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Figure 1: Given only sparse multi-view RGB videos (6 views for the left and middle, 8 views for the right), our method is
able to reconstruct various kinds of 3D shapes with temporal-varying surface details even under challenging occlusions for
multi-person interactive scenarios.

Abstract

We propose DeepMultiCap, a novel method for multi-
person performance capture using sparse multi-view cam-
eras. Our method can capture time varying surface de-
tails without the need of using pre-scanned template mod-
els. To tackle with the serious occlusion challenge for close
interacting scenes, we combine a recently proposed pixel-
aligned implicit function with parametric model for robust
reconstruction of the invisible surface areas. An effec-
tive attention-aware module is designed to obtain the fine-
grained geometry details from multi-view images, where
high-fidelity results can be generated. In addition to the
spatial attention method, for video inputs, we further pro-
pose a novel temporal fusion method to alleviate the noise
and temporal inconsistencies for moving character recon-
struction. For quantitative evaluation, we contribute a
high quality multi-person dataset, MultiHuman, which con-
sists of 150 static scenes with different levels of occlusions
and ground truth 3D human models. Experimental results
demonstrate the state-of-the-art performance of our method
and the well generalization to real multiview video data,
which outperforms the prior works by a large margin.

1. Introduction
Recent years have witnessed great progress in vision-

based human performance capture, which is promising to
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Code and dataset available: http://liuyebin.com/dmc/dmc.html

enable various applications (e.g., tele-presence, sportscast,
gaming and mixed reality) with enhanced interactive and
immersive experiences. To achieve surprisingly detailed
geometry and texture reconstruction, dense camera rigs
even equipped with sophisticated lighting systems are in-
troduced [56, 8, 29, 28, 20, 2]. However, the extremely
expensive and professional setups limited their popular-
ity. Although other light-weight multi-view human per-
formance capture systems have achieved impressive re-
sults even in real-time, they still relies on pre-scanned tem-
plates [36, 35], custom-designed RGBD [15, 13] or com-
mercial RGBD [61, 62] sensors, or limited to single-person
reconstruction [51, 18, 25, 19].

Benefiting from the fast improvement of deep implicit
functions for 3D representations, recent methods [47, 48,
32] are able to recover the 3D body shape only from a sin-
gle RGB image. Compared with the voxel-based [53, 69]
or mesh-based [40, 1] representations, an implicit function
guides the deep learning models to notice geometric details
in a more efficient way. Specifically, PIFu [47, 32] achieves
plausible single human reconstruction using only RGB im-
ages, and PIFuHD [48] further utilizes normal maps and
high resolution images to generate more detailed results.

Despite the prominent performance in digitizing 3D
human body, both PIFu [47] and PIFuHD [48] suffer
from several drawbacks when extending the frameworks
to multi-person scenarios and multi-view setups. Firstly,
the average-pooling-based multi-view feature fusion strat-
egy in PIFu will lead to over-smoothed outputs when high
frequency details (e.g., normal maps) are included in multi-
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view features. More importantly, in the two approaches,
reconstruction results are only promised with ideal input
images without severe occlusions in multi-person perfor-
mance capture scenarios. The reconstruction performance
of [47, 48] will be significantly deteriorated due to the lack
of observations caused by severe occlusions.

To address the aforementioned problems, we propose
a novel framework to perform multi-person reconstruction
from multi-view images. First of all, inspired by [54],
we design an spatial attention-aware module to adaptively
aggregate information from multi-view inputs. The mod-
ule is effective to capture and merge the geometric de-
tails from different view points, and finally contributing to
the significant improvement of results under multi-view se-
tups. Moreover, for multi-person reconstruction, we further
combine the attention module with parametric models, i.e.,
SMPL to enhance the robustness while maintaining the fine-
grained details. The SMPL model serves as a 3D geome-
try proxy which compensates for the missing information
where occlusions take place. With the semantic informa-
tion provided by SMPL, the network is capable of recon-
structing complete human bodies even under close interac-
tive scenarios. Finally, when dealing with moving charac-
ters from video, we propose a temporal fusion method by
weighting the signed distance field (SDF) across the time
domain, which further enhance the temporal consistency of
the reconstructed dynamic 3D sequences.

Another urgent problem is that the lack of high-quality
scans of multi-person interactive scenarios in the commu-
nity makes it difficult for accurately evaluating multi-person
performance capture systems like ours. To fill this gap
and better evaluate the performance of our system, we con-
tribute a novel dataset, MultiHuman, which consists of 150
high-quality scans with each containing from 1 to 3 multi-
person interactive actions (including both natural and close
interactions). The dataset is further divided into several cat-
egories according to the level of occlusions and number of
persons in the scene, where a detailed evaluation can be
conducted. Experimental results demonstrate the state-of-
the-art performance and well generalization capacity of our
approach. In general, the main contribution in this work can
be summarized as follows:

• We propose a novel framework for high-fidelity multi-
view reconstruction for multi-person interactive sce-
narios. By leveraging the human shape and pose prior
for resolving the ambiguities introduced by severe oc-
clusions, we achieve the state-of-the-art performance
even with partial observations in each view.

• We design an efficient spatial attention-aware mod-
ule to obtain fine-grained details for multi-view se-
tups, and introduce a novel temporal fusion method to
reduce the reconstruction inconsistencies for moving

characters from video inputs.

• We contribute an extremely high quality 3D model
dataset containing of 150 multi-person interacting
scenes. The dataset can be used for training and evalu-
ation of related topics in future research.

2. Related Work
Single-view performance capture Many methods have
been proposed to reconstruct detailed geometry from
single-view inputs. Typical techniques include silhouette
estimation [40], depth estimation [17, 50] and template-
based deformation [1, 71, 21]. Moreover, SMPL [37] re-
gression or optimization can be incorporated to generate
more reliable and robust outputs as shown in [69, 68, 4].
Real-time methods can be implemented with the aid of
a single depth sensor [60, 62] or by innovating compu-
tation and rendering algorithms [32]. Regarding to the
3D representations used in these methods, we can split
them into two categories: explicit [53, 40, 69, 22] and im-
plicit [47, 48, 25, 26, 7, 11, 5, 58, 49] reconstruction meth-
ods. Compared with traditional explicit 3D representations,
implicit representations show certain advantages in domain-
specific shape learning and detail preservation. For exam-
ple, PIFu [47] define the surface as a level set of function f .
Similarly, [25] defines a probability field of surface points,
and ARCH [26] predicts a 3D occupancy map. However, all
of the methods above are mainly focusing on single-person
reconstruction, and it remains difficult for them to achieve
accurate reconstruction under multi-person scenarios.
Multi-view performance capture Motion capture has been
developed to make accurate motion predictions in multi-
person interaction scenes [3, 36, 35, 28, 46, 45, 67, 65,
30, 41, 52, 34, 63]. Some of them even achieve real-time
performance [6, 12, 66, 39]. However, these works only
capture skeleton motions instead of the detailed geometries.
Regarding to multi-view geometry reconstruction, previous
studies use template-based deforming methods [10, 55, 18],
skeleton tracks [55, 18] or fusion-based techniques [14].
Aside from the long computation time, these methods of-
ten show deficiency in mapping textures, handling topol-
ogy changes or dealing with drastic frame-to-frame motion.
Moreover, the aforementioned methods also show limited
adaptability for multi-person capture as they cannot effec-
tively deal with occlusions. Robust quality reconstruction
methods often come at prohibitive dependencies and con-
straints. Some methods depend on dense viewpoints [8, 29]
and even controlled lighting [56, 20] to reconstruct de-
tailed geometry. Another branch of multi-view RGBD sys-
tems [15, 13, 61, 70, 42], achieve impressive real-time per-
formance capture results even for multi-person scenarios
benefiting from the strong depth observations. Note that
Huang et,al. [25] also presents a volumetric capture ap-
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Figure 2: Pipeline of our system. With estimated SMPL models and segmented multi-view, we design a spatial attention-
aware network and temporal fusion method to reconstruct each character separately.

proach to accomplish quality results using very sparse-view
RGB inputs, but they only focus on single-person recon-
struction without considering how to resolve the challenges
introduced by multi-person occlusions.
Attention-based network Apart from the huge success of
attention mechanism in natural language processing [54],
attention-based network has achieved prominent perfor-
mance in visual tasks, including image classification [57],
image segmentation [64, 59, 33], super-resolution [9],
multi-view stereo [38] and hand pose estimation [24]. In
these works, attention mechanism is applied to capture the
correlation of embedding features or context relationship of
hierarchical structure. In particular, Luo et al. [38] propose
an attention-aware network AttMVS to merge contextual
information from multi-view scenes. An attention-guided
regularization module is used for more robust prediction.
In [24], Lin et al. design a non-autoregressive transformer
to learn the structural correlations among hand joints. Re-
cent findings [16] have demonstrated that the self-attention
mechanism [54] is highly robust to severe occlusions in vi-
sion tasks.

3. Overview

An overview of our approach is illustrated in Fig 2. With
input as the segmented multi-view single person images
and the corresponding SMPL, the system outputs the re-
constructed 3D persons. The results are combined together
directly with no need for modifying the relative position,
since the multi-view setting ensures the 3D spatial relation-
ship between different individuals.

To obtain the inputs, we firstly fit SMPL-X [43] models
through 3D keypoints estimated from multi-view video by
a light-weight total capture method [67]. For multi-person
segmentation, we refer to a self-correction method [31] and
use SMPL projection maps to track different characters in
multi-view scenes. Finally, the 3D human can be gener-
ated through the spatial attention-aware network based on
the pixel-aligned implicit function, and further polished by
the temporal fusion method when the time information is
available in the video inputs, which will be described de-
tailedly in Section 4.

3.1. Preliminary

Our method is based on the implicit function. An im-
plicit function represents the surface of a 3D model as a
level set of an occupancy field function F, e.g. F(X) = 0.5.
Specifically, PIFu [47] combines 3D points with conditional
variables to formulate a pixel-aligned implicit function:

F (Φ(x, I), z(X)) = s : s ∈ [0, 1] (1)

where for an image I and a given 3D point X , x = Π(X)
is the 2D projection coordinate on the image plane, z(X)
is the depth value in the camera space, and Φ(x, I) is the
image embedding feature at location x. In PIFu, a multi-
layer perceptron (MLP) is trained to fit F.

In order to improve the quality of the reconstruction re-
sults, PIFuHD [48] maintains the origin PIFu framework as
a coarse level prediction while adding high resolution im-
ages to a fine level network:

FH(Φ(x, IH ,NF ,NB),Ω(X)) = s : s ∈ [0, 1] (2)

where IH ,NF ,NB are the high resolution image, the pre-
dicted frontal and back normal map, and Ω(X) is the 3D
embeddings extracted from the intermediate features in the
coarse level. More detailed human models can be recon-
structed with additional information brought by the increas-
ing resolution and high frequent details in the normal maps.

For multi-view images, a naive strategy is proposed in
PIFu [47] to extract multi-view features, i.e., performing
mean pooling on the embeddings from the intermediate
layer of the MLP. However, this simple method may lead
to loss of details and even collapse in real world cases, es-
pecially when the multi-view features are not consistent due
to the various depth in different views and occlusions.

4. Single Person Reconstruction
Reconstruction of a single person from multi-view is a

challenging problem. The main concern is to extract the
meta information of the observations from different views.
For this end, we propose an novel feature fusion module
based on self-attention mechanism, which is effective to
help the network aware of geometry details shown in the
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Figure 3: Architecture of our attention-aware network. We leverage a two-level coarse to fine framework (left) with a multi-
view feature fusion module based on self-attention (right). Human body prior SMPL is used in the coarse level to ensure the
robustness of reconstruction, and a specially designed SMPL global normal map helps the fine level network better capture
the details. To merge multi-view features efficiently, we leverage the self-attention mechanism to extract meta information
from different observations, which significantly improve the reconstruction quality.

multi-view scenes. To tackle with the inconsistencies and
loss of information brought by occlusions, we combine the
attention module with parametric models to enhance the ro-
bustness of reconstruction while preserving the fine-grained
details. The architecture of our network is illustrated in
Figure 3. Following PIFuHD [48], our method builds on
a coarse-to-fine framework. The coarse level conditioned
with images and SMPL models ensures a confident result,
and the fine level refines the reconstruction by utilizing high
resolution image feature maps (512× 512). The results can
be further polished by a temporal fusion method when time
information is available for video inputs. With the proposed
spatial attention and temporal fusion framework, the recon-
struction remains robust and in high quality .

4.1. Attention-aware Multi-view Feature Fusion

In PIFu [47], the simple strategy for multi-view recon-
struction is averaging the multi-view feature embeddings
from the intermediate layer of MLP. We argue that the
method is not efficient enough to merge the geometry de-
tails from multi-view scenes, which could lead to losing
information. As shown in Figure 4, when the strategy is
applied to PIFuHD [48], we obtain a smoother output. The
geometry features may not remain consistent since the vis-
ible regions changes from view to view. The mean pooling
method cannot handle these cases effectively.

To capture correlations between different views, inspired
by [54], we propose a multi-view feature fusion method
based on self-attention mechanism. The detailed architec-
ture of the module is illustrated in Figure 3. In practice,
given n observations, the multi-view features are stacked
together as φm, which is then embedded with three differ-

ent linear layers and self-attention mechanism is applied:

attention(φq,φs,φt) = softmax(
φT

q φs√
dk

)φt (3)

where φq = φmW q,φs = φmW s,φt = φmW t denote
the query, source and target feature embedded by learnable
weights W , and φm ∈ Rn×dk with dk as the embedding
size. The dot-product result is divided by

√
dk to prevent the

gradient vanishing problem. For linear weights W , we use
a multi-head attention strategy [54], i.e, W q,W s,W t ∈
Rnhead×dk which encode the multi-view features into nhead
different embedding subspaces, allowing the model to bet-
ter notice different geometry patterns jointly. As the result,
the weights of n observations are obtained through softmax
function by calculating the similarity between views in the
query feature φq and the source feature φs. The salient
covisible details tend to have large weights and will be
maintained, while the invisible regions which lead to small
weights have little influence on the outputs.

Finally, we stack the linear and attention layers to form
a self-attention encoder as proposed in [54]. The meta-view
prediction is then generated as:

FT (X) = gT (T (φm)) (4)

where T (φm) is the feature output of the self-attention en-
coder, and the implicit function gT predicts the occupancy
field. The output meta-view feature is expected to contain
the global spatial information. As demonstrated in Figure 4,
when combining the attention module with PIFuHD [48],
we are able to capture and preserve details with increasing
observations.
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4.2. Embedded with Parametric Body Model

Although the attention-aware feature fusion module is
effective to mine details from multi-view, without auxiliary
3D information, the network struggles to make a reasonable
prediction when information is lost due to occlusions. To
address the limitation, we combine the strength of attention
mechanism and parametric models.

A parametric body model, e.g, SMPL, contains the pose
and shape information of human bodies. The semantic fea-
ture of SMPL is extracted by 3D convolution network for
geometry inference. To improve the efficiency of atten-
tion module, inspired by the position encoding introduced
in [54], we further design an informative view representa-
tion by rendering SMPL global normal maps. The global
maps offer guidance for the network to identify the particu-
lar visible body parts in multi-view observations, and the
corresponding geometry features can be easily extracted.
Specially, to render the global normal maps, SMPL is trans-
formed to the canonical model space, where RGB color
is obtained from the normal vector and standard rendering
procedure can be applied. In multi-person scenes, though
images of single person can be fragmentary due to occlu-
sions, the extra information provided by SMPL compen-
sates for the missing part and remain consistent under dif-
ferent views, which significantly improves the quality and
robustness of reconstruction results.

With SMPL, we rewrite the two-level pixel-aligned func-
tion Eqn. 1 and Eqn. 2. The coarse level has the formula-
tion:

FL(X) = gL(ΦL(x, I),Ψ(X,V M )) (5)

and the fine level:

FH(X) = gH(ΦH(x, I,NF ,NVM
),ΩL(X)) (6)

where V M denotes the volumetric representation of SMPL,
Ψ(X,V M ) is the SMPL semantic features, NF ,NVM

re-
fer to the predicted frontal normal map and the rendered
SMPL global normal map, and ΩL(X) is the 3D embed-
dings from the coarse level. Note that here we perform the
reconstruction under the SMPL model space where SMPL
is normalized to a unit cube, allowing for the same setups
during training and inference. The reconstruction results are
then transformed to the world space and aligned together.

4.3. Temporal Fusion

For moving characters in video inputs, inconsistencies
could raise between continuous frames due to the change
of visible parts. To address the limitation, we propose a
simple temporal fusion method. Suppose pi,t is a vertex
of the reconstructed mesh at time t, we first calculate the
blending weight by:

Wt,i =
∑

j∈Nt,i

wt,j→i

wt,i
Wj (7)

Figure 4: When extending PIFuHD [48] to multi-view,
mean pooling method (left) leads to smoother outputs while
the attention module (right) helps to preserve the details.

whereNt,i is the nearest SMPL vertex set of pt,i,Wj is the
blending weight of SMPL vertex vj,t, and

wt,j→i = exp(−‖pi,t − vj,t‖
σ2

), wt,i =
∑

j∈Nt,i

wt,j→i (8)

is the weight of vertex vj,t. Given the estimated SMPL
models at time t and t′, the reconstructed vertices Vt can
then be warped to time t′ through the standard blend skin-
ning:

Vt′←t = W (W−1(Vt, J(βt), θt,Wt), J(βt′), θt′ ,Wt)
(9)

where W refers to the skinning procedure, and J, β, θ are
the SMPL parameters. With the warped mesh, we calculate
the signed distance field (SDF) and perform mean pooling
to generate continuous reconstructions:

Sfusion(t) =
1

h

∑
t′∈Ft

S(t← t′) (10)

where S denotes the SDF, and Ft is a sliding time window
with size of h. In our approach, h is set to 3 for consistent
results while maintaining details.

5. Extend to Multi-person Reconstruction

Multi-person reconstruction is implemented by recon-
structing each individual separately. The key challenge is
to train the network to maintain robust against occlusions in
interactive scenes. For this end, we add handcrafted occlu-
sions during training. We firstly collect 1700 single human
models from Twindom and THuman2.0 [61] to construct
a large scale dataset. To simulate multi-person cases, we
render images via taichi [23] and randomly project other
persons to the masks, where various situations can be gen-
erated from non-occlusion to heavy occlusions. The high
quality 3d models in the dataset enable us to render photo-
realistic pictures, and thus the network can be trained with
well generalization ability to real world data.

https://web.twindom.com/
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6. Dataset and Experiment

In this section we explain our experimental settings and
results. We highly recommend readers to refer to the sup-
plementary document and video for more implementation
details and a better visualization of our dataset and results.

6.1. MultiHuman Dataset

Current human dataset only provides single person scans
(Twindom and THuman2.0 [61]), or 3D skeletons and de-
formable parametric models [29, 27]. The lack of high-
quality scans of multi-person scenes limit the develope-
ment of the community. For this end, we propose Multi-
Human dataset, which is collected using a dense camera-rig
equipped with 128 DLSRs and a commercial photogram-
metry software. This system has also been used in con-
structing THuman2.0 [61]. Our dataset contains 150 multi-
person static scenes. In total there are 278 characters with
mostly university students wearing casual clothes. Each
scene contains 1 to 3 persons, where each model consists
of about 300,000 triangles with photorealistic texture.

To evaluate our method, we divide the dataset into dif-
ferent categories by the level of occlusions and number of
persons, i.e., 30 single human scenes, 18 occluded single
human scenes (by different objects), 46 natural interactive
two person scenes, 30 closely interactive two person scenes,
and 26 scenes with three persons.

6.2. Evaluation

Performance on MultiHuman We compare our method
with current state-of-the-art approaches, i.e, PIFu [47], PI-
FuHD [48] and PaMIR [68] (PIFu + SMPL). All the meth-
ods are trained with the same setting as described in Sec. 5.
For PIFuHD, the backside normal maps are not used in our
implementation, and multi-view features are fused by mean
pooling as [47, 68]. During test, the ground truth models
are normalized to 180 centimeters height and we render 6
view images as the input. The point-to-surface distance and
chamfer distance between the reconstruction and ground
truth geometry are used as evaluation matrix. Quantitative
results are shown in Table 1. When occlusions intensify
with increasing persons and interacting elements, the loss
of prior methods exacerbate while ours remains competi-
tive. Qualitative results illustrated in Figure 6 indicate the
prominence of our method and the large gap between prior
works and ours when handling occlusions in multi-person
scenes. Our method is able to reconstruct highly detailed
3D human robustly even under closely interactive scenes.
Performance on Real World Data We evaluate our method
on ZJU-MoCap dataset [44], a multi-view real world
dataset, with comparison to DeepVisualHull [25], a volu-
metric performance capture from sparse multi-view, Neu-
ral Body [44], a differentiable rendering method directly

Figure 5: Performance on ZJU-Mocap dataset [44]. Our
method outperforms state-of-the-art approaches including
DeepVisualHull [25], PIFuHD [48] and Neural Body [44].

trained on the test image sequence and PIFuHD [48]. We re-
implement DeepVisualHull and use the released code and
pretrained models of PIFuHD and Neural Body . Figure 5
shows the state-of-the-art performance of our method on the
benchmark. Reconstruction on real world images (6 view
for our data and 8 view for TotalCapture dataset [29]) is
demonstrated in Figure 1.

6.3. Ablation Study

This section aims to find the factors that contribute to the
prominence of our method. We achieve the state-of-the-art
performance mainly by leveraging a self-attention network
combined with SMPL and a temporal fusion method for
consistent results. We then demonstrate how the approaches
improve the reconstruction under different situations.
Variant 1: Self-attention Module We design a self-
attention module to better capture the details from different
observations. To figure out the strength of our multi-view
feature fusion method, we combine the attention module
with PIFu[47] (PIFu + Att) and PIFuHD[48] (PIFuHD +
Att), and further evaluate our method’s performance with-
out the module (replaced by mean pooling). Quantitative
results in Table 1 shows that the module benefits baseline
models under non occluded and occluded scenes. PIFuHD
with attention module even outperforms ours on single hu-
man reconstruction, since the limitations brought by SMPL
(Section 6.4) can lead to a lower accuracy for our method.
For PIFu the improvement is marginal, indicating that the
module is more effective to merge multi-view features with
the detailed geometry information offered by image nor-
mal maps. For our method, we lose the competitive per-
formance without the module. Qualitative examples in Fig-
ure 4 further demonstrate how the module can help the base-
line model maintain geometry details with increasing views.
Variant 2: Use of SMPL SMPL is used in our method
as a 3D proxy for the network to generate a reasonable
output, and we further design a SMPL global normal map
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Figure 6: Reconstruction results on MultiHuman dataset of single person, occluded single person, two natural-interactive per-
son, two closely-interactive person, three person scenes (top to bottom). Our method (e) generates robust and highly detailed
humans, significantly narrowing the gap between ground truth (f) and performance of current state-of-the-art methods.

Figure 7: Our method generates robust results even when
parts of human are not visible in closely interactive scenes.

(described in Section 4.2) to improve the robustness of re-
construction against occlusions and preserving details. The
huge gap between PaMIR [68] and ours indicates SMPL is
not only the factor contributing to our advantages. Table 1
shows the performance of our method without the designed
global maps (Ours w/o SN). The results demonstrate lower
accuracy of reconstruction, which implies the efficiency of
the global maps as a visual reference to guide the attention
network merge multi-view information.
Variant 3: Temporal Fusion Figure 8 illustrates the re-
sults of our method with and without temporal fusion on
real world image sequence. The temporal fusion method
further enhance the reconstruction consistency, which can
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Method
MultiHuman

(single)
MultiHuman

(occluded single)
MultiHuman

(two natural-inter)
MultiHuman

(two closely-inter)
MultiHuman

(three)
Chamfer P2S Chamfer P2S Chamfer P2S Chamfer P2S Chamfer P2S

PIFu (Mview + Mean)[47] 1.131 1.220 1.402 1.522 1.578 1.620 1.745 1.831 1.780 1.564
PIFuHD (Mview + Mean)[48] 0.914 0.948 1.365 1.406 1.353 1.376 1.614 1.655 1.814 1.496
PAMIR (Mview + Mean)[68] 1.173 1.113 1.362 1.309 1.227 1.110 1.400 1.198 1.414 1.281

PIFu (Mview + Att) 1.054 1.174 1.343 1.479 1.566 1.605 1.773 1.845 1.541 1.383
PIFuHD (Mview + Att) 0.845 0.867 1.195 1.189 1.278 1.272 1.515 1.450 1.468 1.287
Ours(w/o Att) 1.015 0.967 1.251 1.181 1.020 0.925 1.264 1.088 1.309 1.246
Ours(w/o SN) 1.063 1.017 1.277 1.233 1.126 0.989 1.357 1.141 1.334 1.155

Ours 0.895 0.887 1.041 1.021 0.956 0.927 1.134 1.067 1.130 1.078

Table 1: Quantitative evaluation on MultiHuman dataset. We compare our method with PIFu [47], PIFuHD [48], PaMIR [68]
with mean pooling feature fusion method [47], and several variants including PIFu + Att (attention module), PIFuHD + Att,
our method without attention (w/o att) and our method without the SMPL global normal maps (SN).

Figure 8: Performance on real world image sequence. (b)
shows the original result of each frame, (c) demonstrates the
results polished by temporal fusion.

be witnessed more clearly in our supplementary video.
Robustness against occlusions Quantitative results (Ta-
ble 1) shows that our method maintains high accuracy with
increasing occlusions. Figure 7 illustrates that when the
body parts are invisible due to heavy occlusion, smooth re-
sults will be generated.

6.4. Limitations

Since we use SMPL as a 3D reference, our method can-
not reconstruction other objects aside from human. For
challenging clothes, Figure 9 demonstrates that we are able
to reconstruct tight dress, while for loose clothing like a
wind coat, the reconstruction can be unstable.

Besides, our method relies on a well fitted SMPL, i.e, the
SMPL body within the correct region. An inaccurate SMPL
can lead to artifacts and failure cases (Figure 10).

Figure 9: Reconstruction of challenging clothes.

Figure 10: Failure case with inaccurate SMPL input. Our
method is misled by the incorrect SMPL information.

7. Discussion and Future Works

Our method is capable of reconstructing high-fidelity
multi-person with the suppose that the preprocessing is well
conditioned, i.e., calibrated cameras, accurate segmenta-
tion, well fitted SMPL. Though in real world cases the sys-
tem remains robust against small noise, large errors in pre-
processing could lead to failure cases. Future works can
focus on a more simplified pipeline, e.g., autonomous cali-
bration, reconstruction using implicit human template, and
lightweight networks to achieve real-time inference, which
will surely make the system more applicable.
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