
Modelling Neighbor Relation in Joint Space-Time Graph
for Video Correspondence Learning

Zixu Zhao Yueming Jin Pheng-Ann Heng
The Chinese University of Hong Kong

{zxzhao, ymjin, pheng}@cse.cuhk.edu.hk

Abstract

This paper presents a self-supervised method for learn-
ing reliable visual correspondence from unlabeled videos.
We formulate the correspondence as finding paths in a joint
space-time graph, where nodes are grid patches sampled
from frames, and are linked by two type of edges: (i) neigh-
bor relations that determine the aggregation strength from
intra-frame neighbors in space, and (ii) similarity relations
that indicate the transition probability of inter-frame paths
across time. Leveraging the cycle-consistency in videos, our
contrastive learning objective discriminates dynamic ob-
jects from both their neighboring views and temporal views.
Compared with prior works, our approach actively explores
the neighbor relations of central instances to learn a latent
association between center-neighbor pairs (e.g., “hand –
arm”) across time, thus improving the instance discrimina-
tion. Without fine-tuning, our learned representation out-
performs the state-of-the-art self-supervised methods on a
variety of visual tasks including video object propagation,
part propagation, and pose keypoint tracking. Our self-
supervised method also surpasses some fully supervised al-
gorithms designed for the specific tasks.

1. Introduction

Learning temporal correspondence — a problem of
learning “what went where”— is closely related to many
fundamental vision tasks, such as video object tracking [46,
26, 45], video object segmentation [48, 4, 44, 29, 32], and
flow estimation [7, 14]. In essence, it corresponds to a
query-target matching problem, which relies on an affinity
to match a physical point (or patch) in the query frame t to
that in the target frame t + k. One practical issue is col-
lecting dense annotations from large-scale videos, which
costs large human efforts. It motivates numerous self-
supervised methods [45, 50, 24, 22, 21, 47, 15] to learn
dynamic objects from unlabeled videos by leveraging the
cycle-consistency in time as a free supervisory signal.

Figure 1. How to find the correspondence of a small object such as
the dog tail in a video? We argue that the query-target matching
desires both longer views (temporal dynamics) and broader views
(neighbor relations) to distinguish similar instances. We capture
these two cues in a graph to learn correspondence.

Recent approaches learn strong representations by con-
structing long-range views mainly from two perspectives:
(i) learning pixel-level correspondences by a single-step as-
sociation [24, 47], or (ii) learning patch-level correspon-
dences by a multi-step association [15]. The single-step
association can be viewed as a pixel-level affinity between
two patches at timesteps t and t + k, aiming to transform
the pixel colors. Such transformation requires a determin-
istic correspondence to locate the target patch at t + k,
which is achieved by training an extra unsupervised patch
tracker [50]. However, the underlying assumption that cor-
responding pixels have the same color may be violated,
e.g., inevitable lighting changes and deformation in future
frames, thereby hindering the model from using longer tem-
poral cues. Recently, Jabri et al. [15] formulate a multi-
step association that connects corresponding patches at ev-
ery timestep between t and t+k in a form of Markov chain.
At each step, the patch-level affinity links all patches of two
adjacent frames, preserving all possible correspondences in
the video. The learning process thus benefits from a longer-
range clip with all intermediate views available. Unfortu-
nately, finding an “optimal” correspondence is not easy due
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to the struggling matching between similar instances where
image patches only capture a very narrow view of them.

Hence, we identify another key ingredient for better
query-target matching — seeing broader — which is ig-
nored in existing methods. Let us take a closer look of an
example shown in Figure 1. How do human track the right
dog tail across frames, and avoid being confused by the left
dog tail from the similar instance? (i) Seeing longer: how
the shape of the tail changes over time is indeed a crucial
cue, and it can be utilized in the multi-step association [15].
(ii) Seeing broader: it is easier to discriminate the dog tails
from a broader view by considering neighboring informa-
tion around them, such as the dog body features, as well as
the dog-person interaction. However, it cannot be achieved
by straightforwardly enlarging the patch size, as the detailed
structures or features will be missed.

In this paper, we propose to learn correspondence by
seeing both broader and longer via a graph-based frame-
work. We represent the video as a joint space-time graph
where nodes are grid patches and edges are two type of re-
lations, i.e., neighbor relations and similarity relations. The
big graph can thus be decomposed into two sub-graphs.
(i) Neighbor Relation Graph: we start by constructing a
small graph for each node, which is linked to intra-frame
nodes that are located in a sliding neighborhood. Initial-
ized with the topological prior, the edges learn to guide the
aggregation of neighboring node representations to the cen-
tral node. The updated node representation thus captures a
broader view of the neighborhood. (ii) Similarity Graph:
we then connect inter-frame nodes with the pairwise sim-
ilarity, under the updated node representations. All these
edges form a multi-step association for a long-range clip.

Given the joint graph, the prediction of the long-range
correspondence can be computed as a path (a combination
of similarity-based edges) along the graph. To induce su-
pervision, we adopt palindrome sequences [15] for training,
which provide the walker with a target, i.e., returning to
the start point. In contrast to the prior work [15], our path-
level constraint provides contrastive learning signals from
both the temporal views and neighboring views, leading to
more reliable matching among similar instances. Moreover,
we perform a random but attentive walk on the large graph
by wisely dropping the “common-fate” [51] nodes accord-
ing to the pixel discrepancy of each node, encouraging the
model to focus on more informative node pairs. Below, we
summarize the major contributions of this work.

• First, we design a joint video graph that models neigh-
bor relations in space and similarity relations in time
for visual correspondence learning.

• Second, we formulate the contrastive learning as a ran-
dom but attentive walk on the graph to learn discrim-
inative representations from seeing both temporal and

neighboring views of instances.

• Third, our method outperforms state-of-the-art self-
supervised approaches on a variety of visual tasks, e.g.,
object, part propagation, and pose tracking. It also sur-
passes some task-specific fully supervised algorithms.

2. Related Works
Self-supervised Representation Learning. Learning vi-
sual representations from unlabeled images or videos has
been widely explored in many pretext tasks, including fu-
ture prediction [39, 27], frame sorting [23, 30], motion es-
timation [1, 42], and audio analysis [34, 19]. These meth-
ods learn good feature representations that can generalize
well to multiple tasks by further fine-tuning on a small set
of labeled samples. The key idea in them is to utilize the
inherent information inside images or videos as the super-
visory signals. For example, corresponding pairs can be
constructed by augmentation of the same instance [52, 3].
However, manually augmenting still images may not al-
ways be in correct correspondence. Recent works in con-
trastive learning [33, 6, 11, 10] explore the supervisory sig-
nals for similarity learning by choosing pairs that are close
in space [11, 6, 2] or time [10, 33, 37]. In contrast, we im-
plicitly determine which pairs to be closer by their neighbor
relations in space and similarity relations in time.

Self-supervised Correspondence Learning. Recent ap-
proaches focus on learning correspondence from unlabeled
videos in a self-supervised manner. The key idea of Time-
Cycle [50] is to train a deterministic patch tracker to find
the correspondence of a query patch by tracking forward
and backward in the video. Likewise, UVC [24] and Con-
trastCorr [47] adopt the patch tracker to obtain object-level
correspondences. But they also explore fine-grained corre-
spondences by learning a pixel-wise affinity with coloriza-
tion. The difference is that Wang et al. [47] combines the
intra-video transformation [24] with inter-video transforma-
tion to form contrastive pairs. Besides, CorrFlow [22] and
MAST [21] use feature maps with higher resolution (2×)
than others and yield impressive results. Recently, Jabri
et al. [15] formulate the correspondence as a contrastive
random walk, allowing associations between patches that
may have significant differences in appearance. Despite the
success of these methods, many of them still struggle with
the overwhelming noisy or negative samples when perform-
ing query-target matching. Our approach tackles this issue
by introducing neighboring views to the matching pairs for
contrastive learning, which allows us to lean implicit asso-
ciations between central representation and its neighbor.

Video Graphs. Representing video as graphs can usually
capture the spatial-temporal relationships in videos [41, 49,
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Figure 2. Schematic illustration of our joint space-time graph for correspondence learning. Specifically, we have two sub-graphs that
associate grid patches (nodes) with different relations. (i) Neighbor Relation Graph {q̂, E}: it connects a central node to its neighbors q̂
with edge E initialized with topological prior, by which the neighboring embeddings can be aggregated to the center in a learnable manner.
(ii) Similarity Graph {q, A}: it links inter-frame nodes q with pair-wise similarity affinities A (in updated representation space) to form a
multi-step association on a long-range sequence. Furthermore, we employ the node dropout technique and transfer sequence as palindrome
to upgrade graph to {q̄, B}, in which we perform a random but attentive walk to find the correspondence based on contrastive learning.

36, 15]. The key of video graph is to form the image
patches as nodes and link them with edges. One popu-
lar direction is to model the object-object interactions by
connecting objects which overlap in space or close in time.
They have been widely applied to video classification [49],
detection [36], or visual relationship reasoning [41], by
combining with Conditional Random Fields (CRF) [20]
or Graph Convolutional Networks (GCN) [18]. Recently,
some works start to model how the states of the same ob-
ject change in time by connecting inter-frame nodes that
have similar appearance or semantically related [15, 49].
Leveraging the similarity relations, the task of represen-
tation learning can be induced by propagating the node
identity in a graph. To better learn instance discrimination
with cross-attention between nodes, we go one step further
by modelling the neighbor relations of intra-frame nodes,
which allow us to learn latent associations between central
node and its neighbors across space and time.

3. Methods

We propose to represent the video as a joint space-time
graph for learning temporal correspondence. As shown in
Figure 2, nodes are frame patches sampled in a grid, and
edges contain two type of connections: neighbor relations
between intra-frame nodes, and visual similarity between
inter-frame nodes. Based on these two relations, the big
graph can be decomposed into two sub-graphs, including

neighbor relation graph and similarity graph, aiming at cap-
turing the broader and longer views, respectively. Next,
we perform reasoning on the graph to find latent correspon-
dences for contrastive learning. Our learning process can
be interpreted as a random but attentive walk on the graph
by automatically dropping out some “common-fate” nodes.
The construction details of two sub-graphs and learning
procedures are successively described in this section.

3.1. Neighbor Relation Graph

Given a video sequence I, we denote a set of nodes qt

that correspond to N overlapped patches sampled in a grid
from frame It. In general, each node in qt will be mapped to
a l2-normalized d-dimensional embedding using an encoder
ϕ, where d is the channel number. The embedding captures
a very local view of an object sometimes, although neces-
sary for learning tiny structures, it easily induces ambiguity
into the query-target matching. Intuitively, the neighbor-
ing nodes provide the central node with a broader view of
an object or interactions with other objects, which are ben-
eficial to find its temporal correspondence. Motivated by
this, we build a neighbor relation graph that reinforces node
embeddings by relating the information from the neighbors
guided by the general topology. The edge E is solely es-
tablished between node i and its neighbors rather than all
other nodes [28]. The sum of all edge values connected to
node i is normalized to be 1 by a softmax function. If node
i and j are spatially closer or more correlated in semantics,
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Figure 3. Encoding topological information in the neighbor rela-
tion graph by edge initialization. Three structures (i.e., horizontal,
vertical, square) associate the central node to broader representa-
tions variously. We adopt the normalized attention matrix as the
initial value of edges to encode the topological prior.

then Eij should be higher. We denote the neighbor relation
graph as Gr = {q̂, E} where q̂ is the set of n neighbors.

Sliding neighborhood. We construct Gr by considering a
friendly neighborhood [13, 17] as a small grid (e.g., a 3× 3
grid yielding 9 neighbors), and model the neighbor relations
for the central node. A larger neighborhood is not neces-
sary because farther nodes are more likely to induce noise
(see performance degradation in Figure 6 (a)). For different
nodes in qt, we consider them as the center and determine
corresponding neighborhoods in a sliding window manner.
This lead to a shared edge E ∈ RN×n across N nodes in
qt, i.e., E1j = E2j = ... = ENj , where j ∈ {1, 2, ..., n}.

Encoding topological prior. To model the neighbor rela-
tion, we first initialize E by explicitly encoding the topo-
logical information. In a neighborhood (see Figure 3), we
generally have three types of topology with regard to the
central node based on the spatial proximity, including ver-
tical, horizontal, and square structures. Each of them may
composite central element into a higher-level entity in the
feature space with neighboring views. For example, a “body
center” can be extended with semantics of “arm”, “legs”, or
“person” using horizontal, vertical, or square topology. We
do have other cases that object-object interactions are cap-
tured by the neighbors, which also provide an crucial cue in
modelling neighbor relations. To this regard, we generate
a normalized attention matrix based on the number of node
occurrences in different topology, and employ the matrix to
initialize edge E. The topological prior can therefore be
encoded to guide the following learning of E.

Graph attention. Advanced by the topological informa-
tion, the graph captures the relational importance of neigh-
boring nodes, in other words, the degree of importance of
each of the neighbors contributing to the central node. We
then explore a graph attention mechanism to augment the
representations of the central node i by aggregating mes-

sages from its neighboring nodes:

f(qi
t) =

n∑
j=0

softmax(Eij) · ϕ(qj
t ), (1)

where qj
t is the j-th node in qt and f(qi

t) is the updated
embedding of node qi

t, which provides weighted neighbor-
ing semantics, while preserving the original feature pat-
terns. Different from the channel-level feature aggregation
with GCN [49, 18], our graph attention performs a node-
level feature simulation that treats each node embedding as
a whole. We show this mechanism benefits the contrastive
learning in Section 3.3. More importantly, E is learnable
via back propagation, by which a more general neighbor
relation can be modeled during training.

3.2. Similarity Graph

After considering the intra-frame node relations, we link
the visually corresponding nodes in the adjacent frames by
a similarity-based affinity. One general option for the pair-
wise similarity function is a dot-production between two
feature embeddings: F (ϕ(q1), ϕ(q2)) = ϕ(q1)

⊤ϕ(q2). Fol-
lowing recent similarity learning methods [15, 24, 47], we
employ a row-wise softmax function to the similarity func-
tion with temperature τ to obtain a non-negative affinity ma-
trix between inter-frame node embeddings updated by Gr:

At+1
t (i, u) =

exp(F (f(qi
t), f(q

u
t+1))/τ)∑N

l=1 exp(F (f(qi
t), f(q

l
t+1))/τ)

. (2)

The affinity in Equation (2) places weights on all possi-
ble edges between nodes at t and t + 1, with higher pos-
sibility indicating that the paired patches are more similar.
Given such connections, we can already construct a simple
similarity graph between two adjacent frames in the video.
However, the short temporal dynamics within two frames
provides very limited views of objects. We therefore link
all the inter-frame nodes across a video with a length of T ,
and formulate the graph path as a Markov chain of edges,
following the idea in [15]:

At+T
t =

T−1∏
i=0

At+i+1
t+i . (3)

Here, we can denote the similarity graph as Gs = {q, A}
where q represents all inter-frame nodes in a video and A is
a chain of edges described in Equation (3).

3.3. Attentive Walk on Joint Space-Time Graph

Our goal is to learn temporal correspondence in the
joint space-time graph without human annotations. Akin
to prior arts that explore cycle-consistency in time [50,
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15], we adopt the palindrome sequence in the form of
{It, ..., It+T , ..., It} for training, where the target of the
query node should be its original position. Following the
idea of [15], we build our cycle-consistent loss as:

Lcyc(G|G = {q, B}) = LCE(B, I), (4)

where G is a joint palindrome graph with edges B =
At+T

t At
t+T , and I is the target position generated accord-

ing to the location of the first frame node, e.g., the ground
truth of the i-th node is i.
Node dropout. Compared with things — countable objects
such as people and animals, one problem of learning cor-
respondence in graphs is matching stuff — large regions
of similar textures or materials, such as sky and land (Fig-
ure 4). The “common-fate” [51] nodes in the stuff have
strong affinity to all other nodes in the related segment of
neighboring frames, making it hard and somewhat impos-
sible to walk back to the original position during training.
To address this issue, we propose a node dropout strategy
based on the pixel discrepancy of a node, given that the
“common-fate” nodes always contain very similar context.
Specifically, we start by retrieving the pixel embeddings
p ∈ Rd×hw for each node using the encoder ϕ, where hw is
the downsampled spatial size. Next, we calculate the self-
similarity among pixel embeddings via a dot-production:
S = p⊤p. We define the pixel discrepancy of a node as:

δ = 1− 1

(hw)(hw)

hw∑
i=0

hw∑
j=0

Sij , (5)

where we convert the self-similarity to the reverse side, so
that the higher value of δ denotes higher discrepancy among
pixels. We then set a threshold of δ to drop those uninfor-
mative nodes whose pixel discrepancy is lower than it. The
proposed strategy is superior to the random dropout tech-
nique in [15] by exclusively tackling “common-fate” nodes.
Our final training objective is:

Lcyc(Ḡ|Ḡ = {q̄, Bk}) =
T∑

k=1

LCE(B
k, I), (6)

where q̄ is the remained nodes after node dropout, and
Bk = At+k

t At
t+k. We optimize all sub-cycles in the graph

with the clip length k varying from 1 to T. In this regard, we
are allowed to perform a random but attentive walk on the
graph, forcing the model to discriminate informative node
pairs by the hedging of ambiguous matching.
Contrastive learning with extra positive pairs. We can
consider our model as a chain of contrastive learning prob-
lem, which is guided by a “one-hop” cycle-consistency con-
straint. Basically, a strong edge creates a one-to-one align-
ment, i.e., one positive pair. However, after aggregating
neighboring information via Equation (1), we can interpret

Figure 4. Node dropout to avoid “common-fate” nodes that puzzle
the correspondence learning. We introduce a thresholding mea-
surement based on the pixel discrepancy δ.

one edge as a latent many-to-many alignment in the feature
space, involving extra positive pairs for contrastive learn-
ing apart from center-center pairs. For example, center-
neighbor pairs — a node at timestep t and one of its cor-
responding neighbors at timestep t + 1, or even neighbor-
neighbor pairs. Taking the hand-arm pair as an example,
since they are physically connected as neighbors in most
cases, when learning the correspondence of “hand”, our
model may push its embedding closer to that of “arm” as
well. Recall that we learn E in Equation (1) via the ob-
jective (6). The learned E encourages the model to find
more reliable center-center or center-neighbor pairs for con-
trastive learning, which generate better node representations
in return for E to model the general neighbor relations. We
believe this is the main reason that our model learns more
discriminative representations of instances.

4. Experiments
We extensively evaluate our learned representations on

various visual correspondence tasks: video object propaga-
tion, human part propagation, and pose keypoint tracking.
We first conduct the comparison with the state-of-the-art
self-supervised algorithms for visual correspondence learn-
ing, including TimeCycle [50],CorrFlow [22], MAST [21],
UVC [24], ContrastCorr [47], and VideoWalk [15]. We
then compare our model with pre-trained features from
representation learning methods, including MoCo [11], a
self-supervised contrastive learning method based on im-
ages; VINCE [10], an extension of MoCo to videos; Ima-
geNet [12], a strong supervised method where the model is
pre-trained on ImageNet. All above methods use ResNet-
18 [12] as the backbone. Besides, we also compare with
some fully supervised algorithms designed for the specific
tasks. At last, we provide in-depth ablation studies.

4.1. Implementation

Encoder. For fair comparisons, we also adopt ResNet-
18 [12] as the encoder ϕ by reducing the stride of last two
residual blocks (res3 and res4) to 1. We add a linear pro-
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Figure 5. Qualitative comparisons with other self-supervised methods on DAVIS 2017 dataset. (a) Target frame. (b) Ground-truth of target
frame. (c) Results of UVC [24]. (d) Results of ContrastCorr [47]. (e) Results of VideoWalk [15]. (f) Our results.

Table 1. Video object propagation results on DAVIS 2017 dataset. We show results of state-of-the-art self-supervised methods and some
supervised approaches in comparison of our method. Train Data indicates dataset(s) used for pre-training, including: I = ImageNet [12],
K = Kinetics400 [5], C = CoCo [25], D = DAVIS 2017 [35], P = PASCAL-VOC [8], Y = YouTube-VOS [53], O = OxUvA [43], V =
VLOG [9], T = TrackingNet [31]. Resolution indicates whether feature map for correspondence matching is of a higher (2×) resolution.

Method Supervised Backbone Train Data Resolution J&Fm Jm Jr Fm Fr

MoCo [11] ResNet-18 I 1× 60.8 58.6 68.7 63.1 72.7
VINCE [10] K 60.4 57.9 66.2 62.8 71.5
CorrFlow [22]

ResNet-18
O

2×
50.3 48.4 53.2 52.2 56.0

MAST [21] O 63.7 61.2 73.2 66.3 78.3
MAST [21] Y 65.5 63.3 73.2 67.6 77.7
TimeCycle [50]

ResNet-18

V

1×

48.7 46.4 50.0 50.0 48.0
UVC [24] K 60.9 59.3 68.8 62.7 70.9
ContrastCorr [47] T 63.0 60.5 70.6 65.5 73.0
VideoWalk [15] K 67.6 64.8 76.1 70.2 82.1
Ours ResNet-18 K 1× 68.7 65.8 77.7 71.6 84.3
ImageNet [12] ✓ ResNet-18 I 1× 62.9 60.6 69.9 65.2 73.8
SiamMask [48] ✓ ResNet-50 I/C/Y 56.4 54.3 62.8 58.5 67.5
OSVOS [4] ✓ VGG-16 I/D 60.3 56.6 63.8 63.9 73.8
OnAVOS [44] ✓ ResNet-38 I/C/P/D 65.4 61.6 67.4 69.1 75.4
OSVOS-S [29] ✓ VGG-16 I/P/D 68.0 64.7 74.2 71.3 80.7

jection after average pooling to generate a 128-dimensional
node embedding. Pixel-wise embeddings of each node are
created by the same projection without average pooling for
node dropout.
Training. We train ϕ using the unlabeled videos from Ki-
netics400 [5] dataset with the Adam optimizer. We set the
temperature τ as 0.05 in Equation 2. Akin to [15], for each
256×256 frame, we sample 64×64 patches in a 7×7 grid,
resulting in 49 nodes per frame. Without extra specification,
our sliding neighborhood is a 3× 3 grid, involving 9 neigh-
boring nodes, and the length of training sequences is 10.
To see sufficient samples, we first train the model without
node dropout for 5 epochs using a learning rate of 1×10−4.
Next, we set δ = 0.2 for node dropout and train the model
for another 15 epochs with a learning rate of 1× 10−5. All
experiments are conducted on 4 NVIDIA Titan Xp GPUs.
Inference. All evaluation tasks can be considered as video
label propagation, which is to predict the labels of each pix-
els in the target frame given only the labels in the first frame
(i.e., the source). For fair comparisons, we use the same la-
bel propagation strategy and testing protocols as [15] for
all tasks. In brief, labels Lt are propagated as Lt = Ks

tLs,

where Ls is the source labels and Ks
t is the top-k transitions

between source and target frames (k is 10 for all tasks). To
provide temporal context, the last m frames are also used
for propagation (m is 20, 4, and 7 for DAVIS, VIP and JH-
MDB tasks respectively). To avoid noise from pixels that
are far away in space, the query pixels are restricted by a
local attention mask with a radius r (r is 5 for JHMDB, and
12 for all other tasks). We use the output of res3 as feature
representations to calculate affinities for label propagation,
and τ is set as 0.05 for consistency with the training.

4.2. Video Object Propagation on DAVIS 2017

We evaluate our model on a popular benchmark of
semi-supervised video object segmentation, i.e., DAVIS
2017 [35], which provides the semantic mask of multiple
objects in the first frame. For fair comparisons with prior
works [15, 47, 24, 50], we test the model on images with
the resolution of 480p. We report the mean (m) and re-
call (r) of Jaccard index J (IoU) and contour alignment F ,
detailed in Table 1. Figure 5 and Figure 7 (a) show the
propagated object masks. Specifically, our approach attains
improvements over MoCo [11] and VINCE [10], indicat-
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Table 2. Part segmentation and Pose tracking results on VIP and
JHMDB datasets, respectively. We compare our model with self-
supervised and strong supervised methods. Sup indicates it is a
supervised method or not.

Method Sup Pose Part

PCK@0.1 PCK@0.2 mIoU
TimeCycle [50] 57.3 78.1 28.9
UVC [24] 58.6 79.6 34.1
ContrastCorr [47] 61.1 80.8 37.4
VideoWalk [15] 59.3 84.9 38.6
Ours 61.4 85.3 40.2
ImageNet [12] ✓ 53.8 74.6 31.9
ATEN [54] ✓ - - 37.9
Thin-Slicing Net [38] ✓ 68.7 92.1 -

ing that it is better to choose temporal views for contrastive
learning in videos rather than data augmentation of a sin-
gle frame. Our method also performs favourably against
the self-supervised methods from unlabeled video, and even
without relying on a higher-resolution feature map used in
CorrFlow and MAST [22, 21] or other modules such as the
patch localizer designed in UVC and ContrastCorr [24, 47].
Our method achieves consistent improvements over the
state-of-the-art method VideoWalk [15] across all the eval-
uation metrics. Surprisingly, our method can outperform
many supervised methods [48, 4, 44, 29] with specific ar-
chitectures for video object segmentation.

Furthermore, we show that by modelling neighbor rela-
tions during training, our model exhibits superior discrim-
ination capability for instance-level separation. As seen
in Figure 5, both UVC [24] and ContrastCorr [47] fail to
discriminate similar instances by learning pixel-level cor-
respondence. Despite seeing more hard negative samples
during training, the walker in [15] still gets confused to in-
stances that are similar in color. In contrast, our model can
tell the difference of small parts between similar instances,
e.g., the dog tails or the car windows, by inducing neighbor-
ing views for contrastive learning.

4.3. Human Part Propagation on VIP

We evaluate our method on part segmentation task on the
Video Instance Parsing (VIP) benchmark [54], which in-
volves propagating 20 parts of human (e.g., arms and leg),
requiring more precise matching than DAVIS. We use the
same settings as Jabri et al. [15], and resize the video frames
to 560 × 560. For the semantic part propagation task, we
evaluate performance via the mean IoU metric. As seen
in Table 2, our model outperforms existing self-supervised
methods, e.g., by 1.6% and 2.8% mIoU, compared to Vide-
oWalk [15] and ContrastiveCorr [47], respectively. We
also surpass the fully supervised method ATEN [54] that is
specifically designed for this dataset using training labels.
Figure 7 (b) shows samples of semantic part propagation
results. Interestingly, our model correctly propagates each
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Figure 6. Ablation studies of our method on DAVIS 2017 bench-
mark. (a) Effect of neighborhood size and edge value. (b) Effect
of node dropout. (c) Effect of training path length.

part mask onto similar instances (dancers in the first exam-
ple) no matter when they are close or far from the camera.

4.4. Pose Keypoint Tracking on JHMDB

We consider the pose tracking task on JHMDB bench-
mark [16], which involves 15 keypoints. Follow the evalua-
tion protocol of [24, 15], we test the model on 320× 320px
images. We adopt the possibility of correct keypoints [38]
(PCK) as the evaluation metric, which measures the per-
centage of keypoints close to ground-truth under different
thresholds. We show quantitative evaluations against oth-
ers in Table 2, and qualitative results in Figure 7 (c). Our
model achieves consistent improvements over existing self-
supervised approaches on this challenging task that requires
precise fine-grained matching. Notably, our model achieves
even 10.7% better in PCK@0.2 than the ImageNet [12]
baseline trained with classification labels.

4.5. Analytical Ablation Studies on DAVIS 2017

Neighborhood size. We investigate how necessary to relate
more neighboring nodes for a broader view, by construct-
ing neighbor relation graph with dimension of 3× 1, 1× 3,
3 × 3, 5 × 5 — resulting in n = 3, 3, 9, 25 nodes, re-
spectively. In Figure 6 (a), we find that 9 neighboring nodes
can peak the performance on DAVIS. Further increasing the
neighborhood size (n = 25) is likely to induce noisy cues
from farther nodes, resulting in even worse results than the
baseline that does not consider neighbor relations. Inter-
estingly, the interactions with horizontally-connected nodes
are more beneficial to learn discriminative representations
than the vertical ones (see 3 (h) vs. 3 (v)).
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Figure 7. Propagation results of our model. (a) Video object propagation on DAVIS 2017 [35] dataset. (b) Human part propagation on
VIP [54] dataset. (c) Pose keypoint tracking on JHMDB [16] dataset. The first frame is highlighted with a yellow outline with its label
being provided. Without fine-tuning, our model achieves promising long-range label propagation on three visual tasks.

Variants of edge E. We also explore three variants of
edge E in the neighbor relation graph in Figure 6 (a): (i)
Fixed: fixed edge with topological information; (ii) Ran-
dom: learnable edge with random initialization; (iii) Topol-
ogy: learnable edge with topological initialization. In con-
clusion, encoding topology is essential for modelling neigh-
bor relation of nodes. Further learning edge E at training
time yields better results. We attribute this success by more
general neighbor relations gained in learning procedures.
Node dropout. We evaluate the effect of node dropout by
training our model with ranging values of δ ∈ [0, 0.4] at a
step of 0.1. Higher δ means more nodes will be dropped
based on their pixel discrepancy. In Figure 6 (b), we find
that moderate node dropout (i.e., 0.1 ∼ 0.3) boost the per-
formance on DAVIS, with δ = 0.2 peaking the result. It
demonstrates that the technique can tackle “common-fate”
nodes, helping the model focus on informative contents.
Path length. In Figure 6 (c), we explore the effect of path
length during training. Using clips of length 2, 4, 6, 10,
we obtain paths of length 4, 8, 12, 20 for training. We see
that longer sequences can improve results on DAVIS. This
observation is similar to previous work [15], as model can
see longer views of instances for contrastive learning.
Component analysis. We analyze the key components of
our model in Table 3. The similarity graph Gs alone yields
unsatisfactory results due to the puzzling negative samples.
By modelling neighbor relations in Gr, the performance is
greatly improved by 2.2% in J&Fm. Further using node

Table 3. Component analysis of our model on DAVIS benchmark.
Gs Gr Node Dropout J&Fm

✓ 65.6
✓ ✓ 67.8 (+2.2%)
✓ ✓ ✓ 68.7 (+3.1%)

dropout on the joint graph peaks the performance.

5. Conclusion
In this work, we present a novel self-supervised ap-

proach for learning correspondence from unlabeled videos.
Our key idea is to explore the structures and dynamics of
objects from both neighboring and temporal views. To
achieve this, we learn to walk on a joint space-time graph
that connects nodes with neighbor relations and similar-
ity relations. The superiority of our learned representation
is demonstrated on three video propagation tasks. With-
out fine-tuning, our method outperforms the state-of-the-art
self-supervised methods, as well as some strong fully super-
vised models that are designed for specific tasks. In the fu-
ture, we plan to handle those “extremely similar instances”
— whose correspondences are hard to find based on visual
similarity — by leveraging the motion patterns [40] or depth
information [55] from large-scale unlabeled videos.
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