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Abstract

Real-world low-light images suffer from two main degra-
dations, namely, inevitable noise and poor visibility. Since
the noise exhibits different levels, its estimation has been
implemented in recent works when enhancing low-light im-
ages from raw Bayer space. When it comes to sRGB color
space, the noise estimation becomes more complicated due
to the effect of the image processing pipeline. Nevertheless,
most existing enhancing algorithms in sRGB space only
focus on the low visibility problem or suppress the noise
under a hypothetical noise level, leading them impracti-
cal due to the lack of robustness. To address this issue,
we propose an adaptive unfolding total variation network
(UTVNet), which approximates the noise level from the real
sRGB low-light image by learning the balancing parame-
ter in the model-based denoising method with total varia-
tion regularization. Meanwhile, we learn the noise level
map by unrolling the corresponding minimization process
for providing the inferences of smoothness and fidelity con-
straints. Guided by the noise level map, our UTVNet can
recover finer details and is more capable to suppress noise
in real captured low-light scenes. Extensive experiments on
real-world low-light images clearly demonstrate the supe-
rior performance of UTVNet over state-of-the-art methods.

1. Introduction

The insufficient light provided by low-light scenarios is
the main limitation of capturing high-quality photographs.
Besides enlarging the aperture and prolonging the exposure
time to gather more light when taking images, another flex-
ible solution is to increase the ISO setting of camera to ad-
just the analog gain or both analog and digital gains as the
compensation for the brightness. However, a higher ISO
setting will decrease the signal-to-noise ratio (SNR). The
SNR should be carefully managed to control the noise for
providing higher possibilities of post-processing [7]. Un-
fortunately, such a manipulation is difficult for non-expert
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(d) NBNet+LIME (e) AGLLNet [3] (f) D&E [4]

(g) MIRNet [5] (h) UTVNet (Ours) (i) Ground Truth

Figure 1. Performance in real captured low-light scene. (a) a sRGB
image captured by a NikonD850 camera from ELD dataset [6]. (b-
d) results of the luminance correction and denoising approaches.
(f) and (g) are outputs of two recent methods without noise estima-
tion. (e) the result of [3] trained on the synthetic low-light dataset
to predict noise maps. (h) the result of proposed UTVNet. All
images were cropped to make their details more visible.

users who lack the appropriate photography skills.
Restoration of real-world low-light images is a challeng-

ing process in computer vision, which focuses on recov-
ering underlying clean images from observed noisy ones
and correcting the luminance without amplifying the noise.
Most existing methods [1, 8, 9] focus on enhancing noise-
free underexposed images. Such methods may solve the
low visibility problem, but the noise will amplified when
adjusting the exposure as shown in Fig. 1 (b). Meanwhile,
existing denoising approaches [10, 11, 2] may fail to sup-
press noise for low-light images, since most of them focus
on images taken under normal luminance, the small mag-
nitude between pixels in extremely low-light images hinder
the detection of noise from details as shown in Fig. 1 (c, d).
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As real-world low-light images exhibit different noise
levels, recent low-light image restoration methods [4, 5]
may lack of robustness without noise estimation as shown
in Fig. 1 (f, g). In raw Bayer space, a physics-based noise
formation model [6] has been proposed for low-light raw
images. When converting raw data to sRGB, the distribu-
tion of noise is affected by the image processing pipeline
(ISP). Existing method [3] learned noise maps by synthetic
low-light image dataset, but the efficiency is degraded by
the inaccurate noise model and the gap between synthetic
images and real photographs as shown in Fig. 1 (e).

In this paper, an adaptive unfolding total variation net-
work (UTVNet) is presented to restore the extremely low-
light images in sRGB space. To boost the robustness in real
captured scenes, we approximate the noise level inspired by
the relationship between the noise level and the balancing
parameter in model-based image denoising method. Specif-
ically, we formulate an adaptive total variation (TV) regu-
larization by introducing a learnable noise level map that
serves as the balancing parameters for each pixel to control
the trade-off between noise reduction and detail preserva-
tion. To learn the noise level map from the real low-light
dataset, designing regularizers in loss function is infeasi-
ble. Therefore, we unfold the TV minimization process via
the Alternating Direction Method of Multiplier (ADMM)
[12] to separate the minimization problem into three sub-
problems with closed-form solutions, which provides the
inferences of fidelity and smoothness constraints for learn-
ing the noise level map. Subsequently, a noise-free low-
frequency layer is automatically generated along with the
noise level map. Since the noise is smoothed out by the
TV regularization in the low-frequency layer, the luminance
correction is applied in this layer to avoid noise amplifica-
tion. Meanwhile, the noise suppression process is guided
by the approximated noise level map in the high-frequency
layer. The main contributions of this work are as follows:

• By integrating a learnable nois level map, we formu-
late an adaptive TV regularization and propose a new
noise level approximation method for real low-light
photographs in sRGB color space.

• We propose an UTVNet that unfolds the total varia-
tion minimization algorithms to provide fidelity and
smoothness constraints to learn the noise level map
without designing special loss function.

• UTVNet is robust in restoring the real captured low-
light images with various noise levels.

2. Related Work
Low-light image enhancement. Most low-light im-

age enhancement approaches only point to underexposure
without considering noise suppression, like learning-based

methods [9, 13, 14], and retinex-based methods [1, 15],
in which most of the cases are noise-free, therefore, these
methods handle the low-visibility problem only. Some other
methods take noise suppression into account in raw Bayer
space. Chen et al. [16] proposed a raw low-light image
dataset to learning the mapping from raw short-exposure
images to the long-exposure references. Wei et al. [6] pro-
posed a physics-based noise formation model for low-light
raw image denoising. However, as the noise is affected by
the ISP during the conversion from raw to sRGB, modeling
noise is more difficult in the sRGB color space. Lv et al. [3]
constructed a large sRGB synthetic dataset to learn noise
maps for low-light images. The performance is related to
the gap between synthetic images and real photographs. Xu
et al. [4] suppressed the noise for low-light images by learn-
ing a low-frequency layer of the input image using the ref-
erence generated by a guided filter [17]. Zamir et al. [5]
proposed a multi-scale residual block that selects useful sets
of kernels from each branch using a self-attention approach.
Without noise estimation, such noise suppression networks
may lack robustness in real captured scenes.

Image denoising. Some blind denoising methods can
handle the real-world image denoising tasks, these methods
often combine noise estimation with non-blind denoising.
Xu et al. [18] proposed a multi-channel weighted unclear
norm minimization model for real color image denoising.
Nam et al. [19] proposed a cross-channel noise model in
sRGB space which took the correlation between the color
channels into consideration. Among learning-based meth-
ods, Zhang et al. [10] stretched the noise level as a noise-
level map to deal with spatially variant noise. Cheng et
al. [2] proposed a network that separated signal and noise
by learning a set of reconstruction basis in the feature space.
Guo et al. [11] generated synthetic images and adopted a
sub-network to learn the mapping from estimated noise
level to ground truth. Instead of generating such a dataset,
our UTVNet aims to learn the noise level approximation di-
rectly from real low-light images.

Deep unrolling architecture. Model-based denoising
methods are flexible in handling noise with various levels.
Most model-based denoising methods can be formulated as

x̂ = argmin
x

1

2σ2
∥x− y∥2 + λΦ(x), (1)

where 1
2σ2 ∥x − y∥2 is the data fidelity term, σ is the noise

level , λ is the balancing parameters, Φ(x) is the regular-
ization term, x̂ is the solution to the problem, x and y are
clean image and observed image, respectively. The perfor-
mance of these methods is associated with image priors,
such as self-similarity [20], sparsity [21], and low-rank [22].
However, most model-based methods focus only on how
to carefully design the denoising priors, the parameter λ is
neglected. It is often set as an empirical value. Recently,
deep unrolling methods have been proposed that explicitly
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Figure 2. The proposed UTVNet consists of an unfolding TV module and an image restoration module. First, the given image y is fed into
unfolding TV module to estimate noise level map M and generate noise-free smooth layer ys. Then, in image restoration module, ys is
used to correct the luminance, and the noise suppression in detail layer yd is guided by the approximated noise level map M. We describe
the details of the two modules in Section 3.

unroll iterative optimization algorithms into learnable deep
architectures combined with convolutional neural networks
(CNNs). ADMM [23] has been used in [24] to unroll the
minimization process for image layer separation, and the
convergence has been analysed in [25]. Meanwhile, the
half-quadratic splitting algorithm [26] has been utilized in
[27, 10, 28, 29] to unfold the minimization problems for
image denoising and super-resolution. Different from those
methods that utilize CNNs to fit the physical priors in mini-
mization problems, our UTVNet adopts the TV regulariza-
tion and unfolds the minimization process for the fidelity
and smoothness inferences.

3. Methodology

In this section, we introduce the proposed UTVNet. An
overview of the process is shown in Fig. 2. The network
consists of two modules, including an unfolding TV mod-
ule and an image restoration module. To approximate the
noise level, we start with the analysis of the noise level and
the balancing parameter in model-based denoising methods.
Then we formulate an adaptive TV regularization and de-
scribe each module of the network in detail below.

3.1. Noise Level vs. Balancing Parameter

As described in previous work [10], when λ is combined
into σ in Eq. (1), setting noise level σ also plays the role
of setting λ to control the trade-off between noise reduc-
tion and detail preservation. Inspired by this relationship,
as for certain regularization terms, if we combine λ and σ
as the balancing parameter in Eq. (1), the noise level can be
approximated by learning such balancing parameter via un-

rolling architecture. In our model, we adopt the TV regular-
ization term for three reasons. First, TV regularization can
better preserve sharp edges [30, 31] and also be used in en-
hancing images with poor visibility [32]. Second, there are
no extra parameters of the original TV regularization, ac-
cordingly, the trade-off is controlled only by the balancing
parameter, which is easy and accurate for approximation.
Third, instead of using CNNs to learn the explicit mapping
of solutions to the minimization problem, one can easily
find closed-form solutions for the TV regularization term,
which provide the fidelity and smoothness constraints with-
out using special loss functions.

3.2. Adaptive Total Variation Regularization

We first define operator D as a collection of two sub-
operators D = [DT

x DT
y ]

T , where Dx,Dy are the first-
order forward finite-difference operators along the horizon-
tal and vertical directions respectively. Thus, the anisotropic
TV regularization term can be written as ∥Dx∥1. Mean-
while, the balancing parameter λ can be combined into the
regularization term, written as ∥λDx∥1. Since the real-
world noise exhibits different patterns, following [10, 11],
we stretch λ into a map M̂ = [MT

x MT
y ]

T , where the size
of Mx and My are the same as x. Therefore, the adaptive
TV regularization minimization problem is formulated as

minimize
x

1

2
∥x− y∥2 + ∥M̂ ◦ (Dx) ∥1, (2)

where “◦” denotes component-wise multiplication. In our
UTVNet, we set Mx = My = M as the noise level map
that we need to approximate in the network. By introduc-
ing intermediate variable u = Dx, we have the augmented
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Lagrangian function of Eq. (2)

L(x,u, z)=
1

2
∥x−y∥2+∥M̂◦u∥1−zT(u−Dx)+

ρr
2
∥u−Dx∥2,

(3)
where z is the Lagrange multiplier, ρr is a regularization
parameter. Through ADMM, the problem can be solved
by iteratively updating x, u, and z, other variables treated
as constants. Consequently, the unfolding inference can be
obtained by solving the below sub-problems

xk+1=argmin
x

1
2
∥x− y∥2−zTk (uk−Dx)+ ρr

2
∥uk−Dx∥2 ,

uk+1=argmin
u

∥M̂ ◦ u∥1−zTk(u−Dxk+1)+
ρr
2
∥u−Dxk+1∥2 ,

zk+1 = zk − ρr (uk+1 −Dxk+1) ,
(4)

where k denotes the k-th iteration. Next, the fast Fourier
transform (FFT) and the shrinkage function can be utilized
to solve x-subproblem and u-subproblem respectively [33,
31]. Hence, the closed-form solutions to the sub-problems
in Eq. (4) is

xk+1 = F−1

[
F[y+ρrD

Tuk−DT zk]
1+ρr(|F [Dx]|2+|F [Dy ]|2)

]
,

uk+1 = max
{
|vk+1| − M̂

ρr
, 0
}
· sign (vk+1) ,

zk+1 = zk − ρr (uk+1 −Dxk+1) ,

(5)

where F (·) and F−1 (·) denote FFT and inverse FFT, re-
spectively, sign (·) denotes the sign function, v is defined
as vk+1 = Dxk+1 + (1/ρr) zk. By using the above three
closed-form solutions iteratively, the minimization problem
in Eq. (2) can be solved. We then analyze the relationship
between three closed-from solutions and design unfolding
TV module to learn the noise level map M.

3.3. Unfolding Total Variation Module

Based on three closed-form solutions, we design an un-
folding TV Module as shown in Fig. 2. First, image y is
fed into noise level initialization block (NLI-block) to pre-
dict noise level map M. Then, we unfold the TV minimiza-
tion problem and iteratively utilize Eq. (5) to guarantee the
smoothness and fidelity constraints for learning M end-to-
end and generating noise-free smooth layer ys.

Unfolding TV Architecture. In Eq. (4), it can be ob-
served that the data fidelity term and the TV regulariza-
tion term are decoupled into the x- and u- subproblems.
The parameter M only exists in the u-subproblem. Be-
cause M is also the hyper-parameter of the iterative al-
gorithm, instead of learning a fixed M for all iterations,
here we follow [29], in which learning a series of hyper-
parameters varies in different iterations. Hence, we set
M = [M1,M2,M3, . . . ,MK ], ρr = [ρ1, ρ2, ρ3, . . . , ρK ],
where K is the number of iteration times. For speed-
accuracy trade-off, K is set to 8. Following the unfolding
optimization, the unfolding TV architecture alternatively

solves the x, u, z sub-problems by Eq. (5), they are writ-
ten as below and illustrated in Fig. 2 xk = N (y, zk−1, ρk,D,uk−1),

uk = S(Mk,D, zk−1,xk, ρk),
zk = G(D, zk−1, ρk,uk,xk).

(6)

In the following descriptions, we will analyze the impor-
tance of three functions for learning the noise level map M.

Function N (·) and function G (·) only contain the hyper-
parameter ρk, but such two function are essential for the
UTVNet. Function N (·) aims to solve the fidelity term sub-
problem, and guarantees the inference between the noise-
free smooth layer ys and the original image y. Such in-
ference provides the fidelity prior that speeds up the con-
vergence of the whole network when training our model.
Function G (·) is associated with constraint u = Dx, as it-
eration goes, the Lagrange multiplier z should be updated.
In PyTorch, torch.fft.fftn and torch.fft.ifftn are used to im-
plement F (·) and F−1 (·).

Function S (·) contains the approximated noise level
map M. The function can be regarded as a special smooth-
ness constraint for the low-frequency layer ys, where it
smooths out details and noise guided by the magnitude of
noise level map M for each pixel. Using such a smoothness
inference between the original image and the smoothed one,
we can learn the parameter M for input images without de-
signing a special loss function. As shown in Fig. 2, the pa-
rameter M varies in each iteration to control the trade-off
between noise reduction and detail preservation.

There are two learning parameters in this architecture, ρr

and M. ρr is generated by ρr = R(ρ0) in Fig. 2, where we
adopt the hyper-parameter module in [29] that uses three 1×
1 convolutions with two ReLU and one Softplus activation
functions. To avoid dividing by extremely small ρk, we add
1e − 6 to the final output. The prediction of parameter M
will be described in detail below.

NLI-Block. Before iteration, a coarse-to-fine noise level
initialization block is proposed in Fig. 2 to predict the noise
level in a coarse-to-fine way. The details of the NLI-block
can be seen in Fig. 3. We first estimate global noise varia-
tion ε for three channels ε =

[
εr, εg, εb

]
as coarse approx-

imated values according to [34]

εc =

√
π

2

1

6(w − 2)(h− 2)

∑
(i,j)

|(yc ⊗N) (i, j)| , (7)

where c ∈ {r, g, b} denotes the RGB channels, “⊗” de-
notes the convolution operator. (i, j) denotes indices of the
pixel position. h and w are the height and width of yc, re-
spectively. N is defined as

N =

 1 −2 1
−2 4 −2
1 −2 1

 . (8)
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NLI-Block Conv+LeakyReLU

Figure 3. Illustration of the NLI-Block. The details of function
H(·) and function A(·) are described in Section 3.3.

Then, we adopt a seven dilated convolution layers with
LeakyReLU activation function for the first six layers to
predict the residual R′ = [R′

1,R
′
2, . . . ,R

′
K ], which can

be used to modify the global noise variation ε and generate
precise noise level values for each pixel. Hence, the noise
level map M′ = [M′

1,M
′
2, . . . ,M

′
K ] is formulated as

M′ =
[
R′

1 + ε,R′
2 + ε, . . . ,R′

K + ε
]
. (9)

We define such methods for two reasons. First, the small
pixel values make it harder to learn the noise level map M
directly in extremely low-light images. The modification
of the global noise variation provides a better initialization
and accelerate the speed of convergence for the unfolding
TV module. Second, as indicated in [10], a larger noise
level may guarantee the role of M in controlling the trade-
off between noise reduction and detail preservation. The
global noise variation also provides a basic magnitude for
learning the parameter M, which ensures an accurate ap-
proximation of the noise level. As the values in the noise
level map should be positive, the final output Mc

k(i, j) is
defined as

Mc
k(i, j) =

{
M′c

k (i, j) M′c
k (i, j) > 0,

εc M′c
k (i, j) ≤ 0,

(10)

k ∈ {1, 2, 3, . . . ,K} denotes k-th iteration. For brevity, in
Fig. 3, Eq. (7) and Eq. (9) are denoted as Eq. (11a), mean-
while, Eq. (10) is denoted as Eq. (11b){

{M′, ε} = H (R′,y,N, h, w) , (11a)
M = A (M′, ε) . (11b)

A(·) is similar to ReLU but contains an important modifi-
cation. Different from ReLU that totally sets all negative
values as zero, we set all negative values to the global noise
variation ε. Such a treatment also provides an adaptive
higher noise level value that guarantees the role of M as the
balancing parameter λ. It is notable that the smoothed-out
detail can be recovered when suppressing the noise guided
by M in the image restoration module. The effectiveness of
the NLI-block will be discussed in Section 4.3.

3.4. Low-light Image Restoration Module

The image restoration module consists of a lumi-
nance correction sub-network and a noise suppression sub-
network. Through unrolling the TV module, the noise-free
smooth layer ys and the approximated noise level map M
are generated. As shown in Fig. 2, M is utilized for noise
suppression on the detail layer yd = y − ys. Meanwhile,
the smooth layer ys is the input of the luminance correction
sub-network. The details are described below.

Luminance correction sub-network. The luminance
correction sub-network generates luminance amplification
for each pixel. By multiplying the luminance amplifica-
tion with ys, we get the luminance corrected smooth layer
y′
s. The sub-network adopts seven dilated convolution lay-

ers with LeakyReLU in the first six layers.
Noise suppression sub-network. As noted in [35, 10],

taking both the noisy image and the noise level map as in-
put helps generalize the learned model for blind denoising.
For low-light image restoration, we also adopt a method that
takes yd and the approximated noise level map M as input
for noise suppression and detail restoration of the original
low-light image. As shown in Fig. 2, we adopt U-Net [36]
architecture with four scales, and the channels of the con-
volution layer in each scale are 32, 64, 128 and 256, respec-
tively. Average pooling and fully-connected layers are used
to process global features and connected them with former
layers. 2 × 2 convolution and transposed convolution are
adopted in downscaling and upscaling layers. For all con-
volution layers except the last, we use LeakyReLU as the
activation function.

3.5. End-to-End Training

As the TV minimization problem is solved in unfolding
TV module when approximating the noise level map, the
network can be trained end-to-end. We optimize weights
and biases by minimizing the L2 loss Ll2 and the perceptual
loss Lper with a weight of 1 and 0.12, respectively.

4. Experiment
Implementation detail. The proposed UTVNet1 is im-

plemented in PyTorch framework, before training, we ini-
tialize parameters for UTVNet. We set ρ0 = 2, x0 = y,
u0 = Dx0, z0 = 0, and K = 8. To optimize parameters
of UTVNet, we adopt the ADAM optimizer [12] for 320
epochs with an initial learning rate of 10−4. The learning
rate is reduced by half after 240 epochs. During training,
the images are resized to have a long-edge of 512 pixels to
avoid unnatural deformation. All the experiments are per-
formed on a single NVIDIA TITAN Xp GPU.

Dataset. To suppress noise and enhance real-world low-
light images in the sRGB domain, we train the UTVNet

1Code: https://github.com/CharlieZCJ/UTVNet
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Input / LIME SID Pixel2Pixel D&E MIRNet UTVNet (Ours) Ground Truth

Figure 4. Visual results of different methods. UTVNet outperforms other methods in finer details preservation. (Best viewed with zoom )

Table 1. Quantitative comparison of different methods on sRGB-
SID dataset. * indicates the released pre-trained model on the
same dataset. The best result is highlighted.

Method PSNR SSIM L2Lab LPIPS

LIME [1] 15.515 0.3011 14.040 0.5230
LIME [1] + NBNet [11] 16.280 0.3817 14.191 0.5087
NBNet [2] + LIME [1] 13.455 0.4416 15.920 0.6120
White-box [8] 15.941 0.4149 13.755 0.5569
White-box [8] + NBNet [11] 14.736 0.4938 13.624 0.5391
NBNet [2] + White-box [8] 13.875 0.4467 15.094 0.5964

DPED [37] 16.528 0.5144 12.841 0.4924
DeepUPE [9] 13.412 0.2565 12.411 0.5188
CSRNet [13] 19.613 0.5696 12.183 0.4779
DeepLPF [38] 19.645 0.6472 11.847 0.4207
Pixel2Pixel [39] 21.182 0.6073 11.626 0.4959
SID [16] 21.212 0.6601 10.998 0.4026
AGLLNet [3] 18.641 0.6158 13.649 0.4472
D&E* [4] 21.934 0.6950 10.859 0.3744
D&E [4] 22.157 0.6922 10.751 0.3794
MIRNet [5] 22.345 0.7031 10.750 0.3562

UTVNet (Ours) 22.691 0.7179 10.581 0.3417

with the sRGB-SID dataset proposed by [4]. The sRGB-
SID dataset is generated from SID [16] raw dataset to model
real-world noisy low-light sRGB images. It contains 4,198
image pairs for training and 1,196 image pairs for testing.

4.1. Results on sRGB-SID dataset

We compare the proposed UTVNet with 11 recent meth-
ods, including LIME [1], DPED [37], D&E [4], CSR-
Net [13], SID [16], DeepUPE [9], DeepLPF [38], White-

Box [8], Pixel2Pixel [39], AGLLNet [3], MIRNet [5]. For
Pixel2Pixel, SID, DeepLPF, CSRNet, D&E, MIRNet, we
re-train their models for comparison. Because of the limita-
tion on memory capacity, the number of features in the first
layer of MIRNet is limited at 20. Meanwhile, the perceptual
loss were adopted when training all the methods.

Quantitative and visual comparisons. We compare
UTVNet with state-of-the-art methods in terms of PSNR,
SSIM [40], Mean L2 error in L*a*b* space (lower is bet-
ter) and LPIPS [41] (lower is better). The results are pre-
sented in Table 1. The first six rows of Table 1 show that
the exposure correction methods provide unsatisfactory per-
formance even when combined with the real-world de-
noising method NBNet [2]. Compared with all learning-
based exposure correction methods and image restoration
approaches, our UTVNet achieves the best performance in
four metrics. The visual results of the proposed approach
and the state-of-the-art methods can be seen in Fig. 4. One
can see that only correcting the exposure by LIME may
fail to recover images with noise, because it is hard to re-
cover original details from small pixel values disrupted by
noise. SID and Pixel2Pixel both introduce artifacts. With-
out noise level estimation, D&E and MIRNet may provide
over-smooth or still noisy results. Our UTVNet outper-
forms all methods in recovering finer details and colors.

Computational cost. We analyze the computational
complexity of some recently proposed methods and our
UTVNet on sRGB-SID dataset with a resolution of 1024 ×
768 pixels. The parameter size, MACs, execution time, and
PSNR results are shown in Table 3. Compared with D&E
and MIRNet, our UTVNet achieves the best performance
with a balanced parameter size and lower MAC operations.
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Figure 5. Evaluating the performance at different ISO levels (1600 vs. 3200) under exposure time (ET) 1/800s from the ELD dataset.
Mavg is the approximated average of noise level maps in all iterations by the proposed UTVNet. (Best viewed with zoom)
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Figure 6. Evaluating the performance at different exposure times (1/400s vs. 1/800s) under ISO 1600 from the ELD dataset. Mavg is the
approximated average of noise level maps in all iterations by the proposed UTVNet. (Best viewed with zoom)

Table 2. Quantitative results of different methods that trained on sRGB-SID or other synthetic datasets and tested on ELD dataset.

Method SonyA7S2 NikonD850 CanonEOS700D
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

LIME [1] 16.467 0.3960 0.5384 15.155 0.3034 0.5616 15.423 0.3177 0.5854
AGLLNet [3] 17.274 0.4915 0.4653 16.047 0.4564 0.5072 16.399 0.3569 0.6145
MIRNet [5] 17.301 0.5103 0.4643 17.692 0.5045 0.5020 16.201 0.3778 0.5926

D&E [4] 18.571 0.5783 0.4612 17.926 0.5532 0.4536 16.639 0.3729 0.5868
UTVNet (Ours) 18.675 0.6054 0.4524 18.161 0.5910 0.4446 16.496 0.4233 0.5601

4.2. Performance in Real Captured Scenes

To substantiate the robustness in real captured low-light
scenes of proposed UTVNet, we evaluate the performance
of different methods with ELD [6] dataset. The extremely
low-light images in ELD dataset covers 10 indoor scenes
and were taken by 4 camera devices. In each scene, the
noisy images were captured with different ISO levels and
exposure times to guarantee noise and low-light conditions.
Only the sRGB images were used in our experiment. We
compare UTVNet with LIME, AGLLNet, MIRNet, and
D&E. We adopted these module that were trained on other
datasets to restore the images in the ELD dataset, where
MIRNet, D&E, and our UTVNet were trained on the sRGB-
SID dataset, AGLLNet was trained on the synthetic low-
light dataset with Gaussian-Poisson mixed noise model.

Quantitative and visual comparisons. The quantitative
results are shown in Table 2. Our UTVNet obtained com-
petitive performance on PSNR, SSIM, and LPIPS scores.

In visual comparison, we visualize the average noise
level map Mavg of all iterations in UTVNet. First, we eval-
uate the results under different ISO levels in Fig. 5. The out-
puts of AGLLNet suffer from artifacts. D&E achieves better
color quality at ISO 1600 but is still noisy. When increas-
ing the ISO to 3200, guided by the estimated noise level
map, our UTVNet generates clearer result than the outputs
of MIRNet and D&E. Next, we compare the visual results
at different exposure times as shown in Fig. 6. The color
is not recovered correctly by MIRNet. When reducing the
exposure time from 1/400 to 1/800, fewer photons can be
gathered by the camera. The proposed UTVNet introduces
fewer artifacts than the state-of-the-art methods.

4.3. Analysis and Discussions

Ablation study. The results of the ablation study are
shown in Table 4. The first two rows in Table 4 demonstrate
the importance of the noise level map M. To estimate the
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Output M1 M2 M3 M6 M7 M8

Figure 7. We visualize the average noise level maps of R, G, B channels in the first three and the last three iterations respectively. εavg in
the color coordinate axis is the average global noise variance. (Best viewed with zoom)

Table 3. Analysis of computational cost. Our UTVNet achieves
SOTA performance with a balanced computational requirement.

Method Params (M) Time (s) MACs (G) PSNR (dB)

DeepLPF 1.716 0.154 49.930 19.645
Pixel2Pixel 11.38 0.047 217.71 21.182

SID 7.760 0.060 164.62 21.212
D&E 8.621 0.234 417.36 22.157

MIRNet 3.107 0.756 929.43 22.345
UTVNet 7.745 0.199 273.76 22.691

Input D&E UTVNet Ground Truth
Figure 8. The example of failure case when restoring images.

effectiveness of the NLI-Block, we first remove the global
noise variance ε, so that parameter M is directly learned
from the convolution layers in the NLI-Block, which cause
a performance drop as shown in the third row of Table 4.
Because the pixel value is small in extremely low-light im-
ages, modifying the global noise variance is a better way to
estimate the differences in noise levels among pixels. Simi-
larly, replacing A(·) with ReLU also causes a performance
drop. The results verify the effectiveness of the way to ap-
proximate the noise level map and demonstrate that A(·)
provides a larger noise level value for guaranteeing the role
of M as the balancing parameter.

Analysis of the unfolding TV module. We investigate
the estimation of the noise level map in each iteration. The
average noise level maps of three R, G, B channels are cal-
culated for visualization in Fig. 7. In most of the iterations,
the noise level values of sharp edges or object boundaries is
lower than that of other regions, which means when smooth-
ing the regions containing edges and boundaries, the output
is mainly determined by the fidelity term. Such noise level
maps are essential for noise suppression, as they guarantee
the detail preservation after noise suppression, which is the
main reason that our UTVNet can recover finer details com-
pared with the state-of-the-art methods. We also analyze the
iteration times, with results shown in Table 4. For a speed-
accuracy trade-off, we adopt UTVNet with 8 iterations.

Limitation. As shown in Fig. 8, our UTVNet as well
as other state-of-the-art approaches may fail to restore the

Table 4. Ablation study and execution time with different numbers
of iteration on sRGB-SID dataset.

Method PSNR SSIM LPIPS Time(s)

w/o M 21.858 0.6938 0.3519 -
M → ε 21.483 0.6930 0.3547 -
w/o ε in NLI-Block 21.909 0.6974 0.3511 -
A(·) → ReLU 22.136 0.7050 0.3432 -
k = 4 22.476 0.6897 0.3479 0.159
k = 6 22.539 0.6985 0.3422 0.171
k = 10 22.647 0.7203 0.3379 0.220
k = 12 22.521 0.7124 0.3368 0.246
UTVNet (k = 8) 22.691 0.7179 0.3417 0.199

details with similar color as the background, and introduce
artificial halos. Such a problem is more difficult to tackle in
sRGB color space compared with raw Bayer space.

5. Conclusion

In this paper, we propose an adaptive unfolding total
variation network, referred to as UTVNet, for real-world
low-light noisy image enhancement in the sRGB domain.
Inspired by the relationship between the noise level and the
balancing parameter in model-based denoising methods, we
formulate an adaptive total variation regularization by in-
troducing a learnable noise level map that serves as the bal-
ancing parameters for each pixel to control the trade-off be-
tween noise reduction and detail preservation. The TV min-
imization problem is unfolded with fidelity and smoothness
constraints to learn the noise level map in an end-to-end
manner, and generating a noise-free smooth layer. Further-
more, we also design a noise level initialization block to
predict noise level maps in a coarse-to-fine way before the
unfolding TV architecture. Extensive experimental results
have verified the capability of the proposed UTVNet. We
expect future work to make further improvements in image
quality, especially in real captured low-light scenes.
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