performing any post-processing.
Fine-tuning LWL on our pseudo-annotated tracking videos
provides an improvement of 2.1% in AO over the baseline
LWL model (see Tab. 6). Moreover, LWL-ours significantly
outperforms existing trackers with an AO score of 86.7%.

TrackingNet [43]: We report results on the test split of
TrackingNet dataset consisting of 511 videos, using the
same evaluation strategy employed for GOT10k dataset.
Using our generated masks on tracking datasets for fine-
tuning improves the results of the LWL model by 0.5% in
terms of success score (see Tab. 7). Moreover, LWL-Ours
obtains the best results among all methods in terms of Suc-
cess score, along with SiamRCNN [60].

5. Conclusion

We propose an end-to-end trainable method for predict-
ing object masks from bounding boxes in videos. Our ap-
proach can effectively mine object and background infor-
mation over multiple frames using a novel spatio-temporal
aggregation module. The predicted masks are further re-
fined using an iterative formulation. Our approach obtains
superior segmentation accuracy, compared to single image
baselines. We further demonstrate the usefulness of our
method for partially supervised VOS training for tracking.
Acknowledgments: This work was supported by a Huawei
Technologies Oy (Finland) project, the ETH Zürich Fund
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