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Abstract

Adaptive person re-identification (adaptive ReID) tar-
gets at transferring learned knowledge from the labeled
source domain to the unlabeled target domain. Pseudo-
label-based methods that alternatively generate pseudo la-
bels and optimize the training model have demonstrated
great effectiveness in this field. However, the generated
pseudo labels are inaccurate and cannot reflect the true se-
mantic meaning of the unlabeled samples. We consider such
inaccuracy stems from both the lagged update of the pseudo
labels as well as the simple criterion of the employed clus-
tering method. To tackle the problem, we propose an online
pseudo label generation by hierarchical cluster dynamics
for adaptive ReID. In particular, hierarchical label banks
are constructed for all the samples in the dataset, and we
update the pseudo labels of the sample in each coming
mini-batch, performing the model optimization and the la-
bel generation simultaneously. A new hierarchical clus-
ter dynamics is built for the label update, where cluster
merge and cluster split are driven by a possibility com-
puted by the label propagation. Our method can achieve
better pseudo labels and higher reid accuracy. Extensive
experiments on Market-to-Duke, Duke-to-Market, MSMT-
to-Market, MSMT-to-Duke, Market-to-MSMT, and Duke-
to-MSMT verify the effectiveness of our proposed method.

1. Introduction
Person re-identification (ReID) aims at retrieving the

same person’s images across different cameras [45, 13,
46, 22, 15, 17]. Despite the great advances of ReID
with deep learning models [23, 34, 37, 44, 3], ReID still
remains a challenge due to the various distributions of
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Figure 1. Schematic representation of online pseudo label refine-
ment by hierarchical cluster dynamics. Different colors represent
different clusters. Hierarchical labels are refined from low level
to high level. In each level, clusters undergo the split and merge
process in sequence (from left to right). For cluster split in h-th
level, the clusters in (h − 1)-th level serve as the indivisible split
units. For cluster merge in h-th level, the cluster in (h+1)-th level
provides a merge border which restricts the cluster candidates that
can be merged. Label propagation is then leveraged to split and
merge clusters in a unified framework.

images captured by different camera systems, which is
known as domain shift. Unsupervised Adaptive Person
Re-identification (Adaptive ReID) is therefore proposed to
transfer the learned knowledge from the labeled source do-
main (dataset) to correctly measure the inter-instance affini-
ties in the unlabeled target domain (dataset).

Clustering-based methods [30, 54, 55, 14, 58] dominated
the state-of-the-art performances for both adaptive and un-
supervised ReID tasks. They adopted an iterative two-
stage training scheme, where the pseudo labels are gener-
ated offline by clustering the extracted features before each
training epoch. Although the clustered pseudo labels can
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roughly capture the global distributions, we argue that the
supervision signals by these labels are sub-optimal, since
the offline label generation scheme fails to capture the vary-
ing feature distributions along with the network optimiza-
tion on-the-fly. Furthermore, existing methods treated all
the data points equally with the same clustering criterion,
ignoring the fine-grained distributions of the complex real-
world data. For example, person images captured by the
same camera (domain) should be imposed a more strict cri-
terion on clustering than those across cameras (domains).

To tackle the challenges above, we propose an online
pseudo label generation strategy by exploring how to dy-
namically and progressively update the pseudo labels un-
der a bottom-up framework. With the bottom-up frame-
work, we can capture the fine-grained distributions of com-
plex real-world data. With the well-designed dynamics for
cluster split and merge, we can capture the instant semantic
variation of the feature space. With the proposed method,
the pseudo label generation and the feature learning can be
conducted simultaneously in each training iteration.

Specifically, to enable the online pseudo label genera-
tion, we build a feature bank together with a hierarchical
label bank for storing and updating the features and pseudo
labels of all the unlabeled data, respectively. Given the en-
coded features of the samples in a mini-batch, the relevant
sample features in the feature bank are momentum updated,
and the corresponding labels are refined by merging to an
existing cluster or splitting into a new cluster. The merge-
and-split operation is achieved by propagating the pseudo
labels among a set of clusters in terms of cluster-to-sample
or sample-to-sample affinities, dubbed as “cluster dynam-
ics” in our paper. Cluster dynamics is conducted iteratively
to form a hierarchical pseudo label progression (as illus-
trated in Figure 1). The hierarchical label refinement struc-
ture also proves to be effective for capturing complex fea-
ture distribution of real images. Similar to mutualism in
the ecosystem, the introduced cluster dynamics and the hi-
erarchically progressed pseudo labels can properly capture
the instant and diverse distribution variations in the feature
space, leading to better performance of adaptive ReID.

The contributions of our work are summarized as three-
folds. (1) We for the first time introduce to generate and
update the pseudo labels online for adaptive ReID, where
feature learning and pseudo label generation proceed simul-
taneously. (2) A novel cluster dynamics method is pro-
posed to enable pseudo label progression and refinement
iteratively in a bottom-to-up hierarchical structure. (3) Ex-
tensive experiments on multiple adaptive ReID benchmarks
demonstrate the superiority of properly capturing the vary-
ing and fine-grained feature distributions by our method.

2. Related Work
Adaptive person re-identification. Adaptive person re-
identification (adaptive ReID) has attracted much attention
since it can save human efforts to image annotations. Gener-
ally, it can be divided into two categories, i.e., pseudo-label-
based methods [41, 14, 58, 15, 55, 64, 53] and domain-
transfer-based methods [7, 17, 24]. Domain-transfer learn-
ing targets to learn domain-invariant features from style-
transferred source domain images. SPGAN [9] and PT-
GAN [48] transformed source domain images to match
the image styles of the target domain while maintaining
the original person identities. The style-transferred im-
ages and their identity labels were then used to fine-tune
the model. HHL [64] learned camera-invariant features
with camera style transferred images. The performance of
domain-transferred methods largely relied on the quality of
generated images and all of them ignored the valuable de-
pendencies of images in the target domain.

Pseudo-label-based methods long stayed as state-of-the-
arts for adaptive ReID. The first work [12] in this stream
proposed to cluster features and optimize the network with
pseudo labels alternately. SSG [14] introduced to assign
hard pseudo labels for both global and local features, whose
performance was largely hindered by the hard label noise.
MMT [15] then focused on label refinery and proposed
a mutual learning scheme for better pseudo labels. AD-
Cluster [55] refined the clusters with augmented and gener-
ated images. The most related work to ours were SpCL [16]
and BUC [30]. SpCL [16] applied a self-paced learning
scheme to progressively generate more reliable clusters for
the proposed unified contrastive loss. However, the pseudo
labels in SpCL were updated after each epoch and thus
could not capture the instant label variation of the extracted
features, which became a bottleneck for pseudo label re-
finement. Our method proposes an online clustering frame-
work, which could capture the varying distributions in the
feature space. BUC [30] also proposed an online hierar-
chical clustering framework when generating pseudo labels.
However, it only defined cluster merge criterion and no split
mechanism was proposed. Therefore, there was no dynam-
ical bi-directional cluster adjustment, i.e., split and merge,
in BUC. Additionally, BUC only leveraged the traditional
criterion of hierarchical clustering which failed to consider
the data distribution in the feature space.
Pseudo label generation Typical pseudo label generation
can be divided into two categories: offline pseudo label
generation and online pseudo label generation. Traditional
clustering methods such as K-Means [33], spectral cluster-
ing [40], and DBSCAN [11] all belong to offline pseudo
label generation and rely on certain assumptions on data
distribution, such as convex shape, similar size, or same
density of clusters. More recently, some offline but neural-
network-based methods [5, 19, 52, 51, 18] were proposed to
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Figure 2. Illustration of the proposed framework. A mini-batch consists of the same number of source images (yellow) and target images
(blue). The feature bank B is updated by extracted features in a momentum way. For online pseudo label generation, we first assign the
label of the extracted feature as the label of the nearest neighbor and try to split/merge clusters containing both the new feature and its
nearest neighboring feature (blue solid circles surrounded by dash blue circle). We implement hierarchical label refinement by split-merge
sequence in each level. The pseudo labels generated in the top label bank are fed into contrastive loss.

perceive the data distribution from the training samples and
thus they improved the traditional algorithms by relaxing
above strong manual assumptions. While offline clustering
alone achieved the state-of-the-art for features in the sta-
ble space, they were not the optimal solution for adaptive
ReID, especially considering the varying feature distribu-
tion by network optimization.

To capture the varying feature distribution in adaptive
ReID, online pseudo label generation might be a better so-
lution because it assigned the label immediately after seeing
a new sample [29]. Zhan et.al. [57] leveraged the online K-
means clustering in training, achieving higher performance
and efficiency for unsupervised learning. Swav [2] con-
structed an optimization problem for online clustering and
incorporated it into contrastive learning. However, the num-
ber of classes in [57, 2] was a pre-defined hyper-parameter
and was fixed during training, which was not practical in
adaptive ReID. In contrast, our method sets the similarity
threshold as a hyper-parameter and the number of clusters
was adaptive. Therefore, our method can take the advantage
of online clustering and get rid of the inappropriate class
number in previous works.

3. Preliminary
Problem formulation. The goal of the adaptive person
ReID is to learn a feature extractor fθ that can generalize
well on the target domain with labeled source domain data.
The task provides two kinds of training data. One is the
labeled data of source domain Ds = {(xsi , ysi )}

Ns
i=1, where

each example (xsi , y
s
i ) is composed of an image xsi ∈ X s

and a label ysi ∈ Ys. The other is the unlabeled data of the
target domain Dt = {xti}

Nt
i=1. Here, Ns and Nt denote the

number of images in the source domain and target domain,
respectively. The source domain and the target domain usu-
ally have very different data distributions.
Pseudo-label-based approach by contrastive loss. Cur-

rent pseudo-label-based approaches adopt an iterative
and alternative two-stage pipeline for adaptive ReID.
Specifically, they construct a feature bank B =
{vs1,vs2, ...,vsNs

,vt1,v
t
2, ...,v

t
Nt
}, where vsi and vti repre-

sent the stored feature of a source domain image and a
target domain image, respectively. Before the training of
each epoch, it performs offline clustering on the target do-
main data to generate the pseudo labels Y = {1, 2, ..., Nt}.
The cluster center ck is the feature average of samples with
pseudo label k. Considering the source domain data with
ground truth labels and the target domain data with the
pseudo labels, a contrastive loss function can be defined for
each feature f = fθ(x) following SpCL [16] ,

Lf = − log
exp(

〈
f , z+

〉
/τ)∑ns

k=1 exp(〈f ,wk〉 /τ) +
∑nt

k=1 exp(〈f , ck〉 /τ)
, (1)

where z+ denotes the positive class prototype of f . If f is a
source domain feature, z+ = wk is the center of the source
domain class k that f belongs to. If f belongs to the k-th
target domain cluster, z+ = c+k is the k-th cluster center.
Besides, τ is the temperature empirically set to be 0.05, ns
is the number of source domain classes, nt is the number
of target domain clusters. The feature bank is initialized by
the features extracted by ImageNet-pretrained models and
is updated in a momentum way [49, 66, 6, 20, 42, 16].

4. Online Pseudo Label Generation
We incorporate a new online pseudo label generation

mechanism into the contrastive learning framework, where
the pseudo label generation is performed simultaneously
with the model optimization. The overall framework is il-
lustrated in Figure 2. In particular, the training samples in
each batch are sampled from both the source domainDs and
the target domain Dt. The newly extracted features of these
samples are used to update the feature bank B in a momen-
tum way. The target domain samples in a mini-batch are
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Figure 3. Illustration of cluster split and merge in Dynamic Cluster Refinement. Yellow circles represent the unit containing the extracted
features. (a) Cluster split in h-th level. Blue circles represent other split units in (h − 1)-th level that belong to the same cluster with the
yellow circle in h-th level. Red, yellow, and green circles mean the anchor units by density peak selection. The arrow in the light yellow
and light green in the split cluster stage means the non-anchor units merging into the corresponding anchor unit. (b) Cluster merge in h-th
level. Blue circles represent different units in h-th level but belong to the same cluster in (h+1)-th level, i.e., units within the merge border.
We merge clusters if the probability obtained by Eq. 2 is larger than a threshold σ.

fed into a hierarchical label bank H. With the feature em-
beddings provided in B, the coming-in samples undergo a
series of merge-and-split operations in each level of the hi-
erarchical bank, denoted by the cluster dynamics, to finally
obtain reliable pseudo labels. Based on the features in B
and the labels in H, we optimize the loss function in Eq.
1. The pseudo-code of our proposed method is presented in
the supplementary materials.

4.1. Hierarchical Label Bank

The hierarchical label bank H = {Y1,Y2, ...,YH} con-
sists of H levels and clusters the coming samples in a
bottom-up manner. During clustering, it obeys a cluster
preserve property. That is, the samples belonging to the
same class in the low level should also belong to the same
class in higher levels.

Based on this property, we perform a sequence of cluster-
split and cluster-merge operations across different levels of
the hierarchical label bank. Specifically, to split a cluster
in the (h+1)-th level, we use the h-th level clusters after
merge operation as the basic units and determine whether
they still belong to the same cluster by label propagation.
In this way, a cluster in the (h+1)-th level will be broken
if the basic units are not so robust to be in the same cluster.
Similarly, to merge the clusters in the h-th level, we only
try to conflate those clusters belonging to one cluster in the
(h+1)-th level. The clusters that have a high possibility of
belonging to the same cluster after label propagation will be
merged into one cluster. The update of the pseudo labels on
h-th level bank Yh is closely related to the clustering results
of the adjacent levels, i.e., Yh−1 and Yh+1, ensuring the
robustness of the online pseudo label generation.

4.2. Cluster Dynamics

We now delve into the details of cluster dynamics in the
h-th level, where the cluster split and cluster merge are per-
formed by label propagation in a unified framework.
Label propagation. Label propagation in our method is
used to compute the possibility of two samples/clusters be-
longing to the same class. It is an iterative algorithm and
has a closed-form solution:

P∗ = (I− αS)−1Y0, (2)

where P∗ = (p1,p2, ...,pn) ∈ Rn×K is the result of the
label propagation. n is the number of units to be assigned
label and K is the number of classes that n units may be-
long to. For the i-th unit, the results pi = (pi,1, ..., pi,K),
where pi,j is the probability that the i-th unit takes label
j. Y0 ∈ Rn×K is the initial label probabilities that we
will specifically define in cluster merge and cluster split.
S ∈ Rn×n is the affinity matrix after normalization [32].

Inspired by re-ranking [62], the normalized affinity ma-
trix S ∈ Rn×n is not only based on cosine similarity but
also based on the ranking order. Specifically, we denote
Nk(ci) as the k-nearest neighbors of ci, where ci is the
feature center of the i-th unit. The affinities are computed
between two units that are mutual neighbors of each other,
which mathematically can be presented as

Ŝij =

{
〈ci, cj〉 if ci ∈ Nk(cj) and cj ∈ Nk(ci),

0 otherwise.
(3)

The normalized affinity matrix S in Eq. 2 is then obtained
by Ŝ following [32]. Because the sample pair with positive
affinities are with high confidence to belong to the same
class, Eq. 3 is more strict than the common cosine similar-
ity, which ensures the clustering precision.
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Cluster split. In the h-th level, cluster split divides one
cluster Chi into small clusters. The split units are the clusters
in the (h−1)-th level that contain the samples in Chi . We de-
note these clusters as Oh−1i = {Ch−1i,1 , C

h−1
i,2 , ..., C

h−1
i,n }, where

n is the cluster number. The corresponding center features
are collected in oh−1i = {ch−1i,1 , c

h−1
i,2 , ..., c

h−1
i,n }. To split the

cluster Chi , we first selectK anchor samples from oh−1i , then
leverage label propagation to assign labels of {1, ..,K} to
the centers in oh−1i . Therefore the clusters inOh−1i will have
different labels. The samples in Chi finally borrow the labels
in Oh−1i to finish the cluster split.

In the process of the cluster split, we leverage the density
peak selection [39] to choose K label anchors. With the
label anchors, we initialize (Yh

0 )ij = 1 if ch−1
i is the j-

th label anchor, and (Yh
0 )ij = 0 otherwise. The affinity

matrix is computed according to Eq. 3. After we get the
closed-form solution (Ph)∗ by Eq. 2, the k-th cluster Ch−1

i,k

will be assigned a label by

yhk ← argmaxphi . (4)

In the label bank, we usually choose a new label index to
indicate yhk in order to avoid label overlapping.
Cluster merge. At the h-th level, cluster merge aims to
conflate small clusters that are highly possible to belong
to the same semantic class. To obey the cluster preserve
property, the clusters to be merged in h-th level should be-
long to the same cluster in the (h+1)-th level. Suppose
there are n clusters in h-th level belonging to the same clus-
ter Ch+1i in the (h+1)-th level. These clusters are denoted
by Ohi = {Chi,1, Chi,2, ..., Chi,n} and the corresponding cen-
ter features are denoted by oh = {chi,1, chi,2, ..., chi,n}. To
merge the clusters in Ohi , we first leverage label propaga-
tion to compute the possibility that two units belong to the
same class and then use a threshold σ to determine whether
they should be merged. Therefore some clusters in Ohi will
obtain the same label to finish the cluster merge.

In the process of cluster merge, the number of units is
equal to the number of classes, i.e., n=K, therefore we ini-
tialize Yh

0 = In×n. With the same affinity matrix definition
in cluster merge and the closed-form solution (Ph)∗, we
merge clusters Chu and Chv , i.e., yhu ← yhv , if phu,v > σ. In the
label bank, we usually re-organize labels to {1, 2, ..., N},
where N is the number of classes after merge in order to
avoid label discontinuity.

5. Experiment
5.1. Experimental Setup

Dataset. We evaluate our method on three large-scale
person re-ID datasets: Market-1501 [61], DukeMTMC-
reID [38] and MSMT17 [48]. Market-1501 consists of
32,668 annotated images of 1,501 identities taken by 6 cam-
eras, for which 12,936 images of 751 identities are used for

training and 19,732 images of 750 identities are in the test
set. DukeMTMC-reID contains 36,411 labeled images be-
longing to 1,404 identities. It has 16,522 person images of
702 identities for training and the remaining images of other
identities for testing. All images are collected from 8 cam-
eras. MSMT17 is the largest and most challenging dataset.
It consists of 126,441 bounding boxes of 4,101 identities
shot by 15 cameras, for which 32,621 images of 1,041 iden-
tities are used for training.
Evaluation protocol. We adopt Mean average preci-
sion(mAP) and cumulative matching characteristic (CMC)
to evaluate the methods’ performance on target domain
datasets. No post-processing techniques such as re-
ranking [62] or multi-query fusion [61] are implemented.
Implementation details. We implement our framework
on PyTorch [36] and adopt ResNet50 [21] pretrained on
ImageNet [8] as the backbone of extractor fθ. We use
Adam [27] with a weight decay of 0.0005 to optimize our
network. The initial learning rate is set to 3.5 × 10−4 and
decrease to 0.1 of its previous value every 8,000 iterations
in total 24,000 iterations. Following SpCL [16], the tem-
perature τ in Eq. 1 is set as 0.05 and the feature bank is
updated with momentum equals 0.2. During training, each
mini-batch contains 64 source domain images and 64 tar-
get domain images. The input images are resized to 256 ×
128. We employ random flipping, random crop, and random
erasing [63] for data augmentation. To save the computa-
tion and memory cost, we adopt a three-level hierarchical
structure. For cluster dynamics, α in Eq. 2 is set to 0.99 for
both cluster merge and cluster split. We adopt 30 k-nearest
neighbors in Eq. 3 for all datasets and use a fixed thresh-
old of 0.25 for cluster merge on all levels. During the split
process, we select up to 8 anchor samples for each cluster.

5.2. Experimental Results

Adaptive person ReID. We compare our proposed frame-
work with state-of-the-art methods on adaptive ReID in Ta-
ble 1. Our method outperforms all current state-of-the-arts
with a plain ResNet50 backbone. We compare our frame-
work with the most competing method SpCL [16]. Sim-
ilar to our method, SpCL also employs both feature bank
and label bank for contrastive loss. However, it adopts the
simple clustering algorithm, i.e., DBSCAN, and only up-
dates pseudo labels after each epoch, which may fail to cap-
ture the diverse and varying feature distribution. In con-
trast, our method can capture the varying feature distri-
bution because it refines the labels and optimizes the fea-
ture extractor simultaneously, i.e., refining labels for each
coming mini-batch. For capturing diverse distributions, our
method refines labels from bottom to up and leverages label
propagation to dynamically split and merge clusters in each
level by considering the neighboring information in feature
space. Based on the differences above, our method leads to
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Table 1. Comparison with state-of-the-art methods on domain adaptive person re-ID. “D”, “M” and “MSMT” stand for DukeMTMC-ReID,
Market-1501 and MSMT17, respectively. “Rk” denotes rank-k accuracy(%). “mAP” denotes mean average precision(%). “-” denotes not
reported. The top-two results are highlighted with bold and underlined fonts, respectively.

Methods
D→M M→ D D→MSMT M→MSMT MSMT→M MSMT→ D

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

D-MMD [35] ECCV’20 48.8 70.6 46.0 63.5 15.3 34.4 13.5 29.1 75.1 89.5 62.7 79.3
PCB-PAST [58] ICCV’19 54.6 78.4 54.3 72.4 - - - - - - - -

SSG [14] ICCV’19 58.3 80.0 53.4 73.0 13.3 32.2 13.2 31.6 - - - -
MMCL [43] CVPR’20 60.4 84.4 51.4 72.4 16.2 43.6 15.1 40.8 - - - -

ACT [50] AAAI’20 60.6 80.5 54.5 72.4 - - - - - - - -
SNR [26] CVPR’20 61.7 82.8 58.1 76.3 - - - - - - - -

DG-Net++ [67] ECCV’20 61.7 82.1 63.8 78.9 22.1 48.8 22.1 48.4 64.6 83.1 58.2 75.2
ECN++ [65] TPAMI’20 63.8 84.1 54.4 74.0 16.0 42.5 15.2 40.4 - - - -
DAAM [25] AAAI’20 67.8 86.4 63.9 77.6 21.6 46.7 20.8 44.5 - - - -

AD-Cluster [55] CVPR’20 68.3 86.7 54.1 72.6 - - - - - - - -
JVTC+ [28] ECCV’20 67.2 86.8 66.5 80.4 27.5 52.9 25.1 48.6 - - - -
NRMT [59] ECCV’20 71.7 87.8 62.2 77.8 20.6 45.2 19.8 43.7 - - - -
DCML [4] ECCV’20 72.6 87.9 63.5 79.3 - - - - - - - -
MMT [15] ICLR’20 73.8 89.5 65.1 78.0 25.1 52.9 24.0 50.1 - - - -

MEB-Net [56] ECCV’20 76.0 89.9 66.1 79.6 - - - - - - - -
SpCL [16] NeurIPS’20 77.5 89.7 - - - - 26.8 53.7 - - - -
UNRN [60] AAAI’21 78.1 91.9 69.1 82.0 26.2 54.9 25.3 52.4 - - - -

Ours 80.0 91.5 70.1 82.2 29.3 56.1 28.4 54.9 80.2 91.4 71.2 83.1

Table 2. Comparison with state-of-the-art methods on the unsupervised person re-ID task without the labeled source domain data. The
notations are the same as those in Table 1.

Methods
Market-1501 DukeMTMC-reID MSMT17

mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10

BUC [30] AAAI’19 38.3 66.2 79.6 84.5 27.5 47.4 62.6 68.4 - - - -
SSL [31] CVPR’20 37.8 71.7 83.8 87.4 28.6 52.5 63.5 68.9 - - - -

MMCL [43] CVPR’20 45.5 80.3 89.4 92.3 40.2 65.2 75.9 80.0 11.2 35.4 44.8 49.8
HCT [54] CVPR’20 56.4 80.0 91.6 95.2 50.7 69.6 83.4 87.4 - - - -

CycAs [47] ECCV’20 64.8 84.8 - - 60.1 77.9 - - 26.7 50.1 - -
SpCL [16] NeurIPS’20 73.1 88.1 95.1 97.0 - - - - 19.1 42.3 55.6 61.2

Ours 78.1 91.1 96.4 97.7 65.6 79.8 88.6 91.6 26.9 53.7 65.3 70.2

2.5% improvements in mAP on Duke-to-Market and up to
3% gains in mAP on more challenging tasks like Duke-to-
MSMT and Market-to-MSMT.

Unsupervised person ReID. Unsupervised person ReID
focuses on training the ReID model without any labeled
data, i.e, excluding source domain data from the training
set. Our method can be easily generalized to such a setting
by excluding wk in Eq. 1. As shown in Table 2, our method
surpasses all current state-of-the-arts by about 5% in mAP
on Market-1501 and DukeMTMC-reID. We compared our
method with the most similar BUC [30] method except
SpCL. BUC proposed a bottom-up clustering approach, but
it only merged two cluster pairs at each step without con-
sidering the distribution of clusters around. Moreover, it did
not include the split step and keep the balance of clustering
by setting a fixed speed of merging. The lack of split mecha-

nism may take the BUC less effective than our method. Our
method outperforms BUC by 39.8% and 38.1% in terms of
mAP on Market-1501 and DukeMTMC-reID.

6. Ablation Study

To investigate the contribution of hierarchical clustering
and cluster dynamics, we carry out component analysis of
our approach in Table 3 on adaptive ReID tasks. “Src. only”
only uses source domain images with ground-truth IDs for
training and tests on target domain. “Src. + tgt. instance”
treats each target domain sample as a distinct class. “Src. +
tgt. HC w/o LP” adopts typical hierarchical clustering struc-
ture with average linkage criterion. “Src. + tgt. HC (merge)
w LP” is the framework that removes cluster split dynamics
and only allows cluster merge by label propagation. “Src.
+ tgt. LP w/o HC” leverages label propagation on 1-level
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Figure 5. Performance comparison at different level indices. Blue,
green, and pink results represent average recall, average precision,
and F-score at each level, respectively.

Table 3. Ablation studies of our method on individual components.

Methods
D→M M→ D

mAP R1 mAP R1

Src. only 19.6 44.4 15.7 29.4
Src. + tgt. instance 6.0 14.8 4.7 10.2
Src. + tgt. HC w/o LP 53.3 74.8 59.0 75.0
Src. + tgt. HC (merge) w LP 75.0 90.0 61.7 78.0
Src. + tgt. LP w/o HC 74.6 89.0 68.9 82.2
Src. + tgt. HC w LP 80.0 91.5 70.1 82.2

Table 4. Comparison with different label updating intervals. The
experiments are implements with H = 3. We report the results of
every experiment in terms of mAP, R1, and R5.

Interval
D→M M→ D

mAP R1 R5 mAP R1 R5

0 80.0 91.5 96.3 70.1 82.2 89.7
1 74.2 89.3 95.5 67.4 80.6 89.0
2 68.3 86.3 93.8 64.0 77.8 87.3
3 64.2 82.5 91.7 62.2 76.6 86.5

bank. “Src. + tgt. HC w LP” is the proposed method that
both hierarchical clustering and cluster dynamics (split and
merge) by label propagation are adopted.

6.1. Effectiveness of Different Components

Effectiveness of hierarchical label generation. We first
explore the necessity of clustering and then the effectiveness
of hierarchical label generation. By comparing “Src. only”
and “Src. + tgt. instance”, we conclude replacing feature
centers ck by instance features vk in Eq. 1 leads to lower
performance than “Src. only”. The result demonstrates
that directly generalizing typical contrastive loss in unsu-
pervised image classification to ReID is inapplicable and it
is necessary to provide pseudo labels since ReID aims to
explore intra-class and inter-class relations. For hierarchi-
cal label generation, we compare “Src. + tgt. LP w/o HC”
and “Src. + tgt. HC w LP”, concluding that hierarchical la-

bel generation provides better pseudo labels by improving
the model 5.4% and 1.2% in mAP on Duke-to-Market and
Market-to-Duke.
Effectiveness of cluster dynamics. Cluster dynamics can
provide better pseudo labels by merging and splitting clus-
ters automatically, while traditional clustering methods only
include samples/clusters merge. To verify the effectiveness
of the split mechanism, we compare results between “Src.
+ tgt. HC (merge) w LP” and “Src. + tgt. HC w LP”. We
can see cluster split improves 5.0% and 8.4% in terms of
mAP on Duke-to-Market and Market-to-Duke, respectively,
which proves the effectiveness of cluster split.
Effectiveness of label propagation. Cluster merge and
cluster split use label propagation to update labels dynam-
ically. To illustrate the effectiveness of label propagation,
we conduct experiments that use average linkage as the cri-
terion for cluster merge and split. With the comparison be-
tween “Src. + tgt. HC w/o LP” and “Src. + tgt. HC w
LP”, we can see that label propagation achieves 26.7% and
11.1% improvements in terms of mAP on Duke-to-Market
and Market-to-Duke, respectively.

6.2. Hierarchical Label Generation

Number of levels. The design of hierarchical label gener-
ation aims to capture diverse feature distributions. In order
to explore the influence of the number of hierarchical label
bank levels, we conduct experiments on Duke-to-Market
and Market-to-Duke with hierarchical label banks from 1
level to 5 levels. From Figure 4, we can observe that by
changing the number of levels from 1 to 2, the result has a
significant jump. When the number of levels continuously
increases, the mAP only marginally increases and gradu-
ally comes to convergence. It demonstrates that for person
ReID, increasing number of levels can get better pseudo la-
bels and achieve an improvement in terms of mAP. As for
the stagnant growth after 2 levels, we attribute this phe-
nomenon to the simplicity of shooting conditions for aca-
demic datasets. In academic datasets, people in images with
the similar background tend to have similar postures, which
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Figure 6. Visualization of hierarchical clustering results of one
identity in DukeMTMC-reID.

makes the two-level structure have a sufficiently high effect.
Accuracy of pseudo labels at different levels. To get a
deeper insight into the structure of hierarchies, we present
average recall, average precision, and BCubed F-score [1]
at different level indices with 5 levels in total, i.e.,H = 5, in
Figure 5. We can observe that the average recall increases
significantly but the average precision only drops slightly
from 1st level to 5th level. The increasing average recall is
mainly due to the capture of semantic information at high-
level hierarchies while the slight drop in average precision
is the unavoidable price for recall improving. We also report
BCubed F-score to evaluate the overall performance of each
level. The result shows that the BCubed F-score increases
along with the level index, which indicates that hierarchical
clustering improves the label accuracy effectively.
Visualization. In order to present the proposed hierarchical
label generation more intuitively, we visualize the cluster-
ing results at different levels. As shown in Figure 6, at the
low level (h = 1), samples in the same cluster share high
similarities, such as the same shooting angle and the same
background. At the high level (h = 2), samples of the same
identity with larger variations in human posture and back-
ground are gathered.

6.3. Cluster Dynamics

Label updating interval. Compared with other state-of-
the-arts utilizing offline clustering, the advantage of our on-
line pseudo label generation is to capture the varying feature
space by network optimization and pseudo label refinement
simultaneously. We conduct experiments to explore the in-
fluence of label updating intervals. The more interval is,
the greater the inconsistent with network optimization and
pseudo labels is. As shown in Table 4, we can observe that
the testing result drops as the update interval increases. This
trend illustrates the importance of updating pseudo labels
and features simultaneously.
Anchor sample selection methods in cluster split. An-
chor samples serve as seeds for cluster split. We con-
sider better seeds for clusters will benefit the final perfor-
mance. In order to explore the influence of the anchor sam-
ple selection method, we conduct experiments with differ-

Table 5. Performance comparison with different selection meth-
ods. The total number of levels H is set to 3 in these experiments.
Random, FPS, and density peak stand for cluster split dynamics
use random choosing, farthest point sampling, and density peak to
select anchor samples in cluster split procedure, respectively.

Methods
D→M M→ D

mAP R1 R5 mAP R1 R5

Random 75.0 89.4 95.4 69.2 82.2 90.5
FPS 75.4 89.1 95.5 69.6 82.0 90.3

Density peak 80.0 91.5 96.3 70.1 82.2 89.7

Table 6. Comparison with different values of split αS and merge
αM in Eq. 2. We report mAP on DukeMTMC-reID to Market-
1501 and Market-1501 to DukeMTMC-reID. The total number of
levels H is 3 in these experiments.

αM D→M M→ D αS D→M M→ D

0.1 66.9 56.4 0.3 76.1 68.8
0.3 68.0 58.5 0.5 76.3 69.0
0.5 69.2 63.3 0.7 76.4 69.2
0.7 70.7 64.6 0.9 77.1 69.2
0.9 78.9 69.0 0.95 77.9 69.5
0.99 80.0 70.1 0.99 80.0 70.1

ent methods including random choosing, farthest point sam-
pling [10], and density peak [39]. As shown in Table 5, den-
sity peak surpasses other methods when tested on Market-
to-Duke and Duke-to-Market. This might be attributed to
the fact that high-density samples are more representative,
which will increase the accuracy of split results.
Alpha. To investigate the influence of α in Eq. 2, we com-
pare the performance in terms of mAP with different merge
αM and split αS . As shown in Table 6, our method achieves
the best performance when both αM and αS are set to 0.99.
The results suggest that regardless of cluster merge and
cluster split, the performance improves when more infor-
mation about surrounding neighbors is considered.

7. Conclusion
Pseudo label noise is one of the bottlenecks for fur-

ther improvements of clustering-based adaptive person re-
identification methods. In this paper, we consider such
label noise stems from the lagged update of the pseudo
labels and the simple criterion of the employed cluster-
ing algorithms. We propose an online label generation
with hierarchical cluster dynamics for adaptive person re-
identification. With online label generation, we refine
the labels of samples in the coming mini-batch and opti-
mize the network simultaneously. With hierarchical clus-
ter dynamics, we split and merge clusters in a bottom-up
framework, capturing diverse and complex feature distri-
butions. Extensive experiments on various datasets of per-
son re-identification verify the effectiveness of our proposed
method.
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