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Abstract

Recently, a novel retina-inspired camera, namely spike

camera, has shown great potential for recording high-speed

dynamic scenes. Unlike conventional digital cameras that

compact the visual information within an exposure inter-

val into a single snapshot, the spike camera continuously

outputs binary spike streams to record the dynamic scenes,

yielding a very high temporal resolution. Most of the ex-

isting reconstruction methods for spike camera focus on re-

constructing images with the same resolution as spike cam-

era. However, as a trade-off of high temporal resolution, the

spatial resolution of spike camera is limited, resulting in in-

ferior details of the reconstruction. To address this issue, we

develop a spike camera super-resolution framework, aim-

ing to super resolve high-resolution intensity images from

the low-resolution binary spike streams. Due to the relative

motion between the camera and the objects to capture, the

spikes fired by the same sensor pixel no longer describes

the same points in the external scene. In this paper, we ex-

ploit the relative motion and derive the relationship between

light intensity and each spike, so as to recover the external

scene with both high temporal and high spatial resolution.

Experimental results demonstrate that the proposed method

can reconstruct pleasant high-resolution images from low-

resolution spike streams.

1. Introduction

With the development of real-time computer vision ap-

plications, such as unmanned aerial vehicle, autonomous

driving and robotics, the inherent limitations of conven-

tional digital cameras become increasingly evident. Con-

ventional cameras generally accumulate the photoelectric

information in a certain exposure window to form a snap-

shot frame. Such an imaging mechanism can produce clear

images with fine details for still scenes. However, for dy-
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(a) Spike stream (b) TFP [34]

(c) TFI [34] (d) TVS [35]

(e) TVS [35] + SRFBN [13] (f) Proposed

Figure 1. The image for a doll falling from a height. (a) Spike

streams captured by the spike camera [6]. (b)-(d) Spike cam-

era reconstruction with different methods [34, 35], which suffers

low resolution with poor details. (e) x2 super resolution result by

combining the state-of-the-art spike camera reconstruction method

[35] with competitive image super-resolution method [13]. (f) x2

reconstruction by super-resolving the intensity image from spike

streams with the proposed method, which can reconstruct the tex-

tures and details.

namic scenes with high speed motion, a single point on a

moving object can be projected onto different pixels on the

sensor, resulting in blurry artifacts for the moving objects.

To address this issue, a novel neuromorphic camera,

namely spike camera, has been developed to record dy-

namic scenes [6, 7]. Unlike the conventional cameras that

capture the visual scene by a snapshot, the spike camera

abandons the concept of exposure window. Instead, it mon-
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itors the incoming light persistently and fires continuous

spike streams to record dynamic scenes at very high tem-

poral resolution. In addition, different from the bio-inspired

event cameras that send events to record the relative light

intensity changes, spike cameras fire spikes to record the

arrival of a very small amount of photons, which provides

more explicit information for recovering the absolute inten-

sity.

Despite the great potential of spike camera for captur-

ing dynamic scenes, recovering high-quality images from

binary spike streams still remains an important and chal-

lenging issue, which has gained increasing attention in re-

cent years [33–35]. Some works [33, 34] exploit the char-

acteristics of spike streams and infer the instantaneous light

intensity by estimating the firing frequency of each pixel.

In addition, Zhu et al. [35] design retina-like visual image

reconstruction frameworks to solve the problem. However,

these methods mainly focus on suppressing the noises and

blurry artifacts of reconstruction, ignoring the issue of low

resolution. In fact, as a trade-off of low latency and low

power consumption, current spike cameras have a relatively

low spatial resolution. To generate high resolution images,

an intuitive approach is to combine the spike camera recon-

struction methods with image super-resolution algorithms

[13, 16, 31, 32]. However, such pipelined schemes usually

cannot achieve promising reconstruction, as the scene de-

tails have already been lost in the first reconstruction stage.

In this paper, we develop a novel image reconstruction

framework to super-resolve high-quality intensity images

from continuous spike streams. Due to the relative motion

between the camera and the objects to capture, the spikes

fired by the same sensor pixel no longer describes the same

points in the external scene and each spike can be mapped

to different locations in the scene. By exploiting the relative

motion, we can recover the scene with a resolution much

higher than that directly provided by the spike streams. To

this end, we carefully analyze the working mechanism of

spike camera. Based on the spike camera imaging principle,

we formulate the relationship between the image intensity

and each spike, so as to derive super-resolved intensity from

the spike streams. The main contribution of this paper are

summarized as follows:

• We present a super-resolution framework for spike

camera. To the best of our knowledge, we are the first

to super-resolve low-resolution (LR) spike streams to

high-resolution (HR) intensity images.

• Instead of simply applying image super-resolution al-

gorithms to LR reconstructions of spike camera, we

derive the relationship between light intensity and each

spike, so as to estimate pixel-wise super-resolved in-

tensity from spike streams.

• Experimental results demonstrate that the proposed

method can reconstruct pleasant HR intensity images

from LR binary spike streams and recover fine details,

which cannot be reconstructed with the state-of-the-art

methods.

2. Related Work

Bio-inspired event camera Event cameras, also known

as neuromorphic cameras, have gained growing attention

with their distinctive advantages such as high speed, high

dynamic range and low power consumption [1, 15]. Instead

of recording the visual information in the whole exposure

interval by a snapshot, event cameras monitor the variation

of light intensity persistently, with each pixel generating a

event stream to describe the changes of light intensity. Thus

far, event cameras have shown great potential for capturing

motion information in dynamic scenes, and have been ap-

plied to many computer vision applications, such as object

detection and tracking [20, 21]. However, as only the rela-

tive light intensity changes are recorded, event cameras can

hardly reconstruct the texture details of the visual scenes,

and many efforts [2, 19, 23] have been made to solve this

problem. Different from these event cameras, spike camera

fires a positive signal to represent the arriving of a certain

amount of photons, which provides a more explicit input

format for reconstructing absolute light intensity.

Spikes to intensity images To reconstruct dynamic

scenes from the asynchronous spike streams, many spike

camera reconstruction methods have been proposed in re-

cent years [33–35]. Inspired by the conventional imaging

model, TFP [34] recovered light intensity by averaging the

spikes in a virtual exposure window. This model is suitable

for static scenes. However, for dynamic scenes, a single

point on the moving objects can be projected onto differ-

ent pixels on the sensor, leading to motion blur as shown

in Fig. 1(b). To address this issue, TFI [34] inferred the

instantaneous light intensity according to inter-spike inter-

vals, which can provide a primary visual recovery of dy-

namic scenes, even for the regions with high-speed motion.

However, affected by thermal noise, the reconstruction are

visually unpleasant as shown in Fig. 1(c). To simulta-

neously handle the challenges brought by high-speed mo-

tion and noises, Zhao et al. [33] proposed to reconstruct

dynamic scenes via motion-aligned filtering and Zhu et

al. [35] developed a retina-like visual image reconstruction

framework, which achieves state-of-the-art performance as

shown Fig. 1(d). However, all of these methods ignored the

issue of low-resolution.

Image and video super-resolution In the past decades,

various image super-resolution (SR) methods have been

proposed to recover a high-resolution image from its low-

resolution counterpart [5, 8, 13, 29, 30]. Early works used

interpolation techniques based on sampling theory like lin-

ear or bicubic. These methods run fast, but can not re-
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Figure 2. Example of spike generation process at the pixel p.

Top: the instantaneous electric charges A(t) with reset when A(t)
reaches the dispatch threshold θ. Bottom: the spike stream S(n)
read out by the pixel.

build realistic textures. To address these issues, improved

approaches devoted to establishing complex mapping func-

tions between LR and HR images based on neighbor em-

bedding or sparse coding [8]. More recently, convolutional

neural network (CNN) based image SR have achieved im-

pressive results. Dong et al. [5] first proposed a shallow

CNN for image SR. Inspired by the pioneering work, many

new architectures, such as EDSR [16], RDN [32], DEPN

[10], and SRFBN [13], have been proposed and achieved

promising performance. In addition, based on the image

SR methods and further to grasp the temporal consistency,

many video SR algorithms [4,11,12,14,27] were developed

to handle spatio-temporal information simultaneously. To

improve the spatial resolution of spike camera reconstruc-

tion, we can first reconstruct intensity images from spike

streams and then apply these image SR methods to the re-

construction. However, such pipelined schemes can not

achieve promising results, as the details have already been

lost in the first reconstruction stage.

3. Preliminary

In this section, we first formulate the working mecha-

nism of spike camera, and then present the spike camera

super-resolution problem.

3.1. Spike camera working mechanism

Spike camera is composed of an array of pixels, each of

which records light intensity independently. Each pixel con-

sists of three major components: photoreceptor, integrator,

and comparator. The photoreceptor captures the incident

light from the outer scenes and converts the light intensity

into a voltage that can be recognized by the integrator. The

integrator accumulates the electric charges from the pho-

toreceptor continuously, while the comparator checks the

accumulated signal persistently. Once the dispatch thresh-

old θ is reached, a spike is fired and the integrator is reset,

restarting a new “integrate-and-fire” cycle.

Since each pixel works independently, we can restrict

our discussion to a single pixel p = (r, c). The instanta-

neous electric charge amount of pixel p at the time t can be

formulated as:

A(t) =

∫

Ωp

∫ t

0

α · I(z, x)dxdz mod θ. (1)

Here Ωp denotes the spatial region that pixel p covers,

I(z, t) denotes the light intensity of position z = (x, y)
at time t and α is the photoelectric conversion rate. Spikes

may be fired at arbitrary time t, but the camera can only

read out the spikes as a discrete-time binary signal S(n) (as

shown in Fig. 2). To be more specific, the camera checks

the spike flag with a fixed short interval T . If a spike flag

has been set up at the time t, with (n − 1)T < t ≤ nT , it

reads out S(n) = 1. Otherwise, it reads out S(n) = 0. As

the light comes in continuously, all the pixels on the sen-

sor work simultaneously and independently, firing spikes

to represent the arrival of every certain amount of photons.

With the time going on, the camera would produce a binary

spike array S ∈ {0, 1}H×W×N as shown in Fig. 1(a).

3.2. Problem statement of spike camera SR

The purpose of spike camera is to record the dynamic

light intensity variation process for high-speed motion

scenes. Once the spike array is captured, we aim to re-

cover the instantaneous intensity at any time. In particu-

lar, considering the limited spatial resolution of spike cam-

era, we aim to super resolve high-quality intensity images

with fine details. Instead of using a pipelined method that

simply combines spike camera reconstruction algorithms

with existing image SR methods, we propose to directly

estimate pixel-wise super-resolved intensity. It is an ill-

posed inverse problem, which can be described as fol-

lows. Given the binary spike array S ∈ {0, 1}H×W×N ,

the objective is to restore high-quality HR intensity images

IHR ∈ [0, 255]cH×cW×N from the LR spike array, where c

is the upscale factor.

4. Approach

As shown in Fig. 3, due to the relative motion between

the camera and the object, the spikes fired by the same sen-

sor pixel no longer describes the same points on the object

in the outer scene. Instead, it records the light intensity at

various locations. That is, each spike can be mapped to dif-

ferent locations on the scene. By properly exploiting the rel-

ative motion between the camera sensor and the scene, it is

possible to recover the scene with a resolution much higher

than that directly provided by the pixels of spike camera. To

this end, we develop a motion-guided spike camera super-

resolution (MGSR) framework in order to super-resolve HR

intensity images from the LR spike streams.
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Figure 3. The principle of spike camera SR imaging. Left: the

dynamic scene. Right: the spike streams read out by the sensor.

Due to the relative motion between the camera and the objects, the

spikes fired by the same sensor pixel can be mapped to various

locations on the scene to reconstruct.

4.1. Intensityspike relationship

As introduced in Section 3.1, each spike corresponds to a

certain amount of photons, which can be denoted as a tuple

s : (p, ts, te) with p = (r, c) representing the pixel coor-

dinate. Here ts and te represent the start and end time of

the current spike cycle, respectively. Based on Eq. (1), the

relationship of the spike s : (p, ts, te) and intensity I can be

formulated as

θ =

∫

Ωp

∫ te

ts

α · I(z, t)dtdz. (2)

Suppose that we aim to reconstruct the scene at time

k. Based on the assumption of brightness constancy, ev-

ery I(z, t) can be represented with the intensity of the cor-

responding point at time k as I(z + ut→k(z), k), where

ut→k(z) denotes the displacement that maps the point z

in the scene at time t to the corresponding point in the

key scene at time k. Thus, we can model the relationship

between the intensity of the key scene and arbitrary spike

s : (p, ts, te) as

θ =

∫

Ω

∫ te

ts

α · I(z, k) · Ms(z, t)dtdz. (3)

Here Ω denotes the field of view of the camera sensor,

I(z, k) denotes the light intensity of position z at time k and

Ms(z, t) is the binary mask that denotes whether the inten-

sity I(z, k) contributes to the spike s at the time t. That is,

if z’s corresponding point z + uk→t(z) locates in the spa-

tial region that the pixel p covers, I(z, k) contributes to the

pixel and Ms(z, t) is set to 1. Otherwise, Ms(z, t) is set to

0. Apparently, the mask Ms(z, t) can be calculated by

Ms(z, t) =

{

1, z + uk→t(z) ∈ Ωp

0, otherwise
(4)

where Ωp denotes the spatial region that the pixel p covers.

For simplicity, we use Ik to denote the light intensity of the

scene at time k. Considering that Ik(z) is constant in time,

the Eq. (3) can be reformulated as

θ =

∫

Ω

∫ te

ts

α · Ik(z) · Ms(z, t)dtdz

=

∫

Ω

α · Ik(z)

(
∫ te

ts

Ms(z, t)dt

)

dz

=

∫

Ω

α · Ik(z) · Ws(z)dz,

(5)

with Ws(z) =
∫ te

ts
Ms(z, t)dt representing how much that

Ik(z) contributes to the spike s : (p, ts, te).

4.2. Spike camera SR

Based on the above analysis, the relationship between

arbitrary Ik(z) and spike s : (p, ts, te) can be modelled.

In order to super-resolve intensity images, we can resam-

ple the reconstruction plane into finer grids, and model the

relationship between IHR
k and the spike s as:

θ =
∑

q

α · IHR
k (q) · Ws(q). (6)

Here q = (m,n) denotes the coordinate in IHR
k and Ws(q)

denotes how much that IHR
k (q) contributes to the spike

s : (p, ts, te). Once enough spikes are accumulated in a

short time interval around k, we can super-resolve the key

intensity image IHR
k by minimizing the following loss func-

tion J(IHR
k ):

J(IHR
k ) =

N
∑

s=1

∥α · WsI
HR
k − θ∥22, (7)

where N denotes the number of spikes in a selected tempo-

ral window. Ws ∈ R
1×M with M = cH × cW denoting

the number of sub-pixels to reconstruct.

To address this problem, we develop a motion-guided

spike camera SR (MGSR) framework (as illustrated in

Fig. 4) . Firstly, a fundamental light inference algorithm

is applied to the spike streams S, producing a sequence of

basic intensity images {ILR
t }, t ∈ φk. A typical choice for

φk is {k, k ± 1, k ± 2, · · · }. With the basic reconstruction,

we can estimate the displacement fields of different frames

and map the points in IHR
k to other frames. Then we can fur-

ther calculate how much that each pixel IHR
k (q) contributes

to each spike s : (p, ts, te), producing a sequence of con-

tribution map {Ws}. Based on {Ws}, the high resolution

intensity image IHR can be easily derived by solving Eq. (7).

Light inference Recall Section 3.1, each spike s :
(p, ts, te) corresponds to a certain amount of photons. As-

suming that the light intensity in a short spike interval is
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Figure 4. Illustration of the proposed motion-guided spike camera super-resolution (MGSR). The MGSR consists of four main processes:

1) Light inference 2) Motion estimation 3) Contribution weight calculation and 4) Super-resolution Imaging.
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Figure 5. Illustration of contribution weight calculation. The

slanted tube passing the image pixel q along the motion trajec-

tory denotes the regions related to IHR
k (q). Given arbitrary (z, t),

if it satisfies that z + uk→t(z) ∈ Ωp, te < t ≤ ts, it denotes that

IHR
k (z) contributes to the spike s : (p, ts, te) at time t, namely

Ms(z, t) = 1. Otherwise, Ms(z, t) = 0. Thus, the volume of

the orange tube corresponds the weight that IHR
k (q) contributes to

the spike s : (p, ts, te).

Algorithm 1 MGSR

Input: Spike stream frames {St}, t ∈ φk

Output: HR images IHR
k

1: Infer the fundamental light intensity {It}, t ∈ φk using

Eq. (8)

2: Estimate relative motion {uk→t}, using Eq. (9)

3: Calculate contribution map for each spike according to

Eq. (4) and Eq. (10), producing {Ws}.

4: Reconstruct high resolution intensity image IHR
k using

Eq. (7) and Eq. (11).

stable, we can roughly infer instantaneous light intensity by

ILR
t (p) =

θ

α · (te − ts)
, (8)

with te < t ≤ ts. It is worth noting that these basic recon-

structions are only used for estimating the relative motion.

Motion estimation In the past decades, optical flow

algorithms [3,9,24–26] have shown great potential for esti-

mating dense motion fields. To achieve the following con-

tribution weight calculation, we employ an optical flow al-

gorithm to the coarse estimates, so as to infer the displace-

ment field between key frame ILR
k and reference frame ILR

t ,

which is expressed as:

uk→t = F(ILR
k , ILR

t ). (9)

Here F(·) denotes the optical flow algorithm. uk→t =
(uh

k→t, u
v
k→t) denotes the displacement field that maps the

pixels in ILR
k to the pixels in ILR

t .

Calculation of contribution weight With the displace-

ment field uk→t, given arbitrary point z, we can easily infer

whether IHR
k (z) contributes to the spike s : (p, ts, te) at the

time t (ts < t ≤ te) via Eq. (4), producing contribution

mask Ms. Then we can calculate the weight that each im-

age pixel IHR
k (q) contributes to the spike s : (p, ts, te) as

Ws(q) =

∫

z∈Ωq

∫ te

ts

Ms(z, t)dtdz, (10)

producing the corresponding contribution map Ws. Here

Ωq denotes the spatial region that pixel q covers in IHR
k .

Due to the relative motion between the camera sensor and

the scene, a spike is generally related to multiple pixels in

the IHR
k . The number of related pixels increases with the in-

crease of motion speed and spike life cycle, i.e., te − ts.

Fig. 5 illustrates the contribution weight calculation and

Fig. 6 shows examples of the contribution weight maps with

different relative motion.

Super-resolution imaging Once enough spikes accu-

mulated, we can super-resolve a cH × cW intensity image

via solving the optimization problem depicted in Eq.(7). In

this paper, we use gradient descent method [22] to solve the

problem, which can be formulated as:

IHR
k := IHR

k − γ · ∇IHR
k
J(IHR

k ;Ws), (11)
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(a) St (b) W1
s (c) W2

s (d) W3
s (e) W4

s

Figure 6. Illustration of contribution weight maps with different motion. For simplicity, we use global motion as an example. Due to the

resample, the weight map grid is finer than the spike frame (sensor) grid. (a) The spike frame at time t with a spike fired at center coordinate

p. (b) The contribution weight map of IHR
k to spike St(p) with relative motion: uh

k→t = 0, uv
k→t = 0. That is, the scene is static. The

spike only corresponds to the region equal to the spike coordinate. (c) The contribution weight map to spike St(p) with relative motion:

uh
k→t = 0, uv

k→t = v. Due to vertical movement, the related region expands in vertical direction. The weight in the top and bottom is

smaller than the ones in center as the points in the two ends do not always contribute to the spike during the whole spike life cycle. (d)

The contribution weight map to spike St(p) with relative motion: uh
k→t = −v, uv

k→t = 0. (e) The contribution weight map to spike St(p)
with relative motionuh

k→t = v, uv
k→t = v.

where γ is the update step. In particular, we can also use this

algorithm as a general reconstruction algorithm. We can set

c as 1 to reconstruct an image with the same spatial reso-

lution to that provided by the spike streams. The proposed

MGSR approach is summarized in Algorithm 1.

5. Experimental results

5.1. Setting

Datasets To evaluate the performance of the proposed

method, we not only use the real-world PKU-Spike-High-

Speed Dataset 1 but also capture several additional spike se-

quences for the scenes with textures using the FSM spike

camera [34]. These spike sequences are captured with

20000HZ or 40000HZ. The spatial resolution of them is

400 × 250. They can be divided into two categories: high-

speed scenes with the object’s motion (Class A) and high-

speed scenes with camera’s ego-motion (Class B). Class

A includes “Doll”, “Car”, “Train”. Among them, ”Doll”

records a doll falling from a height, “Car” describes a car

traveling at a speed of 100 km/h and “Train” describes a car

traveling at a speed of 350 km/h. Class B includes “Fruits”,

“Keyboard”, “Clock” , “Railway” and “Viaduct-bridge” (V-

b). These five sequences are recorded by a spike camera

with a very high-speed motion.

Implementation details The number of spikes should

increase with the spatial resolution of reconstruction. As

discussed above, we use the spikes in a neighbouring time

window of the key image. In this paper, the time window

size is set to 20× c. We employ the optical flow estimation

algorithm proposed by Sun et. al. [24] to infer the relative

motion. The update step γ in Eq. (11) is initialized to 5 ×
10−4 and decreases during the optimization.

1The dataset is publicly available at https://www.pkuml.org/resources/

pku-spike-high-speed.html.

5.2. Comparison with the stateoftheart methods

Image reconstruction To evaluate the proposed

method, we first compare it with three recent spike camera

reconstruction methods, i.e., texture from playback (TFP)

[34], texture from interval (TFI) [34] and texture via spik-

ing neural model (TVS) [35].

1) Qualitative evaluation. Fig. 7 shows the reconstruc-

tion results of different methods for dynamic scenes. The

visual quality of the reconstructions produced by our pro-

posed method is evidently better than the competing meth-

ods. Note that there are severe undesired blurry artifacts in

the reconstruction of TFP, especially for the regions with

high-speed motion. Although the TFI and TVS can well

reconstruct the outlines of fast-moving objects, the recon-

struction typically appears to be noisy. In contrast, our pro-

posed method achieves stable reconstruction without blurry

artifacts or obvious noise.

2) Quantitative evaluation. For quantitative evaluation,

we employ two widely used no-reference image quality as-

sessment metrics, namely blind/referenceless image spatial

quality evaluator (BRISQUE) [17] and naturalness image

quality evaluator (NIQE) [18]. A lower score indicates

higher image quality. As illustrated in Table 1, the pro-

posed MGSR outperforms other reconstruction methods in

both two metrics.

Super-resolution To evaluate the SR performance, we

combine two representative image super-resolution algo-

rithms, i.e. ANR [28] and SRFBN [13], with the competing

spike camera reconstruction methods, i.e., TFI and TVS,

to super resolve intensity images from spike streams, and

compare our proposed MGSR with them. Fig. 8 shows the

x4 SR results. We note that the proposed MGSR can re-

construct more details than other reconstruction methods.

For instance, we can even reconstruct the letters on the
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(a) Car (b) Clock (c) Keyboard (d) Fruits (e) V-B

Figure 7. Comparison of different reconstruction methods on real captured spike data. From top to bottom: Spike, TFP [34], TFI [34],

TVS [35], MGSR (x1). Please enlarge for more details.

Metric Method
Class A Class B

Average
Doll Car Train Railway Clock Keyboard Fruits V-B

BRISQUE (↓)

TFP 21.91 29.63 12.74 27.33 31.32 38.92 28.47 35.46 28.22

TFI 43.24 43.39 43.45 37.99 43.46 43.15 43.45 43.10 42.65

TVS 28.38 41.19 42.02 27.47 42.36 34.81 36.34 32.72 35.66

MGSR (x1) 30.55 22.27 13.05 21.42 28.69 23.85 21.09 25.89 23.35

NIQE (↓)

TFP 8.20 7.64 10.62 6.57 7.84 8.61 9.00 8.15 8.32

TFI 7.96 13.02 6.49 8.14 22.60 14.73 24.05 10.18 13.42

TVS 7.48 9.31 6.78 7.01 13.42 11.36 12.43 8.23 9.50

MGSR (x1) 4.51 4.38 3.14 4.80 6.28 6.14 6.22 6.51 5.25
Table 1. Comparison among different reconstruction methods.

keyboard. This is because that for the pipelined methods,

the information of scene details have already been lost in

the first stage and the following image super-resolution can

hardly restore it. Different from these methods, we directly

super resolve HR images from the spike streams, which can

exploit the photoelectric information more efficiently.
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Figure 8. x4 SR results in comparison to the state-of-the-art methods. From left to right: TFI [34]+ANR [28], TFI [34]+SRFBN [13],

TVS [35]+ANR [28], TVS [35]+SRFBN [13] and the proposed MGSR.

Figure 9. Illustration of spatial resolution gain. From left to right:

Full image, TFI, MGSR(x1), MGSR(x2), MGSR(x4)

In addition, to further show the spatial resolution gain,

we use the proposed MGSR to reconstruct the images with

different upscale factors, i.e., x1, x2, x4. As illustrated in

Fig. 9, with the increase of upscale factor, the reconstructed

image contains more details, which demonstrates the effec-

tiveness of our proposed MGSR.

5.3. Comparison with the conventional camera

We also compare the bio-inspired spike camera with the

conventional CMOS camera. Fig. 10 shows the visual com-

parison for a high-speed motion scene, where a book fell

from a height. We note that the image captured by the

iPhone 11 is blurred. The reason may be that the con-

ventional camera accumulated the photoelectric within the

whole exposure window to form a snapshot, ignoring the

object motion. Different from the conventional camera, the

spike camera produce continuous spike streams to record

the high-speed dynamic scene. By properly modeling the

motion and temporal correlation, we can reconstruct a clear

image (as shown in Fig. 10) for arbitrary time.

6. Conclusion

In this paper, we develop the first framework to super

resolve high-speed dynamic scenes from LR spike streams.

Figure 10. Visual comparison for a high-speed motion scene,

where a book fell from a height. Left: image captured by iPhone

11. Right: spike camera reconstruction using MGSR (x2).

Due to the relative motion between camera sensor and the

objects, each spike can be mapped to multiple points in the

external scene, which provides an opportunity to recover

the scene with a much higher resolution than that provided

by spike streams. By analyzing the working mechanism of

spike camera, we derive the relationship between light in-

tensity and each spike, so as to super resolve high-quality

intensity images from the spike streams. Experiments on

real-life captured spike data show that the proposed frame-

work reconstructs high-quality images with fine details in

comparison to the-state-of-the-art methods in both the same

size image reconstruction and super-resolution.
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