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Abstract

We propose a new method to detect deepfake images us-
ing the cue of the source feature inconsistency within the
forged images. It is based on the hypothesis that images’
distinct source features can be preserved and extracted af-
ter going through state-of-the-art deepfake generation pro-
cesses. We introduce a novel representation learning ap-
proach, called pair-wise self-consistency learning (PCL),
for training ConvNets to extract these source features and
detect deepfake images. It is accompanied by a new im-
age synthesis approach, called inconsistency image genera-
tor (I2G), to provide richly annotated training data for PCL.
Experimental results on seven popular datasets show that
our models improve averaged AUC over the state of the
art from 96.45% to 98.05% in the in-dataset evaluation and
from 86.03% to 92.18% in the cross-dataset evaluation.

1. Introduction

Deepfakes are synthetic media in which the identity or
expression of a target subject is replaced by that of another
source subject. They are predominantly generated by im-
age stitching, which includes face detection, warping, and
blending. Attacks using deepfakes have caused a significant
amount of negative social impact, and also motivated meth-
ods to detect these forged videos. Most of these defense
methods [60, 26, 37, 51, 46, 5, 23, 21, 6] target detecting
suspicious artifacts left in the stitching process, such as eye
blinking [26], face warping [27], blending boundaries [23],
and fake prototypes [48]. In the wake of these defenders,
forgery techniques are also evolving on reducing these arti-
facts to avoid detection, forming an enduring arms race.

In this paper, we propose a new method to detect deep-
fakes generated by stitching-based methods. Unlike other
methods focusing on detecting artifacts described above,
our approach uses the cue of inconsistency of source fea-
tures within the forged images. Conceptually, images carry
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Figure 1: The forged image is generated by stitching target and
source images. We hypothesize that each of them carries distinct
source features that can uniquely identify their sources. There-
fore, the forged image contains different source features at differ-
ent locations, whereas those of a pristine image must be consistent
across all positions. By extracting the local source features and
measuring their self-consistency, we can detect forged images.

content-independent [14], spatially-local information that
can uniquely identify their sources. We call them the source
features. They could come from either imaging pipelines
(e.g., PRNU noise [30], specifications [14]), encoding ap-
proaches (e.g., JPEG compression patterns [1], compres-
sion rates) or image synthesis models [58]. We hypothesize
that these source features are still preserved after the mod-
ified image having gone through the state-of-the-art deep-
fake generation processes [28, 8, 15, 22, 39, 35]. Therefore,
a forged image would contain different source features at
different positions, whereas those of a pristine image must
be consistent across all positions. By extracting the lo-
cal source features and measuring their self-consistency, we
can detect forged images.

Specifically, we use a convolutional neural network
(ConvNet) to extract source features in the form of down-
sampled feature maps. Each feature vector represents the
source features of a corresponding location in the input im-
age. To train this ConvNet, we introduce a novel repre-
sentation learning method, called pair-wise self-consistency
learning (PCL), which uses the consistency loss for supervi-
sion. We calculate the cosine similarity between very pairs
of feature vectors in the source feature map, and compute
the consistency loss on all pairs according to whether their
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corresponding image locations come from the same source
image. That is, we penalize the pairs that refer to locations
from the same source image for having a low-similarity
score and those from different source images for having a
high-similarity score. We attach a non-linear binary classi-
fier on the learned source feature map to perform the deep-
fake detection. We train it with an additional loss to produce
the image-level real vs. fake labels.

The consistency loss in PCL needs pixel-level annotation
about whether a location has been modified. It is generally
not available in deepfake detection datasets, on which the
re-annotation could be laborious and error-prone. We use
synthesized data generated from inconsistency image gen-
erator (I2G) to tackle this issue. It generates forged im-
ages following the latest techniques in deepfake generation
methods. To save computational cost and enable online gen-
eration, I2G only stitches together pristine source and target
images instead of the synthesized ones from deep networks.
We randomly sample the forgery mask for stitching during
generation, which becomes the pixel-level annotation we
need for PCL. Experimental results show that, although us-
ing a simplified generation process, the models learned with
synthesized data from I2G effectively extract discriminative
source features in both pristine and deepfake images.

We evaluate PCL on seven recent deepfake detection
datasets and observe superior detection accuracy. Follow-
ing the in-dataset evaluation, our method achieves the AUC
scores of 99.79%, 99.98%, and 94.38% on FF++, CD2,
and DFDC-P datasets, respectively. Because PCL uses the
cue of source feature inconsistency which is less taken care
of by current deepfake generation methods, we conjecture
that a model trained with PCL on one dataset could effec-
tively detect deepfakes generated by methods not seen in
this dataset. To verify this, we adopt the cross-dataset eval-
uation protocol introduced in [23] to test our models and
observe affirmative results. We achieve the AUC scores of
99.11%, 99.07%, 99.41%, 98.30%, and 90.03% on FF++,
DFD, DFR, CD1, and CD2 datasets, respectively. We fur-
ther visualize the consistency map of the learned source fea-
tures on both real and fake images. We observe the consis-
tency maps can lead to localization of the modified region.

It is worth noting that, as the race between forgers and
defenders continues, the cue of source feature inconsis-
tency can be negated. It can be done by either using entire
face synthesis techniques [17, 29, 4] that directly output the
whole fake image, such as GAN, or future development of
stitching methods that completely removes or ambiguates
the source feature. However, the state-of-the-art deepfake
generation methods have not yet adopted these techniques.
Thus the effectiveness of our method on detecting deepfake
images should only be evaluated on the images generated by
existing deepfake detection methods, as depicted in deep-
fake detection datasets we used [41, 10, 28, 8, 9, 15].

2. Related Work
Deepfake Generation. There are four common types of
deepfake [47]: entire image synthesis, modification of facial
attribute or expression, and face identity swap. 3D mod-
els [44], AutoEncoders [43, 49], or Generative Adversarial
Networks [16, 17, 29, 4] are used to generate the fake image
segment, which is then blended back to the original image.

Deepfake Detection. To detect the whole image synthe-
sis, recent research [58, 36, 13, 52] observes that GAN-
generated images contain specific cues that can be easily
detected, and the trained models have exhibited good gen-
eralization ability across different synthesis methods. To
support the research on detecting the other types of face
manipulations, several deepfake datasets are released [57,
19, 41, 10, 28, 8, 15, 61] and countermeasures have been
introduced. FakeSpotter [51] is proposed with a layer-wise
neuron behavior for fake face detection. Recurrent neural
networks [42] and various types of 3D ConvNets [6] are
utilized to detect the manipulation artifacts across the video
frames. However, binary classifiers are criticized for their
interpretability, and several localization methods are intro-
duced through either multi-task learning [37] or attention-
based mechanisms [5, 59]. To improve the generalization
ability, DSP-FWA [27] and Face X-ray [23] also make their
data generation pipeline and the latter focuses on predicting
the blending boundaries in fake video frames.

Our approach also lies in this line but has several key
differences. First, from the methodology perspective, we
focus on detecting deepfakes by using a less attended cue
of inconsistency of source features within the forged im-
ages. Second, from the network design perspective, our
consistency predictor only contains a few parameters and
can serve as a plugin module upon any common backbones.

Consistency Learning. The concept of inconsistency has
been studied in the image forensic literature [34], where
similarity scores are computed among image patches [34,
33, 14, 32, 60, 2]. Zhou et al. [60] propose a two-stream
network to detect both tampered faces and low-level incon-
sistencies, but the training requires steganalysis feature ex-
traction. Huh et al. [14] use a Siamese network to predict
the metadata inconsistency by iteratively comparing ran-
dom patches from different raw images. Nirkin et al. [38]
use signals from the proposed face identification and con-
text recognition networks to detect deepfakes.

In this paper, we introduce consistency learning to deep-
fake detection and propose an end-to-end learning archi-
tecture that estimates the image self-consistency with one
forward pass, while capturing the internal relations among
patches within an image. Besides, instead of using only raw
images, we design I2G to address several challenges to fit
face forgery detection better by supplying PCL with train-
ing images that are finely stitched from multiple sources.
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Figure 2: Visualization of PCL architecture. The consistency branch focuses on measuring the consistencies of image patches according to
their source features. A classification branch is applied after the source feature map and predicts the binary score for deepfake detection.

3. Our Approach
Given an input image, our goal is to detect if the identity

or expression of the subject is replaced with that of another
subject. Observing that deepfakes are stitched by images
from different sources with distinct source features, we ex-
plore learning effective and robust representations for deep-
fake detection by measuring the source feature consistency
within the image. More specifically, we propose a multi-
task learning architecture, as shown in Fig. 2. The consis-
tency branch is optimized to predict a consistency map for
each image patch, indicating its source feature consisten-
cies with all others. The classification branch is applied to
the source features and outputs binary labels for evaluation
purposes. The model is trained on both consistency and
classification loss, with annotations supplied by I2G.

3.1. Pair-Wise Self-Consistency Learning (PCL)

The consistency branch computes the pairwise similarity
scores of all possible pairs of local patches in an image and
predicts a 4D consistency volume V̂. Given a pre-processed
video frame X of size H×W×3 as input, we first feed it
into the backbone and extract the source feature F of size
H ′×W ′×C from an intermediate convolution layer, where
H ′, W ′, and C are height, width, and channel size, respec-
tively. For each patch Ph,w in the source feature map, we
compare it against all the rest to measure their feature sim-
ilarities, and obtain a 2D consistency map M̂Ph,w of size
H ′×W ′ of consistency scores in the range of [0, 1], where
the superscript indicates the position of the base patch. To
be specific, for any pair of patches Pi and Pj , we com-
pute their dot-product similarity [53] using their extracted
feature vector fi and fj , both of size C, to estimate their
consistency score:

s(fi, fj) = σ

(
θ(fi)θ(fj)√

C ′

)
, (1)

where θ is the embedding function, realized by 1×1 con-
volutions, C ′ is the embedding dimension, and σ is the
Sigmoid function. We iterate this process over all patches
{Ph,w|1 ≤ h ≤ H ′, 1 ≤ w ≤ W ′} in the source feature
map, and finally get the 4D consistency volume V̂ of size
H ′×W ′×H ′×W ′. To provide visualization clues about the
region of modification, we fuse the 4D consistency volume
V̂ over all patches and generate a 2D global heatmap M̂ of
size H ′×W ′ (described in the Appendix). We up-sample M̂
to M̂ of size H×W to match the input size for visualization.

The optimization of consistency branch requires the 4D
“ground truth” consistency volume V. Given the mask M

of size H×W indicating the manipulated region of input X ,
we first create its coarse version M matching the size of
H ′×W ′ through bi-linear down-sampling. We obtain the
ground truth 2D consistency map MPh,w for the (h,w)-th
patch by computing the element-wise difference between its
own value Mh,w and all others,

MPh,w = 1− |Mh,w −M| , (2)

where Mh,w is the scalar value in position (h,w), and
MPh,w is in size of H ′×W ′. For each entry of MPh,w , a
value close to 1 denotes the two patches are consistent, and
close to 0 otherwise. To obtain the ground truth 4D global
map V, we compute MPh,w for all patches. Note that V of a
pristine image should be 1, a 4D volume in which all values
are equal or close to one.

We use the binary cross-entropy (BCE) loss to supervise
the consistency prediction over the 4D consistency volume
V̂, and more formally,

LPCL =
1

N

∑
h,w,h′,w′

BCE(Vh,w,h′,w′ , V̂h,w,h′,w′), (3)

where h and h′ ∈ {1, 2, ...,H ′}, w and w′ ∈ {1, 2, ...,W ′},
and N equals to H ′×W ′×H ′×W ′.

15025



The consistency branch learns the representations that
predict the self-consistency of the input according to their
source features, which by our claim could significantly ben-
efit the deepfake detection in both effectiveness and robust-
ness. Nevertheless, these features cannot directly make in-
ferences for evaluation purposes.

The classification branch is thus applied after the source
feature map to predict if the input is real or fake. More
specifically, the extracted source feature is fed into another
convolution operation. A global average pooling and fully-
connected layer are built after that as the classifier, which
outputs the probability score for the input of being real or
fake. We use the two-class cross-entropy (CE) loss LCLS to
supervise the training in the classification branch.

The overall loss function of our model is as follows:

L = λLPCL + LCLS, (4)

with hyper-parameter λ. The ablation study in Section 4.5
suggests that a choice of large λ value significantly im-
proves the performance. This observation demonstrates
that the representations learned from the consistency branch
play a dominant role in the success.

3.2. Inconsistency Image Generator (I2G)

Training PCL requires patch-level annotations of the ma-
nipulated regions, which is not always available in current
existing datasets. To provide this training data, we pro-
pose inconsistency image generator (I2G) to generate “self-
inconsistent” images from the pristine ones, along with the
ground truth masks M discussed in Section 3.1. To guar-
antee sufficient amount and diversity of the training data
with least efforts, I2G reduces the computational cost by
replacing facial image synthesis using the GAN or VAE
[28, 8, 15, 22] with real images. It follows that I2G can
support dynamic data generation on CPU during the train-
ing and be utilized as a part of the data augmentation for
deepfake detection.

Similar self-supervised approaches [27, 23, 35, 8] have
been studied in other tasks or methods for deepfake detec-
tion. I2G particularly addresses several challenges to fit
PCL better. First, because face images have some strong
structural bias, stitching with the face hull regions may cre-
ate undesired correlations between the source feature incon-
sistency and the face boundary. I2G uses elastic deforma-
tion [40] to improve the variety of the mask M and thereby
eliminates those spurious correlations. Second, because at-
tackers will intentionally try to remove source features to
make deepfake images more realistic, PCL needs to make
use of source features that are not vulnerable to these ap-
proaches. I2G randomly selects one from an exhaustive set
of blending methods in data generation so the representation
learned by PCL can be robust to source feature removal at-

Target Image

Source Image Blurred Mask

Forged ImageAlignment Adjustment

Landmarks Convex Hull Elastic Deformation

Figure 3: Illustration of the workflow of I2G. For each source and
target image pair, a morphed mask is generated by taking a convex
hull of the landmarks followed by elastic deformation and Gaus-
sian blur. The masked region of the target image is replaced by
that of the source with blending techniques [39, 35].

Algorithm 1 Inconsistency Image Generator (I2G)
Input: Target video frame Xt of size (H,W, 3).
Output: Generated video frame Xg and mask M.
Landmark Detector K : RH×W×3 → R68×2.

1: Get the video frame Xt and its landmarks K(Xt).
2: Find a random source frame Xs of different ID, which

satisfies ∥K(Xt)−K(Xs)∥2 < ϵ for threshold ϵ > 0.
3: Align Xs to Xt using landmarks.
4: Compute convex hull H of K(Xt).
5: Get mask M by elastic deforming and blurring H.
6: Get Xg by blending Xt with Xs with M.

tempts. Third, we expect the learned representation to gen-
eralize to a wide range of sources, even unseen ones during
training. I2G adds image augmentation to the generation
process to achieve this goal. The augmentation methods in-
clude JPEG compression, Gaussian noise/blur, brightness
contrast, random erasing, and color jittering.

The workflow of I2G is summarized in Alg. 1 and illus-
trated in Fig. 3. Given a target video frame Xt, we take its
68-point facial landmarks and retrieve another frame from
different videos with different identities, so that the faces
in the two frames have similar landmarks measured in ℓ2
norm. For a pair of images, we first align their faces with the
pre-computed landmarks and then detect the facial region
by taking the convex hull of the landmarks. Elastic defor-
mation [40] is also employed to morph the convex hull: we
generate the smooth deformations using random displace-
ment vectors sampled from a Gaussian distribution with a
standard deviation of 6 to 12 pixels on a coarse 4 by 4 grid,
and compute per-pixel displacements using bi-cubic inter-
polation. The deformed mask is further blurred by a Gaus-
sian kernel of size 16. Finally, the facial region of the source
frame within the mask is stitched to the target frame using
various blending methods [39, 35]. I2G outputs a forged
video frame and the corresponding mask M.
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4. Experiments
We evaluated the performance of our approach (PCL +

I2G) against multiple state-of-the-art methods on seven
publicly-available datasets. First, we showed that our model
achieves convincing performance under the in-dataset set-
ting, where training and testing are conducted on the same
dataset. To demonstrate the superior generalization abil-
ity of our model, we conducted the cross-dataset evalua-
tion by training the model with only I2G-augmented real
videos and testing on unseen datasets. The ablation studies
explored the contribution of each component in our model,
such as the effect of PCL and I2G.

4.1. Implementation Details

Pre-processing. For each raw video frame, face crops are
detected and tracked by using [24] and landmarks are de-
tected by public toolbox [3]. We normalize all face crops
with ImageNet mean [0.485, 0.456, 0.406] and standard de-
viation [0.229, 0.224, 0.225], and resize them to 256×256.
We also use standard data augmentations, including JPEG
compression, Gaussian noise/blur, brightness contrast, ran-
dom erasing, and color jittering.

Network Architecture. We adopt ResNet-34 [12] as
backbone and initialized with pretrained weights on Ima-
geNet [7]. Given a pre-processed video frame X of size
H×W×3, we first feed it into the backbone and extract
the features F after the conv3 layer of size H ′×W ′×256,
where H ′=H/16 and W ′=W/16. Here each patch corre-
sponds to a 16×16 region in the original image.

Training. For each epoch, we randomly sample 32 frames
from every video, and the total number of training sam-
ples from K videos is 32×K. The model is trained for 150
epochs using Adam optimizer [18] with batch size 128, be-
tas 0.9 and 0.999, and epsilon 10−8. The learning rate is lin-
early increased from 0 to 5×10−5 in the first quarter of the
training iterations and is decayed to zero in the last quarter.
The hyper-parameter λ is set to be 10 by default.

4.2. Settings

Training Data. Each of our training samples is of the form
(X,V, y), where X is the input video frame, V is the ground
truth 4D consistency volume, and y is the binary label. For a
real frame, V is a 4D tensor of ones, indicating the image is
self-consistent, and y is zero. There are two types of forged
samples in our settings. The first type is the deepfake video
frame from the existing deepfake datasets, for which we find
the corresponding real video frame and compute the struc-
tural dissimilarity (DSSIM) [55] between them. The mask
M is then generated by taking a Gaussian blur of DSSIM
followed by thresholding. V is computed from M by Eq. 2
and y is one. The second type is the fake image augmented
by I2G on real images, where V is computed with the mask

from I2G and y is one. By training with I2G-augmented
datasets, whenever a real data (Xt,1, 0) is sampled during
the training, there is a 50% chance that it is dynamically
transformed by I2G into a fake data (Xg,V, 1) where Xg

and M are the outputs of I2G as described in Alg. 1 and V
is computed with M by Eq. 2.

More specifically, in the in-dataset experiments, our
train set includes both the pristine and deepfake videos
from the train split of the dataset (to be evaluated). Un-
less otherwise noted, we also utilize the fake samples aug-
mented by I2G as data augmentation. In the cross-dataset
experiments, we follow prior work [23] and train with
only real videos from the raw version of FaceForensics++
(FF++) [41], augmented by I2G. Note that the cross-dataset
setting is more close to the real-world scenarios where the
potential attack types are not aware.

Test Data. FaceForensics++ (FF++) [41] is by far the most
popular benchmark for deepfake detection. Its raw ver-
sion contains 700 videos for testing, including 140 pris-
tine and 560 fake videos from 4 different algorithms, which
are Deepfakes (DF) [11], Face2Face (F2F) [44], FaceSwap
(FS) [20] and NeuralTextures (NT) [45]. DeepfakeDetec-
tion (DFD) [10] dataset is released incorporated with FF++,
supporting the deepfake detection research. Celeb-DF-v1
(CD1) & -v2 (CD2) [28] datasets consist of high-quality
forged celebrity videos using advanced synthesis process.
Deepfake Detection Challenge (DFDC) [8] public test set is
released for the Deepfake Detection Challenge, and DFDC
Preview (DFDC-P) [9] is its preliminary version. DFDC
and DFDC-P contain many extremely low-quality videos,
making them exceptionally challenging. DeeperForensics-
1.0 (DFR) [15] modifies the pristine videos in FF++ with
new face IDs and more advanced techniques. More detailed
statistics are provided in the Appendix.

Evaluation Metrics. We report the deepfake detection re-
sults with the most commonly used metrics in the literature,
including the area under the ROC curve (AUC) and average
precision (AP). A higher AUC or AP value indicates better
performance. To provide a comprehensive benchmark for
future work, we report our performance on all datasets in
terms of AUC, AP, as well as Equal Error Rate (EER) in the
Appendix. Unless otherwise noted, the evaluation results in
the experiments are at video-level, computed by averaging
the classification scores of the video frames.

4.3. In-Dataset Evaluation

In-dataset evaluation is abundantly adopted in the liter-
ature, where the focus is on specialization but not general-
ization. To compare against the existing work, we consider
three of the most popular datasets, which are FF++, CD2,
and DFDC-P. Given a dataset, our model is trained on both
real and deepfake data from train split, and performance is
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Method Backbone Train Set
Test Set (AUC (%))

DF F2F FS NT FF++

MIL [54] Xception FF++ 99.51 98.59 94.86 97.96 97.73
Fakespotter [51] ResNet-50 FF++, CD2, DFDC - - - - 98.50
XN-avg [41] Xception FF++ 99.38 99.53 99.36 97.29 98.89
Face X-ray [23] HRNet FF++ 99.12 99.31 99.09 99.27 99.20
S-MIL-T [25] Xception FF++ 99.84 99.34 99.61 98.85 99.41

PCL + I2G ResNet-34 FF++ 100.00 99.57 100.00 99.58 99.79

Table 1: In-dataset evaluation results on FF++. Our method performs better on all manipulation types with a smaller backbone.

Method Backbone Train Set Test Set (AUC (%))

CD2

Fakespotter [51] ResNet-50 CD2 66.80
Tolosana et al. [46] Xception CD2 83.60
S-MIL-T [25] Xception CD2 98.84

PCL + I2G ResNet-34 CD2 99.98

Table 2: In-dataset evaluation results on CD2. We achieve satu-
rated performance in terms of AUC.

Method Backbone Train Set Test Set (AUC (%))

DFDC-P

Tolosana et al. [46] Xception DFDC-P 91.10
S-MIL-T [25] Xception DFDC-P 85.11

PCL + I2G ResNet-34 DFDC-P 94.38

Table 3: In-dataset evaluation results on DFDC-P. Our method
improves the best existing result by 3.28% in terms of AUC.

evaluated with the corresponding test set.
The results for FF++, CD2, DFDC-P are shown in Ta-

ble 1, Table 2, Table 3, respectively. On average, com-
pared to the state of the art, our approach improves the AUC
score on these three datasets, from 96.45% to 98.05%. Our
models achieve the state of the art with near-perfect per-
formance on CD2 (99.98%) and all four manipulations of
FF++ (100.00% on DF, 99.57% on F2F, 100.00% on FS,
99.58% on NT), surpassing all existing work. For DFDC-P,
our model outperforms the state-of-the-art result by 3.28%
in terms of AUC score. Note that the results reported for
DFDC-P are comparably lower, due to the fact that a non-
negligible portion of the dataset is of extremely low quality,
e.g., human faces in some videos are hardly recognizable.
We also compare with prior work in terms of frame-level
AUC on CD2, and outperform the state of the art [31] by
8% (see Appendix for more details).

4.4. Cross-Dataset Evaluation

The generalization ability is an important indicator of the
superiority of an algorithm. In the real world, the defense
method cannot get any prior knowledge of the attacks. The
cross-dataset evaluation is a widely-used approach to eval-
uate the generalization ability of an algorithm.

Table 4 presents the cross-dataset evaluation results on

FF++ and DFD, where we only used the real videos of
FF++ for training. The performance of our model is on
par with Face X-ray [23] on FF++, achieving convincing
results with more than 99.00% in terms of AUC. Interest-
ingly, the performance gap between our model and Face X-
ray [23] is much larger (99.07% vs. 93.47%) on DFD. It is
possible that the test data of FF++ is highly correlated with
its training data, since they are very likely to be collected
from the same source, whereas the correlation disappears
in DFD. The results demonstrate that predicting the source
feature consistency can effectively generalize across differ-
ent source cues, without overfitting to any spurious correla-
tion among data from the same generation method.

We further evaluate our model on five more advanced
datasets, as shown in Table 5. In particular, our model out-
performs the state of the art on CD1 and CD2, by about
18.00% and 13.00% in terms of AUC, and provides pioneer-
ing cross-dataset baselines on DFR (99.51%) and DFDC
(67.52%). On DFDC-P, our performance is comparable
with Face X-ray [23], where we get a lower AUC but a
higher AP score, as shown in Table 6. We compute the av-
erage AUC score among five out of seven datasets (except
DFR and DFDC that has no published benchmarks) and
find that our model’s performance outperforms the state of
the art (92.18% vs. 86.03%). Meanwhile, we observe that
both our model and state-of-art-art methods cannot achieve
appealing results on DFDC/DFDC-P datasets, which moti-
vates us to do failure analysis in Section 4.7 and 4.6.

4.5. Ablation Studies

Effect of PCL. We use λ to balance between the consis-
tency and classification losses, as shown in Eq. 4. By set-
ting λ = 0, we disable PCL and get a network architecture
equivalent to vanilla ResNet-34 with binary classification
loss. To exhibit the advantage of our consistency loss, we
train models with increasing λs and evaluate their cross-
dataset generalizations with four test sets. As shown in Ta-
ble 7, we follow the cross-dataset setting and train all mod-
els on real data of FF++ augmented by I2G and report the
AUC score for performance comparison. We observe that
training with λ > 0 significantly outperforms the training
with λ = 0. Especially, the performance on DFDC is im-

15028



Method Backbone Train Set
Test Set (AUC (%))

DF F2F FS NT FF++ DFD

Face X-ray [23] HRNet FF++ (real data) 99.17 98.57 98.21 98.13 98.52 93.47

PCL + I2G ResNet-34 FF++ (real data) 100.00 98.97 99.86 97.63 99.11 99.07

Table 4: Cross-dataset evaluation results on FF++ and DFD. Our model is on par with Face X-ray [23] on FF++, but has better perfor-
mance on DFD by 5.67% in terms of AUC, with fewer network parameters.

Method Backbone Train Set
Test Set (AUC (%))

DFR CD1 CD2 DFDC DFDC-P

Dang et al. [5] Xception + Reg. UADFV [57], DFFD [5] - 71.20 - - -
DSP-FWA [27] ResNet-50 FF++ - - 69.30 - -
Xception [41] Xception FF++ - - 73.04 - -
Masi et al. [31] LSTM FF++ - - 76.65 - -
Face X-ray [23] HRNet FF++ - 80.58 - - 80.92

PCL + I2G ResNet-34 FF++ (real data) 99.41 98.30 90.03 67.52 74.37

Table 5: Cross-dataset evaluation results on DFR, CD1, CD2, DFDC and DFDC-P datasets. Our model out-performs the state of the art
on CD1 and CD2, by about 18.00% and 13.00% in terms of AUC, and provides pioneering cross-dataset baselines on DFR (99.51%) and
DFDC (67.52%). For DFDC-P, we have a lower AUC score but a higher AP score in comparison with the state of the art (see Table 6).

Method Backbone Train Set
Test Set (AP (%))

CD1 DFDC-P

Face X-ray [23] HRNet FF++ 73.33 72.65

PCL + I2G ResNet-34 FF++ (real data) 98.97 82.94

Table 6: Cross-dataset evaluation results on CD1 and DFDC-P
datasets. Our models can identify the attack video more precisely.

proved by 15.8% in terms of AUC. The results validate that
it is beneficial to use large λ during training, which also
suggests that PCL plays a dominant role in the success.

Effect of I2G as Joint-Training. We have been training
with the consistency loss on datasets augmented by I2G.
I2G generates fake data dynamically, enhancing the train-
ing data variety, thereby improving the performance and
generalization. To demonstrate the effect of I2G , we con-
duct ablation studies by training on either DF or DFDC-P
and benchmarking on DFR, CD2, DFDC, and DFDC-P test
sets. Table 8 shows that models trained on data augmented
by I2G outperform the straightforward combination of rou-
tine data augmentations and blending methods used in the
baseline. In particular, we train models on the DF with or
without I2G, whereas the performance of the latter is im-
proved by an average AUC score of 7.18% over four test
sets. The model trained with the DFDC-P train set has no-
ticeably better performance on DFDC and DFDC-P test sets
comparing to previous models, but generalizes poorly on
other datasets such as DFR. I2G improves model’s gener-
alization, for example, performance on DFR is raised from
51.61% to 92.25% in terms of AUC, with a minor sacrifice
to the performance on DFDC-P.

Effect of I2G as Pre-Training. When even computing the

DSSIM masks of deepfakes is not feasible, one can always
use our consistency loss to pretrain the model with any real
data augmented by I2G. After that, any standard training for
deepfake detection or related tasks can be conducted with
the whole dataset. In particular, we conducted an experi-
ment where we first pretrained a ResNet-34 on the real data
of DF augmented by I2G for consistency prediction, and
finetuned with both real and fake data of DF for classifica-
tion. We report the evaluation results on DFR, CD2, DFDC,
DFDC-P with 99.57%, 91.88%, 68.95%, 79.17% (84.89%
on average) in terms of AUC, respectively. These results
are unsurprisingly lower than those of joint-training, but
still significantly outperform the baseline (79.19% on av-
erage). Besides, our pretrained models may not necessarily
be trained from the established deepfake datasets. I2G can
be potentially applied to any face image or video datasets,
such as IMDb-Face [50] and YouTube Faces [56], providing
a stronger pretrained model for deepfake-related research.

Choice of Patch Size. We evaluate the effectiveness of
using different patch sizes. Conceptually, larger patches
get coarser consistency maps that may reduce their efficacy
on forgery detection, while smaller patches may not con-
tain enough information of source features and induce ex-
tra computation cost. In particular, we evaluate our cross-
dataset model from Table 4 with the patch size of 4×4,
8×8, 16×16, and 32×32 on FF++, and get 98.32%, 98.35%,
99.11%, and 98.74% in terms of AUC, respectively.

4.6. Qualitative Results

PCL not only improves the representation learning for
deepfake detection, but also can be used to generate the in-
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Figure 4: Visualization of the predicted consistency maps M̂, which try to localize the modified regions. We use the model trained with
real videos of FF++ augmented by I2G in the cross-dataset, and the predictions are computed from the predicted consistency volume, as
mentioned in Section 3.1. The ground truth modified regions are generated by DSSIM, as discussed in Section 4.2.

Method Hyper-
Parameter

Test Set (AUC (%)) Avg
DFR CD2 DFDC DFDC-P

I2G λ = 0 95.12 78.18 51.72 69.93 73.74

PCL + I2G λ = 1 99.1 86.52 60.65 74.13 80.10
PCL + I2G λ = 10 99.41 90.03 67.52 74.37 82.83
PCL + I2G λ = 100 99.78 90.98 63.22 74.36 82.09

Table 7: Ablation study on the effect of PCL on DFR, CD2, DFDC,
and DFDC-P datasets. The use of large λ significantly improves
the cross-dataset performance, especially on DFDC.

Method Train Set Test Set (AUC (%)) Avg
DFR CD2 DFDC DFDC-P

PCL DF 90.42 84.59 66.26 75.49 79.19
PCL + I2G DF 99.64 91.92 73.08 80.83 86.37

PCL DFDC-P 51.61 82.82 69.14 95.53 74.78
PCL + I2G DFDC-P 92.25 87.65 71.12 94.38 86.35

Table 8: Ablation study on the effect of I2G as joint-training on
DF and DFDC-P datasets. I2G can enhance the variety of training
data, thereby improving the generalization of our model.

terpretable visualizations clues (Sec. 3.1) about the modi-
fied region. Figure 4 visualizes some examples generated
by PCL along with the corresponding input images and
ground truth. When feeding a real image, in most cases, the
visualization is a pure blank image, indicating that the in-
put’s source features are consistent. When testing the deep-
fakes, the predicted consistency map can adequately match
with the ground truth. We also compute the average value
of the consistency volume from real images, and get 0.9854
and 0.9866 using in- and cross-dataset models, respectively.
These statistical numbers indicate that PCL predicts all en-
tries in the consistency volume of correctly predicted sam-
ples to be consistent with high average confidence, rather
than simply segmenting the full face region. We also inves-

tigate some failure cases, the inconsistencies are caught by
mistake in our model, which might be caused by the lighting
and unusual texture. Besides, we observe that lower quality
samples lead to false-negative predictions due to either high
compression or high/low exposure.

4.7. Limitations

Although our results are encouraging, our approaches
still have limitations, which raise opportunities for future
work. First, as the game between the forger and the detector
is an arms race, one can expect the cues that any published
detection method relies on to be removed with the best ef-
forts in the near future. For example, entire face synthesis
trains a generative model that directly outputs the whole im-
age, which should be self-consistent by our hypothesis; it is
unknown if PCL can handle this type of face forgery. Sec-
ond, as the false prediction samples indicated, our model
can be further improved on low-quality data.

5. Conclusion
We proposed pair-wise self-consistency learning (PCL)

to detect face forgeries generated by stitching-based tech-
niques and localize the manipulated regions, based on a less
attended cue: the inconsistency of source features within the
modified images. PCL only contains a few parameters and
can serve as a plugin module upon common backbone net-
works. We also developed a new light-weight image synthe-
sis method, called inconsistency image generator (I2G), to
efficiently support PCL training by dynamically generating
forged images along with annotations of their manipulated
regions. Experimental results showed that PCL and I2G are
competitive against state-of-the-art methods on seven popu-
lar datasets, providing a strong baseline for future research.
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[44] J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and
M. Nießner. Face2Face: Real-time Face Capture and Reen-
actment of RGB Videos. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2387–

2395, Jun. 26–Jul. 1 2016.
[45] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
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