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Abstract

The simultaneous recognition of multiple objects in one
image remains a challenging task, spanning multiple events
in the recognition field such as various object scales, incon-
sistent appearances, and confused inter-class relationships.
Recent research efforts mainly resort to the statistic label
co-occurrences and linguistic word embedding to enhance
the unclear semantics. Different from these researches, in
this paper, we propose a novel Transformer-based Dual
Relation learning framework, constructing complementary
relationships by exploring two aspects of correlation, i.e.,
structural relation graph and semantic relation graph. The
structural relation graph aims to capture long-range cor-
relations from object context, by developing a cross-scale
transformer-based architecture. The semantic graph dy-
namically models the semantic meanings of image objects
with explicit semantic-aware constraints. In addition, we
also incorporate the learnt structural relationship into the
semantic graph, constructing a joint relation graph for ro-
bust representations. With the collaborative learning of
these two effective relation graphs, our approach achieves
new state-of-the-art on two popular multi-label recognition
benchmarks, i.e. MS-COCO and VOC 2007 dataset.

1. Introduction

Multi-label image recognition aims at assigning multi-
ple labels for multiple objects presented in one natural im-
age. As a fundamental task in computer vision, multi-label
image recognition can serve as prerequisites for many ap-
plications, such as weakly supervised localization and seg-
mentation [12, 15, 44], attribute recognition [25, 22] , scene
understanding [29] and recommendation systems [39, 19].
Benefiting from the development of deep learning tech-
niques [17, 30], recent CNN-based architectures have made
significant process in distinguishing multiple objects. But
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Figure 1. Motivation of the proposed dual relations. a) Struc-
tural relation provides long-term contextual relations for recog-
nizing snowboard, while b) semantic relation builds dynamic cor-
relations of co-occurred classes. These two relations jointly form
a structural and semantic-aware image understanding.

the accurate parsing of multi-label images still faces great
challenges, including various object scales, inconsistent vi-
sual appearances, and confused inter-class relationships.

One intuitive solution for discovering visual consistency
is to enhance the feature representation with self-attention
mechanisms [46, 34, 16]. For example, Wang et al. [34]
propose to automatically discover the attentional regions
with a recurrent neural network, introducing discriminative
features for representation learning. Beyond these improve-
ments, Guo et al. [16] propose the assumption for visual
perception consistency of attention regions and then am-
plify these regions by a visual consistency loss. Although
the spatial representations of CNNs are strengthened by
these techniques, the multi-label dependencies are not ex-
plicitly modeled, which is crucial for the understanding of
multi-label relationships.

To tackle this problem, recent ideas propose to learn
the inter-class relationships based on the co-occurrences of
multiple classes (e.g., the snowboard should be attached
with higher confidence if person occurs). Pioneer works
tend to model this relationship with Recurrent Neural Net-
works (RNN) [32, 2, 40], while the co-occurred labels can
be gradually refined in the sequential predictions. Inspired
by the advanced improvements of Graph Convolutional
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Network (GCN) [20], tens of works [8, 5, 33, 41, 6, 3]
propose to construct label-wise relationships based on the
semantic meanings or statistical co-occurrences. For exam-
ple, Chen et al. [8] propose to construct the graph model
with the semantic word embeddings, forming a static label-
wise relationship. However, this static relationship neglects
the characteristics of each image, leading to negative opti-
mization for objects with less-frequent co-occurrences. To
solve this problem, some works [5, 41, 45] propose to con-
struct dynamic graph based on the image-specific descrip-
tors of high-level semantic features. Nevertheless, this mod-
eling of multi-label relationship still shows its limitations:
1) the spatial interactions of contextual objects are not im-
plicitly modeled in the label-wise relation, 2) the features of
high-level semantics are somewhat unstable and do not re-
flect specific semantic classes, 3) the representation of long-
range context and various object scales are not considered.

To efficiently solve these deficiencies as well as the ma-
jor challenges in multi-label image recognition, we pro-
pose to model a joint structural and semantic relationship of
multi-label objects in one image. As in Fig. 1, considering
the co-occurrence of semantic labels in vanilla class-wise
relation models [8], absent classes would also be halluci-
nated (i.e., skis and skateboard). Beyond these demerits,
the semantic meaning of one object should be not only de-
cided by its intrinsic attributes but also the contextual in-
formation. In Fig. 1 a), the appearance of snowboard is
visually similar with skis and skateboard, and also shows
high co-occurrence frequencies in Fig. 1 b). But human
being can easily recognize it as a snowboard based on the
long-range contextual information (snow) and even person
appearances. Based on these investigations, we propose a
collaborative framework with joint structural and semantic
relational graphs in Fig. 1 c), which depict the position-wise
and class-wise relationship respectively.

To construct the structural graph, we make the first at-
tempt to introduce the Transformer architecture [31] into
multi-label recognition. This new attempt greatly broadens
the receptive capability of conventional CNNs and draws
position-wise long-term dependencies for object contex-
tual correlations (Fig. 1 a)). Starting from this novel de-
sign, we further propose a cross-scale attention module
to enhance the perceptive ability of various object scales.
For the construction of semantic graph, we aim at con-
structing dynamic relation which is aware of object emer-
gence and structural embedding. Different from previous
works [5, 41] with implicit high-level embedding, the graph
nodes in our paper are explicitly constructed with semantic-
aware constraints, reflecting features of specific classes.
Beyond this explicit class-wise embedding, we incorpo-
rate the learnt structural graph embedding into the seman-
tic relation construction from two aspects: adjacent corre-
lation construction and feature-wise complementary. These

two mechanisms efficiently endow the semantic graph with
the perception of structural information, generating robust
graph relations. With the collaborative learning of pro-
posed structural and semantic relation, our proposed ap-
proach achieves state-of-the-art results on two most popular
benchmarks, i.e., MS-COCO [23] and PASCAL VOC [13].

In summary, our contribution is three-fold: 1) We pro-
pose a novel Transformer-based Dual Relation learning
framework for multi-label image recognition tasks, which
jointly models the structural and semantic information with
Transformer architectures. 2) A transformer-based struc-
tural relation graph is constructed to incorporate long-term
contextual information, building position-wise spatial re-
lationships across different scales. 3) A semantic rela-
tion graph is constructed with explicit class-specific con-
straints and structure-aware embedding, modeling the dy-
namic class-wise dependencies.

2. Related Work
Multi-label Recognition. Recently multi-label recogni-

tion approaches mainly focus on two aspects, i.e., spatial
information and co-occurrence dependency.

Some works [35, 38, 34, 43, 46, 16] devoted to exploit
spatial information for improving recognition performance.
Previous pioneer works tend to coarsely locate multiple ob-
jects for recognition [35, 43, 14]. For example, Wei et al.
[35] generate multiple object proposals [48] and aggregate
their label scores to obtain the final prediction. However,
the performance of localization is unstable without addi-
tional annotations of proposals. To solve this issue, re-
cent works introduce attention mechanism to implicitly lo-
cate attentional regions and enhance the spatial representa-
tion [46, 34, 16]. For example, Zhu et al. [46] propose
to capture spatial relationships between labels with self-
attention mechanism. Wang et al. [34] utilize a proposal-
free pipeline to iteratively locate attentional regions and
capture their contextual dependencies.

Some other works [32, 24, 4, 2, 40] devoted to build
co-occurrence dependency with Recurrent Neural Network
(RNN) [18]. For example, Wang et al. [32] combine RNNs
with CNNs to capture semantic label dependency and pre-
dict labels with a predefined order. Chen et al. [2] design an
order-free RNN to avoid propagating prediction errors dur-
ing inference process. However, these RNN-based methods
explore limited relationships between labels in a sequential
manner, hence recent works introduce Graph Convolutional
Network (GCN) [20] to fully exploit pair-wise relationships
[8, 5, 33, 41, 42, 36, 7, 6, 3]. For example, Chen et al.
[8] propose a directed graph over word embedding of la-
bels to model the label correlations. Chen et al. [5] build
a semantic-specific graph to incorporate high-level features
into word embeddings for better semantic-specific features
and explore their interactions.
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Figure 2. The overall architecture of our proposed Transformer-based Dual Relation Graph (TDRG) network, which consists of two
essential modules: the structural relation graph module to incorporate long-term contextual information, the semantic relation graph module
to model the dynamic class-wise dependencies.

Relationship Modeling. Different from CNNs and
RNNs, transformer is recently proposed to extract intrinsic
features with self-attention mechanism [27]. Transformer
has demonstrated its success in natural language processing
tasks [31, 10]. As the pioneer work, Vaswani et al. [31]
first propose the vanilla Transformer architecture, which is
based on self-attention mechanisms for machine translation.
Transformer has not only obtained great breakthrough in
NLP tasks, but also shows huge potential in Computer Vi-
sion (CV) tasks [11, 1, 47, 37, 21]. For example, recently,
Dosovitskiy et al. [11] propose a pure transformer archi-
tecture on sequential image patches for image recognition
task. Carion et al. [1] design a fully end-to-end object DE-
tection TRansformer (DETR), which shows impressive per-
formance on object detection. Zhu et al. [47] introduce a
deformable attention module to solve the defects of DETR,
e.g., poor performance on small objects. However, as an ef-
fective architecture for relationship modeling, transformer
is less explored in multi-label recognition tasks.

3. Approach
In this section, we introduce a novel collaborative learn-

ing framework with joint structural and semantic relational
graphs for multi-label recognition, depicting the position-
wise and class-wise dependencies respectively in Fig. 2.
The first structural relation graph aims to capture long-
term contextual information and build spatial relationships
across different scales in Section 3.1. In Section 3.2, a se-
mantic relation graph is proposed to exploit dynamic co-

occurrence dependencies with structure-aware embedding.
In the end, we joint structural and semantic relations in a
collaborative learning manner in Section 3.3.

Given an input image I, let {X1, · · · ,Xs} = ΦS(I) be
the multi-scale features encoded by the backbone network
ΦS with a channel-reduction transformation, e.g., 1× 1 and
3×3 convolution. To construct the structural relation graph
nodes T, we introduce s transformer units Gtrans to capture
long-term contextual information and build position-wise
relationships with a cross-scale attention module Ψi(·):

T =
s

concat
i=1

(Gtrans
i (Ψi(Xi; {X}sk=1))) ∈ RNT×CT ,

(1)
where NT and CT denote the number and dimension of
structural relation nodes T respectively. To construct the
nodes of semantic relation graph G, we model dynamic
class-wise dependencies with explicit semantic-aware con-
straints and structural guidance:

G = Gsem((C(X),T);A(T, C(X))) ∈ RNcls×(CG+CT ),
(2)

where Gsem denotes the semantic graph neural network,
C(·) denotes the semantic-aware constraints, A(·) denotes
the joint relational correlation matrices of Gsem, Ncls and
CG denote the number of categories and the dimension of
semantic-specific vectors. With these two complementary
relation graphs, we further conduct a collaborative learning
manner to get the final prediction F:

F = ψt(GMP(T))
⊎
ψg(G) ∈ RNcls , (3)

165



where ψ{t,g} denote the category classifier for structural
and semantic relation graph respectively, GMP(·) denotes
the global max-pooling operation,

⊎
denotes the weighted

fusion operation of two relation graphs.

3.1. Structural Relation Graph

As aforementioned, one crucial problem in multi-label
recognition is to capture long-term contextual information
and build structural interactions between different objects.
Due to the intrinsic flaws of CNN-based architectures, the
position correlations are locally conducted without perceiv-
ing global contextual information. To mitigate this issue, we
make the first attempt to introduce Transformer into multi-
label recognition tasks to capture long-term contextual in-
formation and build position-wise spatial relationships.

Revisiting Transformer for Structural Relation. In
the field of natural language processing, the conventional
transformers [31] take language sentences as input and build
relationships between different semantic words from global
perspectives. Different from language processing, images
cannot be directly converted into sequence form. Hence,
there are two popular ways to apply transformer on images,
embedding transformer into CNN backbones [1] and apply-
ing transformer on sequential embedding features of image
patches [11]. The latter leads to a high computation burden
for network optimization with limited data. Hence in our
framework, we adopt the former scheme to capture global
contextual information.

We apply standard transformer encoder structure as
transformer unit Gtrans

i to build long-term relationships be-
tween pair-wise positions. As shown in Fig. 3, each trans-
former unit consists of n groups multi-head self-attention
modules and feed forward networks, which is composed of
two linear transformation layers. The detailed structure of
multi-head self-attention module is illustrated in Fig. 3. For
each head, we first adopt relative positional encoding E(·)
on the channel-wise transformed feature ϕ(X) to keep the
position information:

Xe = R(ϕ(X)) + E(R(ϕ(X))) ∈ RHW×CT , (4)

where R(·) denotes the reshape operation, which squeezes
the spatial dimensions into one dimension. Then we respec-
tively obtain query, key and value projections of encoded
features by linear transformation layers. To build and en-
hance global position relationships, we calculate the posi-
tional correlation matrix Ap by query and key, and reweight
value with Ap by multiplication:

Ap = softmax(
XeWQ(XeWK)⊤√

CT

),

H = ApXeWV ,

(5)

where W{Q,K,V } are the learnable weights of query, key
and value projections, H is the enhanced feature of one

Figure 3. Illustration of transformer unit and multi-head self-
attention module. Each head provides structural self-attention
mechanism by multiplying query, key and value features.

head. Different heads could mine different structural re-
lationships due to different projections. Hence employing
multiple heads could capture more comprehensive struc-
tural relationships to enrich the representations. For multi
heads, we concatenate results from multi heads and fuse
them with a linear transformation layer.

Cross-scale Attention Transformers. Small objects
tend to have lower performance in multi-label recognition
due to the position information of small objects may lost in
low-resolution features especially for challenging datasets,
e.g., MS-COCO. To address this issue, a natural idea is to
consider more high-resolution features to retain the position
information of small objects. In fact, high-resolution fea-
tures indeed improve the performance of small objects, but
also introduce more computation burden and noise, which
lower the performance of other objects. Towards this con-
cern, we propose a simple yet effective cross-scale attention
module as a trade-off between performance and computa-
tion cost, which effectively improves the capacity of our
structural relation graph.

To suppress noise between different scales and enhance
the structure information of small objects, we propose
cross-attention feature fusion strategy Ψi(·). We extract
the common positions while alleviating the ambiguous ones
by position-wise multiplication operation after up-sampling
features of different scales. To enhance the positional infor-
mation, the extracted feature is respectively down-sampled
and enhanced with position-wise addition operation. Thus
the structural feature Ti of ith scale can be formed by this
serialized operation:

Ti = Gtrans
i (D(

s∏
i

U(Xi)) +Xi), (6)

where U(·) and D(·) denote up- and down-sampling opera-
tion. Then we input enhanced features into weight-sharing
transformer unit to respectively capture the structural rela-
tionships with different scales, and the final feature T in
Eq. (1) can be obtained by concatenating each Ti.
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3.2. Semantic Relation Graph

Motivation and Discussions. Motivated by the co-
occurrence dependencies in multi-label learning, existing
works usually resort to graph networks to model this re-
lationship into deep CNNs. Pioneer works [8] in Fig. 4
a) tend to build static correlations of different linguistic
word embedding from statistic priors. However, in this la-
bel graph, the characteristic of each image are less taken
into consideration, which would lead to the hallucination
of nonexistent objects and suppression of less common co-
occurrences. To this end, in Fig. 4 b), semantic graphs in [5]
are built to incorporate high-level features into word embed-
ding. Despite the additional dependencies on word embed-
ding and dataset statistics, high-level features only present
implicit semantics for graph construction and detailed rela-
tionship between multiple objects are still neglected.

To revisit the graph construction of multi-label learning,
here we propose a joint relation graph in Fig. 4 c), involving
two meaningful cues for object relation discovery: 1) in-
troducing explicit semantic-aware high-level features via an
auxiliary semantic-aware constraint; 2) incorporating struc-
tural relationship for graph nodes as well as correlations.
The former cue helps to construct an explicit relationship of
semantic classes while the latter cue provides the graph a
spatial awareness of contextual objects.

Semantic-aware Constraints. Different from previous
researches using high-level features X for implicit seman-
tic, here we introduce the explicit embedding with class-
specific vectors M = ϕm(X) ∈ RNcls×H×W , which is reg-
ularized by explicit classification constraints. ϕm denotes
the learnable 1×1 convolutional layer. Hence we conduct a
high-order fusion to form the semantic-aware features VG:

VG = R(M)ϕg(R(X)⊤) ∈ RNcls×CG , (7)

where ϕg(·) denotes a dimension-reduction operation from
C to CG. However, how to ensure the representation qual-
ity of VG for each class is less explored, which affects the
subsequent modeling process as an important precondition.
To solve this issue, we adopt a global pooling operation, i.e.
top-k max-pooling on M to squeeze spatial dimensions and
then apply an auxiliary loss on KMP(M) ∈ RNcls to con-
straint M for learning more accurate initial activation maps
and less noise for each class.

Besides the semantic-aware vectors, we also introduce
structural information from structural relation graphs to in-
corporate long-term contextual information and position-
wise relationships:

VT = R(GAP(T)) ∈ RNcls×CT , (8)

where VT denotes the structure-aware vectors and GAP de-
notes the global average pooling operation.

Figure 4. Illustrations of three typical graph constructions. a) La-
bel graph [8]: building graph based on the statistical priors of la-
bel co-occurrences. b) Semantic graph [5]: incorporating high-
level features beyond word embeddings. c) Our joint relation
graph: building graph nodes by joint structural embedding and
semantic-aware constraints and dynamically constructing the cor-
relation matrix in a learnable manner.

Joint Relation Graph. Graph neural networks propa-
gate messages between adjacent nodes based on correlation
matrix. As in Fig. 4 c), we build the joint correlation ma-
trix As from two aspects, i.e. semantic correlations VG and
structural correlations VT in a learnable manner:

As=sigmoid(φc(concat(φt(VT ),VG))) ∈ RNcls×Ncls ,
(9)

where φ{c,t} denote the learnable dimension transformation
operation, e.g., 1× 1 convolutional layer.

Obtaining graph nodes V = concat(VG,VT ) and
correlation matrix As, we further model the joint co-
occurrence dependencies between joint structural and
semantic-aware vectors based on correlation matrix using
Kipf et al.’s [20] Graph Convolutional Networks, which can
be formulated as:

G = δ(AsVWG) +V ∈ RNcls×(CG+CT ), (10)

where G denotes the updated semantic relation graph,
WG ∈ R(CG+CT )×(CG+CT ) is the learnable graph weights.
δ(·) denotes the LeakyReLU [26] activation function.

3.3. Learning Objective

With structural and semantic relation graphs obtained,
we further joint their predictions for training in a collab-
orative learning manner (see Fig. 2). We adopt Lsac to
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Table 1. Comparisons with state-of-the-art methods on the MS-COCO dataset. The performance of our approach based on three reso-
lution settings are reported. Rtrain and Rtest denote resolution used in training and testing stage. * denotes the performance of our
implementation.

Methods (Rtrain, Rtest) mAP All Top 3
CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

CNN-RNN [32] (−,−) 61.2 - - - - - - 66.0 55.6 60.4 69.2 66.4 67.8
RNN-Attention [34] (−,−) - - - - - - - 79.1 58.7 67.4 84.0 63.0 72.0
Order-Free RNN [2] (−,−) - - - - - - - 71.6 54.8 62.1 74.2 62.2 67.7

SRN [46] (224, 224) 77.1 81.6 65.4 71.2 82.7 69.9 75.8 85.2 58.8 67.4 87.4 62.5 72.9
PLA [40] (288, 288) - 80.4 68.9 74.2 81.5 73.3 77.2 - - - - - -

ResNet-101 *[17] (448, 448) 78.6 82.4 65.5 73.0 86.0 70.4 77.4 85.9 58.6 69.7 90.5 62.8 74.1
ML-GCN [8] (448, 448) 83.0 85.1 72.0 78.0 85.8 75.4 80.3 89.2 64.1 74.6 90.5 66.5 76.7
KSSNet [33] (448, 448) 83.7 84.6 73.2 77.2 87.8 76.2 81.5 - - - - - -

Ours (448, 448) 84.6 86.0 73.1 79.0 86.6 76.4 81.2 89.9 64.4 75.0 91.2 67.0 77.2
ADD-GCN [41] (448, 576) 85.2 84.7 75.9 80.1 84.9 79.4 82.0 88.8 66.2 75.8 90.3 68.5 77.9

Ours (448, 576) 85.8 87.9 73.6 80.1 87.9 77.3 82.3 91.3 64.8 75.8 92.0 67.6 77.9
SSGRL [5] (576, 576) 83.8 89.9 68.5 76.8 91.3 70.8 79.7 91.9 62.5 72.7 93.8 64.1 76.2
C-Tran [21] (576, 576) 85.1 86.3 74.3 79.9 87.7 76.5 81.7 90.1 65.7 76.0 92.1 71.4 77.6

Ours (576, 576) 86.0 87.0 74.7 80.4 87.5 77.9 82.4 90.7 65.6 76.2 91.9 68.0 78.1

constraint semantic-aware features in Section 3.2. To accel-
erate the convergence process, we adopt Ltrans and Lgcn

on the prediction result of structural and semantic relation
graphs respectively. Besides, we adopt Ljoint for the fi-
nal prediction result. All these loss functions are super-
vised with typical multi-label classification entropy Ljoint

= −
∑Ncls

i=1 yi log(pi),p,y ∈ RNcls ,y ∈ {0, 1}. Hence
the final learning objective Lsum can be formulated as:

Lsum = Ljoint + Lsac + Ltrans + Lgcn. (11)

With this collaborative regularization, the final classifica-
tion embedding in Eq. (3) can jointly be aware of structural
and semantic information for multi-label understanding.

4. Experiments
4.1. Datasets and Evaluation Metrics

MS-COCO Benchmark. Microsoft COCO [23] is a
widely-used benchmark for many vision tasks, e.g. object
detection, segmentation and multi-label recognition. It con-
tains 82,081 images in train set and 40,137 images in val-
idation set from 80 common object categories. On aver-
age, each image has 2.9 labels. Especially, it contains a
large number of small objects, which is more challenging
for multi-label recognition. Following [8, 41, 5], we evalu-
ate the performance of all methods on the validation set.

VOC 2007 Benchmark. PASCAL VOC 2007 [13] is
another popular benchmark for multi-label recognition. It
contains 5,011 images in train and validation set and 4,952
images in test set from 20 common object categories. On
average, each image has 1.4 labels. Following [8], we train
our approach on the trainval set and evaluate on the test set.

Evaluation Metrics. To quantitatively evaluate the per-
formance of our approach and state-of-the-art methods, we
adopt the average per-class precision (CP), recall (CR), F1
(CF1), the average overall precision (OP), recall (OR), F1
(OF1) and mean average precision (mAP) as evaluation
metrics. For fair comparisons, we also report top-3 results.
Notably, precision/recall/F1-score may be affected by the
threshold, which is set as 0.5 in our setting. Among all met-
rics, AP and mAP are the most important metrics which can
provide a more comprehensive comparison.

4.2. Implementation Details

We adopt ResNet-101 [17] pre-trained on ImageNet [9]
as our backbone. In the training stage, input images are
first resized into 512×512, then random cropped and re-
sized into 448 × 448 with random horizontal flips for aug-
mentation. In the testing stage, input images are resized into
448 × 448. We use the SGD optimizer with momentum of
0.9 and weight decay of 1e-4. The initial learning rate is
0.01 for VOC 2007 and 0.03 for MS-COCO, which decays
by a factor of 10 for every 30 epochs. The batch size is set as
16 for VOC 2007 and 32 for MS-COCO on each GPU. The
network converge quickly and only needs 50 epochs in total
for training. Detailed experiments on hyper-parameters can
be found in supplementary materials. We set hidden dimen-
sion CT = 512 and CG = 512. The transformer unit con-
sists of 3 layers and each layer has 4 attention heads. The
semantic graph neural network has one layer. As mentioned
in Eq. (3), We apply a weight coefficient α on structural re-
lation graph and (1−α) on semantic relation graph. We set
α = 0.7 to achieve the best performance. All experiments
are conducted on two NVIDIA Tesla V100 GPUs.
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Table 2. Comparisons with state-of-the-art methods on the VOC 2007 dataset. The performance of our approach based on resolution
448× 448 is reported. * denotes the performance of our implementation.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP
CNN-RNN [32] 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0

RNN-Attention [34] 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9
Fev+Lv [38] 97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 82.8 95.4 97.7 95.9 98.6 77.6 88.7 78.0 98.3 89.0 90.6

Atten-Reinforce [4] 98.6 97.1 97.1 95.5 75.6 92.8 96.8 97.3 78.3 92.2 87.6 96.9 96.5 93.6 98.5 81.6 93.1 83.2 98.5 89.3 92.0
ResNet-101 * [17] 99.8 98.3 98.0 98.0 79.5 93.2 96.8 97.7 79.9 91.0 86.6 98.2 97.8 96.4 98.8 79.4 94.6 82.9 99.1 92.1 92.9

SSGRL [5] 99.5 97.1 97.6 97.8 82.6 94.8 96.7 98.1 78.0 97.0 85.6 97.8 98.3 96.4 98.1 84.9 96.5 79.8 98.4 92.8 93.4
ML-GCN [8] 99.5 98.5 98.6 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0

ADD-GCN *[41] 99.7 98.5 97.6 98.4 80.6 94.1 96.6 98.1 80.4 94.9 85.7 97.9 97.9 96.4 99.0 80.2 97.3 85.3 98.9 94.1 93.6
Ours 99.9 98.9 98.4 98.7 81.9 95.8 97.8 98.0 85.2 95.6 89.5 98.8 98.6 97.1 99.1 86.2 97.7 87.2 99.1 95.3 95.0

Table 3. Ablation study for different components. RStructural

and RSemantic denote structural and semantic relation graphs.
MTrans denotes transformer units. MCSA denotes cross-scale
attention module. MGCN denotes graph convolutional network.
RSAC denotes semantic-aware constraints.

RStructural RSemantic mAP
MTrans MCSA MGCN MSAC COCO VOC

78.6 92.9
✓ 82.9 94.3
✓ ✓ 83.9 94.6

✓ 82.5 93.4
✓ ✓ 83.5 93.8

✓ ✓ 84.0 94.6
✓ ✓ ✓ ✓ 84.6 95.0

4.3. Comparison with State-of-the-art

Comparisons on MS-COCO. As shown in Tab. 1, we
compare our approach on MS-COCO benchmark with 11
state-of-the-art methods. The most commonly used reso-
lution is 448×448 during both training and testing stage.
However, it is worthy to notice that some methods evalu-
ate their performance on different resolutions during train-
ing and inference stages, e.g., ADD-GCN [41] and SSGRL
[5]. For fair comparisons, we follow their resolution set-
tings [8, 41, 5] and report three results, which achieve a
new performance leader-board with a clear margin.

Comparisons on VOC 2007. In Tab. 2, we compare our
approach with 8 state-of-the-art methods. For fair compar-
isons, we report mAP and AP of each class on commonly
used 448×448 resolution with only ImageNet pretrained. In
terms of mAP, our approach achieves the best performance
and outperforms state-of-the-art ML-GCN [8] by 1.0%.

4.4. Performance Analysis

Ablation Studies. To evaluate the effectiveness of our
proposed structural relation graph module and semantic re-
lation graph module, we reconstruct our model with differ-
ent ablation factors in Tab. 3. We first employ ResNet-101
with the identical training protocol as our baseline model
in the first row, which reaches a high baseline performance,
e.g., 92.9% on VOC 2007. Note that this baseline model

Table 4. Ablation study for cross-scale attention module on MS-
COCO. S{ 1

32
, 1
64

, 1
16

} denote features of different scales. MCA de-
notes cross attention module. MTrans denotes transformer units.

S 1
32

S 1
64

S 1
16

MCA MTrans
mAP

RStructural

✓ TR 82.9
✓ ✓ TR 83.1 (↑ 0.2)
✓ ✓ ✓ TR 83.3 (↑ 0.4)
✓ ✓ ✓ SUM TR 83.2 (↑ 0.3)
✓ ✓ ✓ MUL MLP 83.3 (↑ 0.4)
✓ ✓ ✓ MUL TR 83.9 (↑ 1.0)

outperforms several state-of-the-art models and our pro-
posed model can steadily improve the performance based on
this high baseline. As shown in Tab. 3, our proposed mod-
ules make a steady improvement to the final performance,
which demonstrates the necessity of the proposed modules
to obtain the best classification results.

Effects of Structural Relation. It can be found in
Tab. 3 that only adopting Transformer for structural relation
can notably improve the performance, e.g., 4.3% on MS-
COCO, which demonstrates the effectiveness of long-term
contextual information for multi-label recognition task. Be-
sides, the position information of small objects may van-
ish after down-sampling especially for challenging datasets,
e.g., MS-COCO. Our proposed cross-scale attention mod-
ule could enhance cross-scale features and suppress noises,
which further boosts performance by 1.0% on MS-COCO.

To verify the effectiveness of our proposed cross-scale
attention module, we explore different scales on MS-COCO
as shown in Tab. 4. The default scale is 1

32 generated by the
last stage of our baseline ResNet-101. With more different
scales taken into consideration, the performance of struc-
tural relation graph module is slightly improved. With our
proposed cross attention module with multiplication oper-
ation, the performance further boosts to a new level, the
performance drops 0.7% when replacing the multiplication
with summation, which demonstrates our proposed cross at-
tention module could further effectively strengthen the po-
sition information between different scales.

To further verify the effectiveness of transformer units on
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Figure 5. Visualization analyses of baseline and our proposed structural relation graph module. We present several labels for demonstration
and the labels not presented in the image are highlighted in red. Compared to the baseline our structural relation has the ability to handle
objects in small scales in a) and b) or with confused appearances in c) and d).

Table 5. Ablation study for proposed joint relation graph on MS-
COCO. GJCM denotes the learnable joint correlation matrix. GSG

denotes structural guidance. CSAC denotes the semantic-aware
constraints.

GJCM GSG CSAC
mAP

RSemantic

Static 81.9
✓ 82.5 (↑ 0.6)
✓ ✓ 83.0 (↑ 1.1)
✓ ✓ GMP 83.5 (↑ 1.6)
✓ ✓ GAP 83.6 (↑ 1.7)
✓ ✓ KMP5% 83.7 (↑ 1.8)

cross-scale information, we replace transformer units with a
simple MLP layer in the 5th row in Tab. 4, the performance
of Rstructural shows a clear drop (0.6%) in mAP, which
demonstrates the transformer units could effectively capture
the long-term spatial context.

Effects of Semantic Relation. As shown in Tab. 3,
building semantic relationships with GCN could notably
improve the performance, e.g. 3.9% on MS-COCO. More-
over, the performance further boosts for 1% with our pro-
posed semantic-aware constraints, which demonstrates that
GCN could achieve better modeling results with more rep-
resentative semantic-specific vectors. To evaluate the effec-
tiveness of our proposed semantic relation graph module,
we conduct detailed ablations on MS-COCO in Tab. 5. We
adopt static adjacent matrix used in ML-GCN [8] to form
a baseline in the first row. Applying our proposed learn-
able correlation matrix improves the performance by 0.6%.
Besides, joint semantic and structural information could ef-
fectively improve the performance by 0.5% with structural
guidance. Another main exploration is to find global pool-

ing operations for semantic-aware constraints, our final se-
mantic relation achieves the best performance with top-k
max-pooling operation with threshold 5%.

Interpretable Visualizations of Structural Relation.
We utilize Grad-CAM [28] to exhibit the visualization re-
sults of baseline and the proposed structural relation in Fig.
5. i) Benefiting from the cross-scale attention module, our
approach could capture more accurate localization and ef-
fectively perceive small objects, e.g. fork in Fig. 5 a) and
spoon in Fig. 5 b). ii) As baseline model could not dis-
tinguish objects with similar appearances, e.g. the triplet
labels {fork, knife, spoon} in Fig. 5 c) and the paired labels
{backpack, handbag}, {skateboard, snowboard} in Fig. 5
d), these issues are well handled by our proposed structural
relation module benefiting from the long-term contextual
information captured by Transformer-based relation graph.

5. Conclusion
In this paper, we propose a novel Transformer-based

Dual Relation Graph (TDRG) framework for multi-label
recognition tasks. We make the first attempt to introduce
Transformer architecture into multi-label recognition tasks
to incorporate long-term contextual information and build
position-wise relationships across different scales. Be-
sides, we model dynamic co-occurrences with semantic-
aware constraints. With these two complementary relations
jointed, our proposed approach achieves new state-of-the-
art on two multi-label recognition benchmarks.
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