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Figure 1. Physically plausible hand motion learning. From a series of monocular color images (row 1), adapting our physical pose
representation to the hand pose estimator can get fewer penetrations and higher accuracy (row 2 and 3). TravelNet learns to travel in this
physical pose manifold from given key pose states (row 4). It can not only reconstruct the original motion (row 5) but also generate various
montages based on it (row 6). Due to the lack of RGB sequence data and key pose state annotations, a self-supervised learning paradigm
is adopted, and its training motion data is generated by a physics engine with our pose state archive.

Abstract

This paper aims to reconstruct physically plausible hand
motion from monocular color images. Existing frame-by-
frame estimating approaches can not guarantee the physi-
cal plausibility (e.g. penetration, jittering) directly. In this
paper, we embed physical constraints on the per-frame esti-
mated motions in both spatial and temporal space. Our key
idea is to adopt a self-supervised learning strategy to train
a novel encoder-decoder, named TravelNet, whose training
motion data is prepared by the physics engine using discrete
pose states. TravelNet captures key pose states from hand
motion sequences as compact motion descriptors, inspired
by the concept of keyframes in animation. Finally, it man-
ages to extract those key states out of perturbations without
manual annotations, and reconstruct the motions preserv-
ing details and physical plausibility. In the experiments,

we show that the outputs of the TravelNet contain both fin-
ger synergism and time consistency. Through the proposed
framework, hand motions can be accurately reconstructed
and flexibly re-edited, which is superior to the state-of-the-
art methods.

1. Introduction
Plausible human hand motions are of paramount impor-

tance in many applications. In VR/AR, reconstructing plau-
sible hand motion facilitates closer interaction. In manip-
ulation planning, designing a plausible hand motion makes
a bionic hand more intelligent to assist the disabled. Con-
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ventionally, high fidelity hand motions are collected by data
gloves [1, 2] or specialized hardware devices [4], though
they are expensive and cumbersome.

In recent years, with extensive hand pose datasets, deep
learning has witnessed the rapid progress of hand pose es-
timation from depth images [35, 30] and monocular color
images [60, 20, 58]. Theoretically, most of them can be
extended to estimate motions with appropriate temporal or
recurrent modules [18, 5] and plenty of motion sequences.
However, due to the diversity and composability of hand
motions, it is challenging to prepare and label those se-
quences offline.

To solve the difficulties of hand motion collection, a few
methods [28, 34] attempted to refine the results of per-frame
estimation by avoiding high-frequency jittering. Recently,
Yang et al. [51] proposed a synthesis method that gener-
ated a motion sequence by performing linear interpolation
among sample states in the dataset and finds the nearest
pose instances in the dataset. However, this product might
not be physically plausible (shown as Fig. 7) because it can
not guarantee the existence of a dense and continuous path
composed of linear transients between any two pose states.

There are two main challenges to learn physically plau-
sible hand motions. The first one is that it is laborious to
prepare sufficiently diverse as well as plausible motion data.
The second one is that it is difficult to distinguish the infor-
mative pose states from the jitter ones without any anno-
tations. In this paper, we focus on the problem of learn-
ing physically plausible hand motions from a set of dis-
crete hand pose states, which are estimated from monoc-
ular color images. Our key idea is to train a novel encoder-
decoder network, named TravelNet, whose training motion
data is prepared with the help of a physics engine. Travel-
Net manages to find key pose states out of the perturbation
and reconstruct the motion that preserves details and physi-
cal plausibility.

Nevertheless, it is hard to define and annotate key pose
states in a motion sequence. To solve the obstacles, we
propose a novel self-supervised paradigm to perform train-
ing. Specifically, we ensure that the embedded space out-
putted by the encoder of TravelNet remains in the same pose
manifold as the input space (as shown in Fig. 3). The de-
coder is first trained to output the motion with discrete pose
states, where hand motions are guided by an inverse dy-
namic solver from the physical engine. This well-trained
decoder assists the training of the decoder for the next step.
Finally, the encoder and decoder are combined with fine-
tuning on a limited number of real hand motion sequences
as a domain adaption strategy.

To ensure the physical plausibility of hand motion train-
ing data, we build a hand model incorporating physical con-
straints in the physical engine [3] to detect collisions and
calculate inverse dynamics effortlessly. A pose state that

passes the penetration validation is called a physical pose
state because it is physically plausible. We then map ex-
tensive hand poses from multi-modal hand datasets [53, 54,
61, 13, 57, 40, 46, 25] to the above physical pose states,
which provide abundant primitives and prior knowledge for
generating plausible motion sequences.

The main contributions of this work are summarized as
follows.
• A novel learning paradigm that can extract key pose

states robustly and reconstruct the hand motion in a
self-supervised manner;
• A physical pose bound to a dynamic hand model is

adopted as the compact descriptor of hand motion;
• An archive containing 2.5M physical hand poses are

created for plausible motion generation by an inverse
dynamic solver.

The dataset and codes will be publicly available at https:
//www.yangangwang.com.

2. Related Work
Monocular RGB Hand Pose Estimation. It is a hot re-
search topic to learn 3D hand pose from a single RGB im-
age. Some pioneers [60, 20, 42, 31] directly predicted the
joint 3D coordinates. Later work [55, 7, 12, 58], however,
tends to rely more on a popular rigged model, MANO [39]
to estimate its pose parameters (axis angle of each joint)
from the image. One of the painful problems in MANO is
that the invalid pose parameters may cause the penetration
of the deformed mesh surface. Because the computation
of penetration is time-consuming, it is more used in the of-
fline optimization [41] or training stage [17, 29] than in the
feedforward of the network. Furthermore, although the
frame-by-frame estimation in the offline dataset has been
improved, severe jitter is included in the results when ap-
plying it to a whole motion sequence.
Motion Synthesis. Motion synthesis has the potential to
provide realistic data for detection or segmentation tasks in
the CV field. Existing methods use game engines [60] and
deep generative models [31] to acquire synthetic datasets.
They focus more on the augment at pixel level instead of the
diversity of pose states. There exist continuous sequences in
[53] recorded as depth maps, and RGB-based tasks cannot
directly use them as training data. Using [53] as a retrieval
database, Yang et al. [51] proposed a hand motion synthetic
scheme that uses the method of linear interpolation and
the nearest approximate neighbor samples. Yamamoto et
al. [50] utilized the jumps in the score to find the keyframes
in the hand motion when playing the piano, whose motion
acquisition relies on the modelling of hands and piano key-
board and cannot be generalized to a wider range of appli-
cations. Besides, [16] utilized GAN-based [14] network to
synthesize the motion recurrently, and [36] trained a control
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Figure 2. Physical hand model. Our hand model consists of rigid
body segments connected by joints. Penetrations can be tackled
by a collision proxy with this model. Elementary motions can be
generated by an inverse dynamic solver when the start and end
states are determined.

strategy for the human body motion in the manner of rein-
forcement learning. A fixed-length motion sequence might
contain an elementary (e.g. count slowly from 1 to 2 using
fingers) or a composite motion (e.g. count quickly from 1 to
9 using fingers). Previous methods [19, 22] performed mo-
tion modelling without distinction between the two cases.
However, we argue that only the elementary motion can be
determined by a pair of endpoints. A composite motion can
be reconstructed as the original one only if those key states
that characterize the origin are not destroyed by noise.
Motion Keyframe Extraction. Our key pose states de-
scribe a hand motion similar to the keyframes used to sum-
marize video content. Given an image sequence, gener-
alized keyframe extraction [48, 26] uses changes in op-
tical flow and SIFT features as the criteria. For motion
sequences, some literature [15, 24] adopted the 2D pose
(key-points) to describe each frame, others[59, 38, 44] used
unsupervised clustering methods to find keyframes. As a
learning-based clustering method, adaptive mean-shift with
learnable bandwidth was applied to mesh rigging joints pro-
posal by Xu et al. [49]. We follow a similar strategy to ex-
tract key pose states in a motion sequence.

3. Hand Model and Representation
Physical Hand Model. Our articulated hand is a rigid body
adapted in the physics engine [3] as shown in Fig. 2 and
Fig. 3 (A). It is created by approximating MANO [39] mesh
as 16 polyhedral segments and assigning 21 degrees of free-
dom (DoFs), which is defined as [10]. Corresponding phys-
ical properties (mass, friction, etc.) are estimated according
to the volume and boundary of each polyhedron. With this
model, both collision detection and inverse dynamic can be
solved by corresponding proxies or solvers in the physics
engine [3].
Pose and Motion Formulation. The hand pose state rep-
resentation θ ∈ R21 used in TravelNet is bounded to each
DoF of our articulated hand model. Global transformation
R, t is not considered in TravelNet, i.e., all the pose states
are aligned in a canonical space. Each dimension of θ is

constrained to [−0.5π, 0.5π]. We regard a hand motion as a
set of pose states, which is denoted as ΘN . The subscriptN
is the number of pose states. It is noted that Θ may be con-
tinuous or discontinuous in time. For example, the corre-
sponding key pose states set ΘK is a subset of a continuous
ΘN , which is discontinuous and contains K states selected
from ΘN . And other (N−K) trivial states in ΘN is widely
named as in-between pose states.

4. Pose State Archive Preparation
We construct a pose state archive from existing datasets.

During the later TravelNet training phase, the inverse dy-
namic solver would randomly select a state from the archive
in order to generate the associated motion data.
Physical Pose Estimator. To consolidate the pose state
knowledge as much as possible, we first establish a phys-
ical pose estimator that translates the discrete pose states in
the existing RGB image datasets under our representation.
It also decouples the global and local transformation θ from
the 3D joints location in the estimation process, leading all
poses in a canonical space. More details of this part are
provided in the Sup. Mat .
Pose Archive. By using all or part of the pipeline of the
pose estimator described above, the pose state priors in both
RGB and depth images can be unified to be our physical
pose states. As a result, an off-line pose state archive con-
taining 2.5 M instances shown in Tab. 1 is constructed. Each
discrete pose state is stored as a data mapping between the
3D joints locations and corresponding θ.

Name No. Frames No. Subjects No. Sequences Modality

STB [54] 18,000 1 12 RGB MoCap
MHP [13] 76,375 9 21 RGB MoCap
Frei [61] 130,240 24 - RGB MoCap

Hand 3D Studio [57] 42,960 - - RGB MoCap
CMU-MPII [40] 1,445 - - RGB in the wild

OneHand10K [46] 11,703 - - RGB in the wild
Halpe [25] 47,776 - - RGB in the wild

BigHand2.2M [53] 2.2 M 10 99 Depth Automatic

Pose Archive 2.5 M Unified 132 -

Table 1. Pose Archive Components. Multimodal data is intro-
duced in our archive. Only sequences in [13, 53] are used for
TravelNet fine-tuning. Other data is regarded as a state set from
which inverse dynamic solver can randomly select a subset to gen-
erate various motions during TravelNet training.

5. TravelNet
TravelNet learns the motions from the perspective of the

key pose states. The whole pipeline of the proposed Travel-
Net is shown in Fig. 3. Although TravelNet is designed as
a deep encoder-decoder architecture, we can not train it as
a traditional auto-encoder due to the lack of RGB sequence
data and key pose state annotations. Alternatively, we pro-
pose a novel three-step self-supervised paradigm. The de-
tails are described in the following.
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Figure 3. Overview of TravelNet. (a) Pose representation. The details are discussed in Sec. 3, and training data generation in Sec. 4. (b)
Training phase. It is designed as three-step self-supervised paradigm described in Sec. 5.1 to 5.3. (c) Inference phase. It finally can extract
the key pose states and reconstruct the hand motion without the dependence of physics engine.

5.1. Decoder Trained with Captured States

An inverse dynamic solver in the physical engine can op-
timize a plausible motion between arbitrary two end-points
with time, energy and collision constrains. When consid-
ering multiple captured pose states ΘK in the archive, this
process can be performed recurrently to each adjacent data
pair {θki ,θki+1

}, ki ∈ K to get elementary segments and
finally concatenate to be a composite one ΘM . Our decoder
Dtrv imitates this process by:

Θ̂M =
[
Dtrv(θk1 ,θk2) · · · Dtrv(θkK−1

,θkK )
]
(1)

To guarantee a fixed length of ΘM , each elementary seg-
ment in ΘM is farthest-point sampled [37] or replication-
padded to D = 1024 pose states, leading to M = (K −
1)D. The overall loss of the decoder consists of three parts:

LS1 = L1(Θ̂M ,ΘM ) + wTLT(Θ̂M ) + wCLC(Θ̂M ) (2)

where wT = 0.6, wC = 0.05 in all of our experiments.
The first term L1 performs the supervision between Θ̂M

predicted by the decoder and ΘM obtained by inverse dy-
namics:

L1(Θ̂M ,ΘM ) = ‖Θ̂M −ΘM‖1. (3)

The second term LT balances the consistency between
piece-wise smoothness in each segment and global smooth-

ness:

LT(ΘM ) =

M−1∑
i=1

λiL1(θi+1,θi), (4)

λi = 1.0 when θi ∈ ΘK , and λi = 0.75 for other in-
between states.

We also introduce a GMM-based collision penalty [32]
LC though collision has been implicitly included by the data
itself:

LC(θ) =

NC∑
p=1

NC∑
q=p+1

∫
R3

Gp(x;θ) ·Gq(x;θ)dx, (5)

whereGp, Gq denote the Gaussian collision proxies depend
on state θ. NC denotes the proxies number. In computation,
only the MANO vertex positions are taken into account in
dx. For a motion sequence, LC(ΘM ) =

∑
θ∈ΘM

LC(θ).

5.2. Encoder Trained with Jittery Motions

Due to the lack of the key pose states annotations in
real captured motions, the well-trained decoder in Sec. 5.1
is used to assist the encoder’s learning. Different from a
composite motion ΘM (treated as ground truth in this step)
generated by Dtrv, a captured motion often has three cases
including (I) a variable length, (II) an unfixed number of
in-between states in each segment, and (III) high-frequency
jitter. So we further augment ΘM by random sampling to be
ΘN and then random jittering to be Θ̃N . It is noted neither
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operation changes the identity of the key pose states, which
means ΘM ,ΘN , Θ̃N share the same ΘK .
Sampling. To disturb each segment in ΘM with unfixed
in-between poses, {di}K−1

i=1 , i.i.d di ∼ U(0, D/2) are gen-
erated to determine in-between poses number that should be
deleted in each elementary segments. This makes ΘM to be
ΘN , where N = M −

∑K−1
i=1 di. Since the full convolution

and clustering block will be adopted later, neither the length
of ΘK to generate them nor ΘN is necessary to be fixed.
Jittering. To add jitter to the motion, a series of jitter masks
Mi(λ, τ) ∈ R21×N are created in a curriculum learning
scheme [6] and element-wise product is conducted on ΘN :

Θ̃N = ΘN �M1 � ...�Mη (6)

λ ∼ N (5, σ2), τ ∼ U(1, 0.6D) determine the length and
location of the jitter, η ∼ U(1, lj) determines the number of
frames suffering the jitter. lj is initialized as 5 and gradually
increased until N2 during training.
Formulation. With the data above, the encoder Etrv is con-
sists of three parts (Fε,Fδ and Fα) can be then formulated
as:

Θ̂K′ = Etrv(Θ̃N ) = Fε(
[
Fδ(Θ̃N ) + Θ̃N )

]
�Fα(Θ̃N ))

(7)
Among them,Fδ andFα are parallel branches to regress the
offset {δi}Ni=1 and the attention {αi}Ni=1. Each θ̃i ∈ Θ̃N

becomes ϕi = αi(θ̃i + δi). αi is a scalar and δi,ϕi are
vectors with the same shape as θ̃i. They provide clustering
features for subsequent operations.

For a composite motion Θ̃N , the number of the key pose
statesK are dependent on the motion content. This consen-
sus is encouraged in two ways. In terms of architecture, a
mean-shift clustering Fε with learnable bandwidth [49] is
introduced into the last block of our network. With limited
iterations, Fε performs clustering according to the learned
featureϕi among states θ̃i ∈ Θ̃N . The sample point closest
to the convergent clustering centers are regarded as the key
pose states Θ̂K′ , where K ′ 6= K is allowed. So in terms
of loss design, Chamfer distance [11] Lcd is introduced to
encourage the above-mentioned consensus:

Lcd(Θ̂K′ ,ΘK) =
∑
θ̂∈Θ̂K′

min
θ∈ΘK

‖θ̂ − θ‖22 (8)

For each predicted key state θ̂ ∈ Θ̂, only the distance to its
closest sample θ ∈ ΘK is considered. The total loss to train
the encoder in this step is:

LS2 = Lcd(Θ̂K′ ,ΘK) + wCLC(Θ̂K′) (9)

where additional LC is added to prevent the decoder from
selecting the disturbed state as the key states.

Figure 4. TravelNet architecture. (a) Decoder with a recurrent
module; (b) Encoder with the learnable mean-shift clustering.

5.3. Encoder Fine-tuned with Captured Motions

We design the following domain adaptation strategy to
fine-tune the encoder. In this step, the encoder and decoder
of TravelNet are combined as the traditional auto-encoder
mode to handle the real motion. First, the encoder is fed
with the chronological pose states ΘN . The key pose states
extraction Θ̂K are not directly supervised but are provided
to the fixed decoder to generate a motion sequence Θ̂M . Ac-
cording to the corresponding indices of Θ̂K in the original
ΘN , generated Θ̂M is then tailored to the Θ̂N which has the
same length and motion speed as ΘN . To not only retain the
details but also avoid over-fitting, a temporal smooth term
is also used in this step:

LS3 = L1(Θ̂N ,ΘN ) + wTLT(Θ̂N ) + wCLC(Θ̂N ) (10)

5.4. Learning Module

The detailed network architecture of TravelNet is shown
in Fig. 4. Its basic learning module is the graph-based con-
volution block with a learnable adjacency matrix and self-
attention similar to [56]:

f(ΘM ; e,w) = e · (ΘM ∗w) (11)

∗w represents a convolution layer to fuse the features at dif-
ferent times. e ∈ R21×21 is a learnable adjacency matrix to
describe the synergism among different DoFs. It is initial-
ized as an identity matrix. The non-local attention [9, 45] is
adopted for the decoder to guarantee the global consistency
among the concatenated data.

For each layer of the decoder, a detailed motion is pre-
dicted according to the previous coarser one, and the pre-
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Figure 5. Qualitative results for motion planning. Given the
start and end states, TravelNet decoder can be used in 3D space for
motion planning. Please refer to the Sup. Video for more details.

Figure 6. Accuracy for motion reconstruction. The left plot
presents the sequential 3D PCK performance on DO dataset. The
right plot presents the performance on ED dataset.

vious motion sequence is divided into two segments evenly
and concatenated to the two ends of the output.

6. Experiments
6.1. Implementation Details

We use CMU-MPII [40], OneHand10K [46], Halpe [25],
Frei [61], MHP [13], Hand3DStudio [57] and the first 8 se-
quences of STB [54] to train our image feature extraction
CNN module in hand pose estimator. We adopt the net-
work architecture in [47, 20] as the backbone of this esti-
mator. To train the physical pose estimator, we not only use
the captured data in our archive, but also some synthetic
poses randomly generated in the physics engine. It consists
of five layers of semantic graph convolution [56]. When
selecting the initial state and final state to train the Trav-
elNet decoder, the chronological pose states in the archive
are not added as candidates, which ensures the diversity of
each elementary motion. In the fine-tuning of the TravelNet
encoder, we use the pose sequences in [13, 53], while the
sequences in STB [54] are only used in the testing phase.
We adopt Adam optimizer [23], batch normalization, and

Method
AUC of PCK

DO ED STB RHD

Iqbal et al. [20] .672 .543 .994 -
Yang et al. [52] - - .996 .943
Zhang et al. [55] .825 - .995 .901

Ge et al. [12] - - .998 .920
Zhou et al. [58] .948 .811 .898 .856

Ours w/o using θ .940 .803 .890 .843
Ours w/o using γ .947 .806 .889 .861
Ours w/o FKlayer .950 .813 .956 .890

Ours .962 .823 .998 .903

Table 2. Accuracy for pose estimation. Comparison with the
state-of-the-art hand pose estimation methods on four public
datasets as well as ablation study on our hand pose estimator.

leaky-ReLu [27] for all network training. Our networks are
trained on a single NVIDIA TITAN RTX GPU with a base
learning rate of 1e-4. We set batch size 32 for image data,
and 64 for pose sequence. The simulation frequency of the
physical engine is set to 5KHz.

6.2. Comparison to Related Work

Accuracy of Pose Estimation. The experimental results
in Fig. 1(row 2 and row 3) show that the pose estimator be-
comes more accurate and plausible after using our pose rep-
resentation with physical constraints. In Tab. 2, we further
compare our approach to other state-of-the-art methods on
test sets of RHD [60], STB [54], DO [43] and ED [33]. The
following metrics are adopted to evaluate the performance:
the percentage of correct 3D key points (PCK), and the area
under the PCK curve (AUC) with thresholds ranging from
20mm to 50mm. Although our estimation pipeline is sim-
ilar to[58], its accuracy has been greatly improved because
of our physical pose representation.
Robustness of TravelNet. To explore the robustness of
the method, we add perturbation to the real hand sequence,
and then compare the 3D Joint Error between the recon-
struction result and the original sequence. We also trans-
fer two learning-based human body motion synthesis net-
work [19, 22] to this task. In[22], there are only experiments
to add noise to the test dataset. To verify the generalization
ability for new motions, we also add new motions generated
by the physics engine in this test. 3D joint error is the metric
to evaluate the performances of different methods. Accord-
ing to the first three rows in Tab. 3, for varying degrees of
perturbation and new motions, the reconstruction accuracy
of TravelNet surpasses most of the existing works.
Accuracy of TravelNet. To verify the accuracy of motion
reconstruction, we compare the average 3D joint error of
the existing model and TravelNet on STB, DO, and ED se-
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Figure 7. Physical plausibility for in-between generations. Given the same start and end states, the motions generated by TravelNet
decoder (bronze states) contain physical constrains. While the motions generated by linear interpolation (gray states) involve penetrations
(red dotted circles). Please refer to the Sup. Video for more details.

quence datasets. It is worth pointing out that when fine-
tuning the encoder, we only use eight sequences in the STB
dataset. The results of the comparison in terms of average
3D Joint Error are shown in the last 3 columns of Tab. 3,
and the 3D PCKs tested on ED and DO sequential dataset
are shown in Fig. 6. Compared with the frame-by-frame es-
timation, we find that our reconstruction accuracy has been
significantly improved on a dataset such as DO that con-
tains severe occlusions. This also shows that the TravelNet
is robust to occlusions and has learned the consistency of
sequential actions.

6.3. Ablation Study

Variants of Pose Estimation. We analyze the influences of
using physical pose, unified bone ratio, and self-supervised
term provided by FKLayer in training to our physical pose
estimator in Sec. 4 and Sup. Mat . In Tab. 2 row 6, the ne-
cessity of physical pose θ is verified in the following proce-
dure. By replacing our IKNet with original IKNet in [58],
the joint locations X are mapped to another pose vector
ϑ ∈ R45 represented by quaternions without DoF limita-
tions. As shown in Tab. 2 row 7 and row 8, the estimator
performance will be degraded without bone ratios γ extrac-
tion or self-supervised term provided by FKLayer. The per-
formance of our complete pose estimation pipeline is shown
in Tab. 2 row 9. The usage of θ has the greatest impact on
the accuracy of our hand pose estimator.

Variants of TravelNet. As shown in row 4 of Tab. 3, naı̈ve
temporal smoothness optimized from the frame-wise pose
estimations is first tested as a baseline. The smoothness be-

tween the two adjacent pose states is optimized, and this
item is consistent with Eqn. 4. After that, we analyze the
importance of clustering Fε and attention Fα in the en-
coder, non-local of each learning block, and the collision
penalty LC and temporal smooth term LT used in the train-
ing phase. The results in Tab. 3 row 5 to 9 reveal that
the clustering module has the greatest impact on Travel-
Net; The ablation of LC does not greatly weaken the per-
formance because collision has been tackled implicitly in
the physical pose data generation. Although collision con-
flicts may be contained in Θ̃N after random jittering, this
implausible state subset will be abandoned due to the atten-
tion mechanism and clustering in the encoder; In addition,
with the help from bothLT and non-local attention, not only
the piecewise smoothness but also the global smoothness
is guaranteed. As shown in Fig. 5 and Fig. 7, all recon-
structed motions are approximately globally smooth (refer
to Sup. Video for more details).

Plausibility of TravelNet Decoder. Two experiments are
designed to verify the plausibility of the motion generated
by the decoder. Firstly, we compare it with the naı̈ve lin-
ear interpolation by several elementary motions. As shown
in Fig. 7, the generations of linear interpolation involve the
penetrations of different fingers in space. By contrast, the
decoder has learned these synergies and guarantees that ev-
ery intermediate state on the travel path is physically plau-
sible. We also deploy the decoder to the motion planning
task with [8, 21] to determine the final state of grasping.
Some qualitative results are shown in Fig. 5. Although the
hand collision shape is fixed in the modeling and learning
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Method
Average 3D Joint Error (mm)

σ = 1.0 σ = 1.5 p = 0.2 p = 0.4 Montage Motions DO ED STB

Yang et al. [51] 28.32 31.33 27.12 31.18 20.35 18.16 18.12 9.87
Holden et al. for hand [19] 29.34 32.10 27.45 33.11 21.15 19.34 20.03 10.03

Kaufmann et al. for hand [22] 28.92 31.85 27.88 33.54 20.14 18.13 18.97 12.37

Ours w/o TravelNet. 32.57 36.14 33.73 35.72 24.31 22.57 20.75 11.06
Ours w/o Fε 28.05 31.66 27.13 32.96 19.08 17.94 18.21 9.73
Ours w/o Fα 26.68 31.24 27.17 29.41 18.22 17.64 17.05 9.66

Ours w/o non-local & LT 26.23 31.27 27.17 33.13 18.36 17.75 17.30 9.69
Ours w/o LT 25.42 29.85 26.92 30.03 17.13 17.39 16.95 9.64

Ours w/o non-local 25.36 29.64 26.77 29.91 17.24 17.41 16.92 9.61
Ours w/o LC X 24.31 29.66 26.88 29.03 16.36 17.05 16.70 9.44

Ours 24.30 29.65 26.89 29.01 16.35 17.04 16.71 9.42

Table 3. Robustness for motion reconstruction. Comparison for robustness when adding noise, using montage motions, or using captured
motions. σ indicates the average number of labeled frames disturbed by Gaussian noise. p is the masked ratio of joints in the whole
sequence. The montage motion is the hand motion generated by discrete pose states from the archive using the physics engine.

Figure 8. User controllable motion encoding. TravelNet encoder extracts key pose states with different bandwidths on STB sequence.
The key poses extracted with the learned bandwidth are in the middle line.

process, there is little self-penetration occurs even when the
shape parameters change in these testing.
Plausibility of TravelNet Encoder. The learned bandwidth
in the encoder is allowed to be overridden. As shown in
Fig. 8, we take the counting process recorded in the STB
dataset as an example to study the influence of bandwidth.
We find that modifying this bandwidth affects the level-of-
detail of the description accuracy of the encoder for a given
motion. Although a lower bandwidth results in a more de-
tailed motion, it is more susceptible to noise. From the re-
sults of the middle row in Fig. 8, the decoder has learned a
bandwidth setting that is adaptive to the captured motion.

7. Conclusion
This paper proposes a novel paradigm to reconstruct

physically plausible hand motions from monocular color
images in a self-supervised manner. It is the first work to

validate the physical plausibility of the hand pose and mo-
tion with the help of a physics engine only in the training
phase. In our approach, physics-based DoFs are used to
represent pose and animation-based key states are used to
represent motion. This compactness enables TravelNet to
not only reliably reconstruct but also flexibly re-edit hand
motions. In the future, the representation and paradigm can
be migrated to the hand-object interactions and bionic hand
control retargeting control.
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