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Figure 1: Results of the proposed Monocular-to-3D virtual try-on network. Given the target clothing image and the reference
person image, our M3D-VTON can reconstruct the 3D try-on mesh with the clothing changed and person identity retained.

Abstract

Virtual 3D try-on can provide an intuitive and realistic
view for online shopping and has a huge potential com-
mercial value. However, existing 3D virtual try-on meth-
ods mainly rely on annotated 3D human shapes and gar-
ment templates, which hinders their applications in prac-
tical scenarios. 2D virtual try-on approaches provide a
faster alternative to manipulate clothed humans, but lack
the rich and realistic 3D representation. In this paper, we
propose a novel Monocular-to-3D Virtual Try-On Network
(M3D-VTON) that builds on the merits of both 2D and 3D
approaches. By integrating 2D information efficiently and
learning a mapping that lifts the 2D representation to 3D,
we make the first attempt to reconstruct a 3D try-on mesh
only taking the target clothing and a person image as inputs.
The proposed M3D-VTON includes three modules: 1) The
Monocular Prediction Module (MPM) that estimates an
initial full-body depth map and accomplishes 2D clothes-
person alignment through a novel two-stage warping proce-

dure; 2) The Depth Refinement Module (DRM) that refines
the initial body depth to produce more detailed pleat and
face characteristics; 3) The Texture Fusion Module (TFM)
that fuses the warped clothing with the non-target body part
to refine the results. We also construct a high-quality syn-
thesized Monocular-to-3D virtual try-on dataset, in which
each person image is associated with a front and a back
depth map. Extensive experiments demonstrate that the pro-
posed M3D-VTON can manipulate and reconstruct the 3D
human body wearing the given clothing with compelling de-
tails and is more efficient than other 3D approaches. 1

1. Introduction
3D virtual try-on, the process of fitting a specific clothing

item onto a 3D human shape, has attracted increasing atten-
tion due to its promising research and commercial value.
Recently, researchers’ interest has moved from physics-

1code will be available at https://github.com/fyviezhao/
M3D-VTON
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based [2, 5, 6, 42, 13, 15] or scan-based approaches [37, 27,
44] to learning-based 3D try-on methods [3, 35, 31, 55, 8],
dressing a 3D person directly from 2D images and getting
rid of costly physics simulation or 3D sensors. However,
most of these learning methods [3, 35, 31] build on the
parametric SMPL [29] model and depend on some prede-
fined digital wardrobe [3], limiting their real-world applica-
bility. Moreover, the inference speed of these existing 3D
approaches is still insufficient, largely due to the optimiza-
tion cost introduced by the parametric 3D representation.

Related to this, research on image-based virtual try-on
aims to fit an in-shop clothing onto the target person and has
been explored intensively [17, 48, 52, 16, 51, 22, 9]. Most
of these works utilize the Thin Plate Spline (TPS) trans-
formation [4] to achieve the clothes-person alignment and
fusion, obtaining photo-realistic try-on results. These 2D
methods are attractive due to their small computation cost
and extensive amount of available training data on shopping
websites. Nevertheless, their try-on results are in 2D image
space and ignore the underlying 3D body information, lead-
ing to inferior capability of representing the human body.

To address the above limitation of 2D/3D approaches,
we propose a light-weight yet effective Monocular-to-3D
Virtual Try-On Network (M3D-VTON), which integrates
both 2D image-based virtual try-on and 3D depth estima-
tion to reconstruct the final 3D try-on mesh. M3D-VTON
consists of three modules as shown in Fig. 2. The first
part is the Monocular Prediction Module (MPM), which uti-
lizes a single network to serve the following three purposes:
1) regressing the parameters for the TPS [4] transforma-
tion; 2) predicting the conditional person segmentation that
is compatible with the in-shop clothing; 3) estimating the
full-body depth map. Different from the warping operation
in existing 2D try-on methods, MPM first utilizes a novel
self-adaptive affine transformation to transform the in-shop
clothing to the appropriate size and location before the non-
rigid TPS deformation. The second part is the Depth Re-
finement Module (DRM), which jointly uses the estimated
depth map, the warped clothing, the non-target body part
and the image gradient information to enhance the geomet-
ric details in the depth map. In particular, DRM introduces
a depth gradient loss to better exploit the high-frequency
details in the inputs. Finally, the Texture Fusion Module
(TFM) leverages the 2D information (e.g., warped clothing)
and the 3D information (e.g., estimated full-body depth) to
synthesize the try-on texture. The collaborative use of the
2D information and the body depth map provides instruc-
tive information for the synthesizing process. Given the es-
timated 2D try-on texture and the refined body depth map,
M3D-VTON obtains a colored point cloud and reconstructs
the final textured 3D virtual try-on mesh.

We conduct extensive experiments on the new MPV-3D
dataset, which is constructed by running PIFuHD [41] on

the existing MPV dataset [9]. Compared with other 3D
try-on methods, M3D-VTON recovers detailed body shapes
and realistic texture color while being more computation-
ally efficient. Our main contributions are:

• We are the first to exploit the merits of both 2D and 3D
approaches to solve the monocular-to-3D try-on prob-
lem. Our approach reconstructs realistic 3D clothed
humans while being faster than pure 3D methods.

• To facilitate more accurate geometric matching be-
tween the clothes and the reference person image, we
introduce a self-adaptive pre-alignment strategy.

• We utilize the available shadow information in the im-
ages and incorporate a novel depth gradient constraint
to guide the network to capture and recover intricate
geometric changes.

• We construct a new synthesized 3D virtual try-on
dataset, MPV-3D, which may stimulate the develop-
ment of the Monocular-to-3D virtual try-on field. Ex-
tensive experiments show the surprising shape recov-
ery and texture generation ability of our M3D-VTON.

2. Related Work
2D Virtual Try-on. 2D virtual try-on aims to trans-

fer a target clothing onto a reference person. A series of
works [17, 48, 52, 51, 9, 34, 22, 19] have utilized the non-
rigid TPS transformation [4] to obtain appealing virtual try-
on results. Most of these works build upon VITON [17],
which proposes a coarse-to-fine architecture that first warps
the in-shop clothing by TPS and then renders the final try-
on result. CP-VTON [48] further trains a geometric match-
ing module and uses a composition mask to better fuse the
clothes and person. VTNFP [52] utilizes body segmentation
as the synthesis guidance, producing clearer skin texture.
ACGPN [51] proposes a second-order constraint on TPS
parameters to stabilize the warping process. Our method
not only inherits the benefits of the aforementioned methods
but also generates realistic 3D clothed human, providing an
economic solution for monocular-to-3D virtual try-on.

3D Virtual Try-on. Compared to the tasks of 3D hu-
man reconstruction and performance capturing [54, 14, 11,
39, 53, 24, 36, 26, 21, 1], 3D virtual try-on is more chal-
lenging due to the complex deformation of clothes. PI-
FuHD [41] provides a high-fidelity single-view textureless
3D human reconstruction pipeline that produces realistic
clothing details, however, it can not perform garment trans-
fer. MGN [3] can predict parametric garment geometry
and layer it on top of the SMPL [29] model. Thanks to
the layered representation, MGN can dress varying body
shapes and poses but is limited to garments from their pre-
defined digital wardrobe. DeepFashion3D [55] provides
more 3D clothes data to achieve more challenging cloth-
ing reconstruction. Pix2Surf [32] also aims to transfer more
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Methods CC 3D FBT SG ED FI
VITON [17] Y N N N Y Y
CP-VTON [48] Y N N N Y Y
ACGPN [51] Y N N Y Y Y
PIFuHD [41] N Y N N N Y
MGN [3] Y Y Y Y N N
DeepFashion3D [55] N Y N Y N -
Pix2Surf [31] Y Y N N Y Y
Deephuman [45] N Y N Y N Y
FACSMILE [43] N N Y N Y N
NormalGAN [49] N Y Y N N Y
M3D-VTON(ours) Y Y Y Y Y Y

Table 1: Comparison of M3D-VTON to related work in
terms of their properties with Yes (Y) or No (N). The first
three rows are 2D try-on methods, the middle rows are 3D
try-on/reconstruction methods, and the bottom rows except
ours are human depth estimation methods. Categorized
based on: Changeable Clothes (CC); Clothed 3D Body
(3D); Full Body Texture (FBT); Semantic Guidance (SG);
Easy-to-get Dataset (ED); Fast Inference (FI).
in-the-wild clothes images onto the SMPL model by learn-
ing dense correspondences between 2D garment silhouettes
and UV maps of 3D garment surfaces. However, both Deep-
Fashion3D and Pix2Surf can not show the body texture. Be-
sides, almost all these methods require a scanned 3D dataset
for training, which is expensive to collect compared with
our proposed high-quality synthesized dataset. Our method
can recover both clothed body shape and texture, providing
a more practical solution for 3D try-on.

Human Depth Estimation. Recently, non-parametric
3D human reconstruction has been proposed to better cap-
ture shape details by predicting depth maps. Moulding Hu-
mans [10] estimates the front and back depth map from
a single RGB image to generate a textureless 3D human.
FACSMILE [43] is similar and adds a normal constraint
to carve local depth details but manipulates naked bodies
and is not cloth-aware. DeepHuman [46] also utilizes a nor-
mal map to refine the estimated depth but only generates the
frontal body part, limiting its practical application. Normal-
GAN [49] further uses an adversarial learning framework
conditioned on normal maps to recover the textured 3D hu-
man body. However, NormalGAN requires the ground-truth
depth map as input, which needs to be collected using ex-
pensive depth sensors. Compared with the above methods,
our M3D-VTON is trained on high-quality synthesised data
and allows for cloth-aware human manipulation. For ease
of comparison, Table 1 presents an overview of the proper-
ties of M3D-VTON and the most related approaches.

3. M3D-VTON

To facilitate 3D virtual try-on, we propose a novel
Monocular-to-3D Virtual Try-On Network (M3D-VTON)
that takes a clothing image C and a person image I as in-

puts, and reconstructs a 3D try-on mesh O with clothes
changed and person identity preserved. As illustrated in
Fig. 2, M3D-VTON is composed of the Monocular Pre-
diction Module (MPM), the Depth Refinement Module
(DFM), and the Texture Fusion Module (TFM).

3.1. Monocular Prediction Module

This module plays a preparatory role in the proposed
M3D-VTON. It provides constructive guidance for the
other two modules by warping the in-shop clothing, predict-
ing a conditional person segmentation, and by estimating a
base 3D shape using a multi-target network. All these tasks
can be accomplished by utilizing the features extracted from
the target clothing C and the clothing-agnostic person rep-
resentation A. A consists of a 25-channel pose map (ob-
tained by applying OpenPose [7] on person image I), a 3-
channel unchanged person part (Ip) (obtained by applying
[28] on I), and a 1-channel coarse person mask that have
been concatenated. We explain the three sub-branches of
MPM in the following sections.

Clothing Warping Branch. Inspired by [38], the first
branch of the MPM utilizes an end-to-end trainable geo-
metric matching network to achieve the texture-preserving
clothing-person alignment. Specifically, as part of the geo-
metric matching network, the features extracted by the en-
coders EC and EA are fed into the feature correlation layer
to calculate the matching score, which is used by the re-
gressor R to predict the TPS transformation [4] parameters
θ (see Fig. 2). However, directly estimating θ is non-trivial
since there is a huge gap in size between the in-shop cloth-
ing C and the arm-torso region of the reference person Iat.
We therefore extract Iat from I by applying person seg-
mentation [28] and design a self-adaptive pre-alignment
procedure to transform C to the proper position and size
before conducting the TPS transformation. We formulate
the procedure as an affine transformation:

Caff =

[
R 0
0 R

]
C +

[
xcIat − xcC
ycIat − ycC

]
, (1)

where Caff denotes the transformed clothing item (see
Fig. 2), (xcIat , ycIat) and (xcC , y

c
C) represent the center of

Iat andC, respectively. R is a rescaling factor computed by
comparing the aspect ratio to ensure that the aligned cloth-
ing is larger than or at least equal to the arm-torso region:

R =


hat
I

hC
, wC

hC
> wat

I

hat
I

wat
I

wC
, wC

hC
<

wat
I

hat
I
.

(2)

An intuitive understanding of Eq. 1 is that it first center
aligns C and Iat and scales C to roughly the same size as
Iat to simplify the TPS warping step. The effectiveness of
the alignment procedure is illustrated in Fig. 3.
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Figure 2: Overview of the proposed M3D-VTON. The pipeline contains three modules with the following tasks. a) Monocu-
lar Prediction Module (MPM): obtaining the cloth-agnostic person representationA through the decloth process, deforming
the in-shop clothing C to the warped clothing Cw via a self-adaptive pre-alignment followed by a TPS transformation, pre-
dicting a person segmentation S, and estimating an initial double-depth map Di. b) Depth Refinement Module (DRM):
given the double-depth map Di, the warped clothing Cw, the preserved person part Ip, and their shadow information Ig

as inputs, this module refines the initial depth map and produces more local details (like cloth folds and face structure) by
incorporating a novel depth gradient constraint. c) Texture Fusion Module (TFM): rendering the results It under the guid-
ance of the semantic layout from MPM by fusing the warped clothes and the preserved texture information. Once It and the
refined depth map Dr are spatially aligned, forming an RGB-D representation, we can directly get colored point clouds and
triangulate them to obtain the 3D clothed human O wearing the target clothes and with its identity preserved.

In-shop
Clothing

TPS 
Warp

Pre-align + TPS
Warp

In-shop
Clothing

TPS 
Warp

Pre-align + TPS
Warp

Figure 3: Verification of the pre-alignment strategy. The
proposed self-adaptive transformations increase the quality
of the warping (as shown in the third column).

Given Caff , we pass both Caff and the clothing-
agnostic person representation A to the geometric matching
network to regress the TPS parameters θ, which are then
used to warp Caff to the warped clothing Cw. During
training, the difference between Cw and the ground-truth
Ic (clothing-on-person) is used to define the warping loss:

Lw = ‖Cw − Ic‖1. (3)

Conditional Segmentation Estimation Branch. The
goal of this branch is to estimate the person segmentation
supposing now wearing the desired clothing, which delin-
eates different parts of the reference person (e.g., the sleeve-
arm boundary). The segmentation mask provides inpainting

guidance for the following texture fusion module to miti-
gate skin texture degradation or clothing-skin penetration
especially for the case of self-occlusion or large clothing
variation. As shown in Fig. 2, the feature maps from EC
and EA are concatenated together and sent to the segmen-
tation decoder DS to generate the conditional person seg-
mentation S. Although only paired (C, I) images2 are fed
to the model during training, the network can generalize
to unpaired data at inference time due to the benefit of its
clothes-agnostic representation. During training, we use the
pixel-level cross-entropy [12] Ls to optimize this branch.

Depth Estimation Branch. The last branch in MPM
aims at estimating a base 3D shape of the reference person.
We represent the 3D shape in a double-depth form similar
to [10], i.e. a front and a back depth map corresponding to
the respective sides of the 3D human representation. In this
branch, the concatenated feature map is upsampled by the
depth decoder DZ to generate the front and the back depth.
During training, the loss function can be formulated as:

Lz = ‖Di
f −D

gt
f ‖1 + ‖D

i
b −D

gt
b ‖1, (4)

2Reference person I is wearing clothing C.
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where Di
f and Di

b represent the estimated front and back
depth, and the superscript i means “initial”. Dgt

f and Dgt
b

are the corresponding ground-truth depth maps.
We refer to the estimated depth maps as “initial” depth

since there are not enough clues for DZ to infer the com-
plete details of the warped clothing, such as the pleat de-
tails. To obtain more precise 3D information, the initial
depth map will be refined in the depth refinement module,
which will be explained in Section 3.2.

We train the three branches together within a multi-target
network and combine the three aforementioned losses to
yield the full loss of MPM:

LMPM = Lw + Ls + Lz. (5)

3.2. Depth Refinement Module

The reasons that the initially estimated depth map from
MPM fails to capture geometric details (e.g., clothing de-
tails, face characteristics) are twofold: (1) the inputs of
the MPM lack the warped clothing, which is crucial to
carve clothing pleats; (2) the L1 depth loss used in MPM
tends to penalize low-frequency differences between the es-
timated and the ground truth depth map, resulting in an
over-smoothed depth result. To add high-frequency depth
details, we propose the Depth Refinement Module (DRM),
which further exploits the brightness changes in the warped
clothing Cw and the preserved person part Ip to refine the
initial depth map. Specifically, we apply the Sobel operator
onCw and Ip and concatenate the gradient images to obtain
the image gradient Ig , representing the changes in bright-
ness. Then, Ig ,Cw, Ip and the initial depth mapDi are sent
to an UNet-like generator GZ to produce the refined depth
map Dr. During training, we propose two special losses
to enable the network to capture the high-frequency details.
Firstly, inspired by [20], we replace the vanilla L1 depth
loss with a Log-L1 version, which penalizes close points
more heavily and therefore guides the estimation to focus
on intricate local details, which is formulated as:

Ldepth =
1

n

n∑
i=1

ln (εi + 1) , (6)

where εi is the L1 loss of the i-th depth point, and n is the
total number of the front/back depth map points.

Secondly, to further strengthen the depth estimation and
capture geometric details especially at the boundary of ad-
jacent body parts, we incorporate a depth gradient loss :

Lgrad =
1

n

n∑
i=1

(ln (∇x (εi) + 1) + ln (∇y (εi) + 1)) , (7)

where∇ denotes the Sobel operator.
Note that normal maps can be generated from depth gra-

dient maps [33] and that Eq. 7 thus also penalizes the dif-
ference in normal maps. It is shown in [49] that normal

maps tend to contain more detailed geometric information
than depth maps, therefore constraints along the normal di-
rection can help recover geometric details and delineate the
boundary of adjacent body parts, where the depth gradient
is generally large.

The above two losses work in a complementary manner
to constrain different types of errors: a) Ldepth ensures con-
sistency along the z-direction, b) Lgrad does the same for
the x-, y- and thus normal direction. We therefore utilize a
weighted sum of the aforementioned losses to train DRM:

LDRM = λdepthLdepth + λgradLgrad, (8)

where λdepth, λgrad are set to 1.0, 0.5 respectively.

3.3. Texture Fusion Module

To synthesize photo-realistic body texture for the final
3D human mesh, we propose the Texture Fusion Module
(TFM) which fuses the warped clothing with the unchanged
person part to render seamless try-on results. TFM takes the
preserved person part Ip, the warped clothing Cw, the pre-
dicted segmentation S, and the estimated initial front depth
Di

f as inputs, and generates a coarse try-on result Ĩc as well
as a fusion mask M̃ . The 2D clues of Ip, Cw, and S pro-
vide the person appearance, clothing texture, and semantic
guidance for the network. Further, TFM also considers the
body depth map Di

f , which contains the spatial information
of different body parts along the z-axis. Under the extra
guidance of Di

f , TFM is capable of synthesizing the try-
on result more precisely even in challenging self-occlusion
cases. Finally, the fusion mask M̃ is used to fuse Cw and
Ĩc into the refined try-on result It, which can be formulated
as:

It = Cw � M̃ + Ĩc � (1− M̃). (9)

TFM is trained using the perceptual loss Lperc [23] be-
tween the refined try-on result It and the real person image
I , the L1 loss Ltry-on between It and I , as well as the L1
loss Lmask between the estimated fusion mask M̃ and the
real clothing-on-person mask M . The combined loss for
TFM can thus be formulated as:

LTFM = Lperc + Ltry-on + Lmask. (10)

In the end, we can unproject the front-view and the back-
view depth maps from DRM to get the 3D point clouds and
triangulate them with screened Poisson reconstruction [25].
Since the try-on result from TFM is spatially aligned with
the depth map, it can directly be used to color the front side
of the mesh. As for the back texture, we first inpaint the try-
on image using the fast matching method proposed in [47],
filling the face area with the surrounding hair color, and then
mirror the inpainted “back” view image to texture the back-
side of the mesh. This allows us to successfully achieve the
monocular-to-3D conversion, producing the reconstructed
3D clothed human with retained identity.
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Clothing Person VITON CP-VTON CP-VTON+ ACGPN M3D-VTON Clothing Person VITON CP-VTON CP-VTON+ ACGPN M3D-VTON

Figure 4: Qualitative comparison for the 2D try-on task. The first columns represent the inputs, columns 3 to 6 are prior
approaches, and column 7 illustrates our proposed approach.

4. Experiments

4.1. Dataset Generation

We construct the first monocular-to-3D try-on dataset
MPV-3D based on the MPV dataset [9], which contains per-
son images covering a wide range of poses and upper-body
garments3. MPV-3D contains 6566 clothes-person image
pairs (C, I) of size 512×320, in which each person image
is associated with a front and a back depth map, Df and
Db, respectively. We obtain the depth maps and set them
as the pseudo ground truth of our M3D-VTON by applying
PIFuHD [41] on the full-body front-faced person images
from the MPV dataset and then orthographically projecting
the generated human mesh to the double-depth maps. The
dataset is further divided into a train set and a test set with
5632 and 934 four-tuples (C, I,Df , Db) respectively, and
the test set is shuffled to form the unpaired (C, I) list for
quality evaluation.

4.2. Implementation Details

The MPM is trained separately from the DRM and the
TFM as it provides the inputs to these modules, while DRM
and TFM are trained together4. Each module is trained for
100 epochs using the Adam optimizer, with β1 = 0.5, β2 =
0.999, and the learning rate is initialized as 0.0002 with a
linearly decay to 0 in the last 50 epochs. The batch size is
8. The model is implemented in Pytorch and trained on a
single NVIDIA 2080ti GPU. During training, the reference
person wears the same clothing as the target in-shop clothes
as the try-on result for unpaired clothes and persons are not
available as supervision. However, during testing, the target
clothing is different from the clothing on the person and
inference is performed in an end-to-end manner.

3Examples are shown in the supplementary.
4We provide the complete architecture details in the supplementary.

Method SSIM ↑ FID ↓ HE ↑
VITON [17] 0.8807 28.43 21.35%

CP-VTON [48] 0.8503 20.05 10.65%
CP-VTON+ [30] 0.8782 23.18 12.57%

ACGPN [51] 0.8924 20.19 13.50%
M3D-VTON 0.8804 20.04 41.92%

Table 2: Quantitative comparisons to other 2D try-on meth-
ods. For fair comparison, we crop and resize our full-body
try-on results to half-body like those in Fig. 4, as other
methods originally perform half-body try-on.

4.3. 2D Try-on Comparison with SOTA methods

We compare our 2D try-on results with the existing
state-of-the-art 2D try-on methods: VITON [17], CP-
VTON [48], CP-VTON+ [30], and ACGPN [51].

A qualitative comparison is shown in Fig. 4. VITON
lacks texture details of the clothing and fails to synthe-
size arms in self-occlusion cases. Although CP-VTON and
CP-VTON+ can better preserve clothing texture, they per-
form poorly when the clothing is occluded by body parts.
ACGPN fails to synthesize complete arms and may syn-
thesize artifacts in the clothes region due to the stochas-
ticity introduced by its segmentation estimation network.
Due to our two-stage warping strategy, M3D-VTON more
accurately preserves the clothing texture, and synthesizes
body parts precisely through the collaborative guidance of
the conditional segmentation and the body depth map.

For the quantitative comparison, we adopt the Structural
SIMilarity index measure (SSIM) [50] and the Fréchet In-
ception Distance (FID)[18] to measure the similarity be-
tween the synthesized and the real images. Further, we con-
duct a human evaluation (HE) to assess the 2D try-on results
from M3D-VTON and the other four baselines. Specifi-
cally, we invited 26 volunteers to complete a questionnaire
that contains 40 assignments. In each assignment, given a
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Clothing Person PIFu NormalGAN M3D-VTON PIFu-HD Person PIFu NormalGAN M3D-VTON PIFu-HDClothing

Figure 5: Qualitative comparisons of 3D try-on results. The first two and the last columns respectively represent the inputs
and the (pseudo) ground truth PIFu-HD mesh, while the others are 3D try-on results (w/ and w/o texture) from the different
methods. The human mesh generated by our M3D-VTON contains more texture details and a more accurate shape compared
to PIFu [40] and NormalGAN [49] (note that NormalGAN uses GT front depth map as its input).

person image and a clothing image, the volunteers are re-
quired to select the most realistic try-on image out of the
ones produced by the five methods.

As shown in Table 2, M3D-VTON obtains the low-
est FID and highest human evaluation score, outperform-
ing other baseline methods. Its SSIM score is on-par
with the best performing model. To fairly compare with
baseline methods which trained on the half-body VITON
dataset [17], the baseline methods take the cropped half-
body images from MVP-3D as inputs and synthesize half-
body results during testing. The full-body results of M3D-
VTON are cropped to half-body images (as shown in Fig. 4)
following the same cropping procedure.

4.4. 3D Try-on Comparison with SOTA methods

Since this is the first work that explores the monocular-
to-3D virtual try-on setting, we design three hybrid models
to conduct 3D try-on comparisons. Specifically, we first
obtain the 2D virtual try-on result using CP-VTON and
then generate the 3D try-on mesh using the state-of-the-art
3D human reconstruction approaches PIFu [40], Normal-
GAN [49], and Deephuman [45]. The qualitative and quan-
titative comparisons are shown in Fig. 5 and Table 3, re-
spectively. Since Deephuman does not recover the backside
of the 3D shape, we compare with it only quantitatively.

In Fig. 5, the hybrid CP-VTON+PIFu model produces
plausible 3D shape results but fails to recover detailed tex-
ture due to its unreliable implicit texture color inference.

Method Abs. ↓ Sq. ↓ RMSE ↓ HE ↑
Deephuman [45] 17.35 1.271 22.44 -
NormalGAN [49] 15.41 0.778 18.94 21.3%

PIFu [40] 8.376 1.813 27.57 11.3%
M3D-VTON (ours) 7.880 0.385 11.27 67.4%

Table 3: Quantitative comparisons to other 3d human recon-
struction methods. All values have been divided by 10−3

for readability. Note for PIFu and M3D-VTON, we aver-
age their double-depth score. The scores for Deephuman
and NormalGAN are computed from single depth since they
only recover front and back depth, respectively.

Unlike PIFu, NormalGAN uses the double-depth represen-
tation and directly sets the 2D image as mesh texture. How-
ever, NormalGAN requires a noisy ground truth depth map
as input to infer the back shape and although we simulate
the depth generation process in NormalGAN, it still tends to
produce over-slim 3D persons. Compared with these hybrid
methods, our M3D-VTON generates more realistic 3D per-
sons and preserves detailed texture within a single model.

The results of the quantitative comparison are shown in
Table 3. We use three common depth estimation metrics:
Absolute Relative error (Abs.), Squared Relative error (Sq.)
and Root Mean Squared Error (RMSE). Our method out-
performs the benchmark models on all of the four mea-
surements including human evaluation (HE), illustrating the
superior shape generation ability of M3D-VTON. Finally,
our method takes about 4 seconds to run for a given MPV-
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MTM Pre-align IoU Pre-align IoU
7 0.708 3 0.737

TFM

Segmt. S Depth Di
f SSIM ↑ FID ↓

7 7 0.9348 16.52
3 7 0.9434 16.01
7 3 0.9418 15.96
3 3 0.9435 15.74

DRM
Grad. Ig Loss Lgrad Sq. ↓ RMSE ↓

7 7 0.0824 5.8369
3 7 0.0896 5.7650
3 3 0.0801 5.7420

Table 4: The ablation study on the three modules. Note
values of Sq. and RMSE are divided by 10−3 for readability.
Here the scores of DRM are for front depth, as we do not
have the back-side gradient image. And the TFM scores are
computed from full-body try-on results.

Figure 6: Visual comparisons to verify the effectiveness of
the segmentation guidance and depth guidance in TFM.

Figure 7: Visualized ablation study on DRM. Lgrad is bene-
ficial for producing geometric details (see last column).

3D image pair (most computational cost occurs during the
poisson reconstruction process), which is clearly faster and
more efficient than pure 3D virtual try-on (such as Multi-
Garment Net [3], roughly 17s to run) or 3D human recon-
struction (such as PIFu [40], roughly 10s to run) methods.

4.5. Ablation Study

We conduct ablation experiments on the three modules
of M3D-VTON to verify their effectiveness.

Effectiveness of the Self-Adaptive Pre-Alignment in
MPM. Fig. 3 shows that directly applying TPS results in
excessive deformation and fails to warp clothes properly.
Our two-stage warping with pre-alignment, instead, can
generate gentle deformation and obtains precisely warped
clothes. Quantitative results (Table 4, 1st row), verify this as
the IoU between the warped clothes and the clothes region
from the reference person increases with pre-alignment.

Effectiveness of Depth and Segmentation Guidance in
TFM. Fig. 6 illustrates the need that using these two guid-
ance independently can help alleviate the self-occlusion is-
sue. Furthermore, under their collaborative guidance, TFM
can further improve the fidelity of arms in the synthesized
results. Table 4 corroborates that they both contribute pos-
itively to the M3D-VTON. Note that the SSIM and FID
scores here are calculated on the full-body results, while
the scores in Table 2 are reported for the cropped half-body
results to fit the setting of ACGPN for fair comparison.

Effectiveness of depth gradient constraint in DRM.
Table 4 and Fig. 7 show that the image gradient inputs
and the proposed depth gradient constraint can improve the
depth prediction and guide the DRM to carve more intricate
details onto the 3D shape. The black dotted circles in Fig. 7
highlight the improvements brought by these terms.

5. Conclusion

In this work, we propose a computational efficient
Monocular-to-3D Virtual Try-On Network (M3D-VTON)
that builds on the merits of both 2D and 3D approaches
to produce the 3D try-on mesh from 2D information. Our
M3D-VTON decomposes the 3D try-on task into a 2D try-
on and a body depth estimation problem. In future work, we
will investigate if the two can further promote each other in
a cyclic-manner. To get more realistic texture fusion results,
M3D-VTON utilizes a two-stage warping strategy as well
as segmentation and depth guidance . We also introduce
a novel depth gradient constraint to generate more detailed
depth maps. Our method provides a faster and more eco-
nomic solution for the monocular-to-3D virtual try-on task.
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ard Pons-Moll, and Francesc Moreno-Noguer. Smplicit:
Topology-aware generative model for clothed people. In
CVPR, 2021. 2

[9] Haoye Dong, Xiaodan Liang, Xiaohui Shen, Bochao Wang,
Hanjiang Lai, Jia Zhu, Zhiting Hu, and Jian Yin. Towards
multi-pose guided virtual try-on network. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 9026–9035, 2019. 2, 6

[10] Valentin Gabeur, Jean-Sebastien Franco, Xavier Martin,
Cordelia Schmid, and Gregory Rogez. Moulding humans:
Non-parametric 3d human shape estimation from single
images. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019. 3, 4

[11] Andrew Gilbert, Marco Volino, John Collomosse, and
Adrian Hilton. Volumetric performance capture from min-
imal camera viewpoints. In Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.
2

[12] Ke Gong, Xiaodan Liang, Dongyu Zhang, Xiaohui Shen,
and Liang Lin. Look into person: Self-supervised structure-
sensitive learning and a new benchmark for human parsing.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 932–940, 2017. 4

[13] Peng Guan, Loretta Reiss, David A Hirshberg, Alexander
Weiss, and Michael J Black. Drape: Dressing any person.
ACM Transactions on Graphics, 31(4), 2012. 2

[14] Marc Habermann, Weipeng Xu, Michael Zollhofer, Ger-
ard Pons-Moll, and Christian Theobalt. Deepcap: Monoc-

ular human performance capture using weak supervision.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 2

[15] Fabian Hahn, Bernhard Thomaszewski, Stelian Coros,
Robert WSumner, Forrester Cole, Mark Meyer, Tony
DeRose, and Markus Gross. Subspace clothing simulation
using adaptive bases. ACM Transactions on Graphics, 33(4),
2014. 2

[16] Xintong Han, Xiaojun Hu, Weilin Huang, and Matthew R.
Scott. Clothflow: A flow-based model for clothed person
generation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10471–10480, 2019.
2

[17] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S.
Davis. Viton: An image-based virtual try-on network. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7543–7552, 2018. 2, 3, 6,
7

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equi-
librium. In Advances in Neural Information Processing
Systems, pages 6626–6637, 2017. 6

[19] Chia-Wei Hsieh, Chieh-Yun Chen, Chien-Lung Chou, Hong-
Han Shuai, Jiaying Liu, and Wen-Huang Cheng. Fashionon:
Semantic-guided image-based virtual try-on with detailed
human and clothing information. In Proceedings of the 27th
ACM International Conference on Multimedia, pages 275–
283, 2019. 2

[20] Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani.
Revisiting single image depth estimation: Toward higher res-
olution maps with accurate object boundaries, 2018. 5

[21] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and
Tony Tung. Arch: Animatable reconstruction of clothed hu-
mans. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020. 2

[22] Thibaut Issenhuth, Jérémie Mary, and Clément Calauzènes.
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