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Abstract

Understanding complex social interactions among agents
is a key challenge for trajectory prediction. Most existing
methods consider the interactions between pairwise traffic
agents or in a local area, while the nature of interactions
is unlimited, involving an uncertain number of agents and
non-local areas simultaneously. Besides, they treat heteroge-
neous traffic agents the same, namely those among agents of
different categories, while neglecting people’s diverse reac-
tion patterns toward traffic agents in different categories. To
address these problems, we propose a simple yet effective Un-
limited Neighborhood Interaction Network (UNIN), which
predicts trajectories of heterogeneous agents in multiple cat-
egories. Specifically, the proposed unlimited neighborhood
interaction module generates the fused-features of all agents
involved in an interaction simultaneously, which is adap-
tive to any number of agents and any range of interaction
area. Meanwhile, a hierarchical graph attention module
is proposed to obtain category-to-category interaction and
agent-to-agent interaction. Finally, parameters of a Gaus-
sian Mixture Model are estimated for generating the future
trajectories. Extensive experimental results on benchmark
datasets demonstrate a significant performance improvement
of our method over the state-of-the-art methods.

1. Introduction
The challenges hampering prediction accuracy largely

stem from the complex interactions among agents [1, 12, 57].
Recent advances in this regard [1, 3, 23, 26, 27] mainly fall
into two types: Graph-based methods [13, 32, 56] build a spa-
tial graph at each time step and aggregate the features from
adjacent nodes; RNN-based methods [4, 7, 57] model each
agent’s trajectory with Recurrent Neural Networks (RNNs)
and pool hidden states within a surrounding area.
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Figure 1. Hierarchical Graph Attention & Unlimited Neighbor-
hood Interaction. Different marked shapes are used to distinguish
the agent and category. (A) Hierarchical Attention. The agents
marked by the same color belong to the same category. (1) Cate-
gory Attention. Every category interacts with each other and itself.
Attention of one category to all categories (including the attention
to itself) is transferred to all agents of the category. (2) Agent At-
tention. We compute one’s attention to the rest of the agents in
the whole scenario, and the attention is directed. (B) Unlimited
Neighborhood. We consider the interaction as among a collective,
rather than between two agents or in a small area. The behavior
of any agent may influence a group of agents around the whole
scenario.

However, these methods suffer from limitations. Graph-
based methods [32] only exploit pairwise relation be-
tween the nodes, while other nodes are mixed and relayed.
GCN with many layers suffers from over-smoothing prob-
lem [9, 19]. In contrast, the interaction in real-world traffic
is much more complex than previously assumed, such as
multilateral relations (relation among three or more agents).
Namely, these methods are limited by inflexible numbers of
interaction agents.
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Moreover, RNN-based methods [4, 7, 57] merely consider
the local relations among an agent’s manually defined sur-
rounding area. As a result, potential interaction participants
outside of such “surrounding area” will be simply discarded.
Namely, these methods are limited by such hand-crafted way
for interaction agent selection.

To solve these problems, we propose the Unlimited Neigh-
borhood on heterogeneous graph to predict the future tra-
jectories of multi-categories (e.g., pedestrians, bikes, cars,
.etc), as shown in Figure 1. Unlimited Neighborhood means
the interactions are not limited by the number of agents or
the range of area. Namely, any agent in a scenario could
be involved in an interaction, as illustrated in Figure 2. In
addition, many related works [12, 56] treat different agents
as the homogeneous ones (i.e., pedestrians), while a real
traffic scenario usually involves heterogeneous agents (i.e.,
agents in diverse categories). Due to the difference in move-
ment patterns (e.g., velocity, front and rear distance and the
response to the interaction) for agents in different categories,
trajectory prediction on heterogeneous agents is exactly more
challenging compared to that on homogeneous ones.

Specifically, we present a simple yet effective Unlimited
Neighborhood Interaction Network for heterogeneous tra-
jectory prediction, which models the hierarchical attention
and fuses all agents involved in one interaction to predict
the future trajectories for all agents with different categories
simultaneously. Then, regarding the agents as nodes and
the agents with the same category as a category node, we
can construct a spatio-temporal-category graph combining
spatial, temporal and category information together. The
hierarchical graph attention module acquires the category-
category attention and then the agent-agent attention on the
constructed graph. Note that the edges in the constructed
graph are directed. Namely the edges are represented as
a weighted asymmetric adjacency matrix to measure the
interactions.

Once obtained the hierarchical interactions, an unlimited
neighborhood interaction module is employed to capture the
global information of all agents involved in the same interac-
tion by an asymmetric convolutional network. Based on the
global information and the hierarchical attention, the final
interaction is obtained and fed into a Graph Convolutional
Network (GCN) [32] which is followed by a Temporal Con-
volutional Network (TCN) [2], to estimate the parameters of
Gaussian Mixed Model (GMM) [37].

Experimental results on multiple benchmark datasets
demonstrate significant performance improvement of our
method over the state-of-the-art methods. The visualiza-
tion shows our method can learn the interaction among het-
erogeneous agents well. The code will be published upon
acceptance.

In summary, the key contributions of this paper include:
• We propose to model the interaction among heteroge-
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Figure 2. Comparison between Unlimited Neighborhood Interac-
tion and Pairwise Neighborhood Interaction (e.g., GCN). Different
agents are enclosed in differently colored boxes, corresponding
to solid circles in the same color. The hollow circle denotes an
interaction. As can be seen, an interaction involves a group of
agents in our method. On the right side, we show the predicted
trajectories with or without our Unlimited Neighborhood.

neous agents to improve the trajectory prediction;
• We present an Unlimited Neighborhood Interaction for

modeling the interaction among the agents involved in
the same interaction simultaneously;

• We present a Hierarchical Graph Attention module
for enhancing the agent-to-agent interaction based on
category-to-category interaction.

2. Related Works
Trajectory prediction mainly involves homogeneous and

heterogeneous trajectory prediction in real scenarios. Ho-
mogeneous trajectory prediction predicts future trajectories
under the same category (e.g., only pedestrians). On the
contrary, heterogeneous predicts future trajectories under
different categories (e.g., pedestrians, cars and bikes).

2.1. Homogeneous Trajectory Prediction

Prior to the prevalence of deep learning, there are classical
methods [47, 48, 52], including Social Force models [16],
Gaussian Process regression models [47], dynamic Bayesian
models [54] and hidden Markov models [44], which are
limited by hard-to-design hand-crafted features.

Thanks to the representational power of deep neural net-
works, trajectory prediction is recently dominated by deep
learning based methods, such as Recurrent Neural Networks
(RNNs) [1], Generative Adversarial Networks (GANs) [12],
Graph Convolutional Networks (GCNs) [32, 43] and Trans-
formers [56]. S-LSTM [1] aggregates the interaction infor-
mation through a pooling mechanism. S-GAN [12] predicts
multiple socially acceptable trajectories using GANs. Later
works measure the influence of interaction by attention mech-
anism. S-BiGAT [20] uses Graph Attention Networks [50]
to model the interactions between pedestrians. STAR [56]
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Figure 3. Framework of our UNIN. The trajectories are reformed as spatiao-temporal and category inputs, and a spatio-temporal-category
graph (STC graph) is composed. Hierarchical Attention learns directed category attention representing the category interactions, and directed
agent attention representing the agent interactions from the STC graph. Collective interactions are captured by subsequent Unlimited
Neighborhood Interaction with the asymmetric attention matrix, and then fed into a spatio-temporal graph convolutional network and
temporal convolutional network to estimate the parameters of the Gaussian Mixture Model, from which the future trajectories are predicted.

separately models spatial interaction and temporal continuity
through Transformer [49] architecture on graph.

Since physical constraints in the scenario and human
states are the predominant factors in trajectory predic-
tion [40] under certain circumstances, extensive studies fo-
cus on the role of physical information recently [6, 27, 46].
Sophie [40] leverages both physical and social information
to predict pedestrian trajectory. Notably, CVM [15] takes
pedestrians’ velocity and direction into account rather than
semantic environment. ECTP [30] infers trajectory end-
points first as additional information to assist pedestrians’
planning path. Different from pedestrian trajectory predic-
tion, vehicle trajectory prediction methods can take advan-
tage of more sensors and semantic environments, such as 3D
point cloud and lane line [28, 55].

2.2. Heterogeneous Trajectory Prediction

Homogeneous traffic agents like pedestrians, vehicles fol-
low different social conventions, and thus the homogeneous
trajectory prediction methods cannot simultaneously model
the interaction of all agents of different categories in the
same scene and predict accurately.

Heterogeneous trajectory prediction in the real traffic
scenes gradually attracted more research interest. JPKT [3]
treats vehicles as rigid particles, where non-particle objects
are subject to kinematics, and model vehicles and pedestrians
with separate LSTMs. DATF [34] models agent-to-agent and
agent-to-scene interactions and proposes a new approach to
estimate trajectory distribution. In brief, these methods focus
on different behavior patterns of heterogeneous traffic agents,
and the influence of the semantic environment.

While previous works ignore the interaction at the cate-
gorical granularity and unlimited interactions among agents,
we model the interaction among all agents. In our method,
physical constraints are implicitly learned through observed

trajectories without environmental semantics as prior.

2.3. Graph Neural Network

Graph neural network (GNN) [42] extends the neural net-
work to process data without nature order. GNN learns a
state vector embedding containing information about every
node and its corresponding neighbors. In order to gather
information from neighbor nodes and their edges and enrich
the representation of GNN, extensive works [14, 18, 25, 50]
study more complex graph structures. GCN [18] and Graph
Sage [14] use spectral and spatial convolutional aggregation
respectively, in which spectral convolution utilizes Fourier
frequency domain to calculate graph Laplacian eigenvalue
decomposition and spatial convolution operates on adjacent
neighbor nodes in the spatial domain. GGNN [25] proposes
a gated graph neural network to improve long-term infor-
mation dissemination. GAT [50] introduces the attention
mechanism to acquire the hidden state of the node by adding
attention to its neighbor nodes. Highway GCN [36] lever-
ages skip connection to avoid introducing more noise from
superimposing [24] on the network layer.

The previous trajectory prediction methods, e.g., GCN
and GAT, lack of a clear and proper distinction between
heterogeneous nodes and homogeneous nodes, while our
method takes large scale heterogeneous graph into account.
In addition, most existing graph neural networks group het-
erogeneous nodes into a subgraph, which suffer from data
imbalance and ineffective global information aggregation. In
contrast, we utilize hierarchical graph attention to aggregate
the information of large-scale heterogeneous nodes.

3. Our Method
In this section, we introduce our proposed UNIN, which

aims to model interactions of heterogeneous traffic agents
under the guidance of unlimited neighborhood interaction.
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Given a succession of video frames of traffic scenarios over
time t ∈ {1, 2, . . . , Tobs}, there are C categories with N
agents. The goal of trajectory prediction is to predict the
location of each traffic agent i ∈ {1, . . . , N} within a future
time horizon t ∈ {Tobs+1, Tobs+2, . . . , Tpred}. For a traffic
agent i ∈ {1, . . . , N} of category c ∈ {1, 2, . . . , C} , it is
denoted as V i

t =
(
xi
t, y

i
t, c

)
, where

(
xi
t, y

i
t

)
is the location

coordinate of traffic agent i at time step t ∈ {1, 2, . . . , Tpred}.
As discussed, the interactions in previous works are only

considered between two traffic agents or in a local area, while
an unlimited number of other agents may be simultaneously
involved in an interaction regardless of their category. Addi-
tionally, most of the existing works neglect people’s diverse
reactions to heterogeneous agents, which is spontaneous in
real traffic scenarios, is under-explored. To mitigate these
limitations, we propose the Unlimited Neighborhood Inter-
action to capture the impact that all agents experience at
the same time, and a hierarchical attention module to model
heterogeneous interactions among traffic agents of different
categories.

The overall framework of UNIN is illustrated in Figure 3.
To aggregate information of agents involved in the same
interaction, an interaction graph is built first to gather global
interaction information. Subsequently, the Hierarchical At-
tention Module is used to obtain the category-category inter-
action and agent-agent interaction based on the global inter-
action information. Next, we introduce the Unlimited Neigh-
borhood Module directly modeling interactions by pooling
features among unlimited neighborhood agents. Finally, a
heterogeneous graph convolution network and a temporal
convolutional network are used to predict the parameters of
a Gaussian Mixture Model for trajectory prediction.

3.1. Heterogeneous Graph Construction

There are agents in multiple categories in heterogeneous
trajectory prediction, and thus we build a spatio-temporal-
category graph Gstc to model them altogether, as shown in
Figure 3, where every agent is regarded as a node and the
interactions among agents are regarded as edges. To enhance
the representations of category-category interaction, we also
regard all agents with the same category as a category node:

Gstc = (V i
t , E

i
t , E

ij
t , Sc

t , D
c1,c2
t , Dc

t ), (1)

where i ∈ {1, ..., N}, t ∈ {1, . . . , Tpred}, c = {1, . . . , C}
represent the index of node, time step and category, respec-
tively. V i

t = {(xi
t, y

i
t, c)} represents the node i with cate-

gory c at the time step t. Ei
t = {(V i

t , V
i
t+1)} is a temporal

edge connecting node V i
t and V i

t+1. Ei,j
t = {(V i

t , V
j
t )} is

a spatial edge connecting node V i
t and V j

t . Sc
t = {V i

t |
∀i ∈ {1, . . . , N}} is the category node with category c at
time step t generated by the concatenation of all agents
with category c at time step t, which represents the em-
bedding, i.e., the concatenation of the agents of category c.

We consider the difference of various categories of agents,
and project them with a common transformation matrix.
Then we concatenate the agent features of the same category.
Dc1,c2

t = {(Sc1
t , Sc2

t ) | c1, c2 ∈ {1, . . . , C}} is the spatial
category edges connecting category node Sc1

t and Sc2
t at

time step t. Dc
t = {

(
Sc
t , V

i
t

)
} is the spatial category-agent

edges connecting category node Sc
t and each spatial node

V i
t belonged to category c.

The built spatio-temporal-category graph Gstc includes
not only the information of each agent, but also the infor-
mation of each category. Therefore, we can leverage Gstc to
build category-to-category and agent-to-agent interaction.

3.2. Hierarchical Graph Attention

The interaction among agents is an essential factor for
trajectory prediction. Especially, the heterogeneous inter-
action is more complex due to diverse object categories
compared with homogeneous interaction [33]. In traffic sce-
narios, traffic agents (pedestrians, drivers, bikers, etc.) tend
to react differently according to the categories of agents they
encounter because of the difference in social habits and ex-
periences. Hence, the interaction between categories (i.e.,
category-category interaction) is also an important factor
affecting agent’s trajectories.

In order to model the interaction among agents with mul-
tiple categories, we propose a Hierarchical Graph Attention
module. It models the category-category interaction first,
based on which the agent-agent interaction is modeled.

Category-Category Interaction. To build the interac-
tion among categories, we obtain the category features of
each category first on our built spatio-temporal-category
graph, based on which the category-wise interaction weights
are obtained through pooling operation.

In light of the imbalanced amount of agents in different
scenarios, we employ a padding operation to align them to
the same amount. Then, the embeddings hc

t of each category
are obtained by a linear projection, i.e.,

hc
t = ϕ (We,Θ(Sc

t )) , (2)

where ϕ (·, ·) denotes linear projection, Sc
t is the category

node with category c at time step t, hc
t is the embedding of

category c at time step t, Θ is the padding operation, and
We is the learnable weight of linear projection. The padding
size equals to the largest number of nodes in the scenario for
efficient computation. Padded convolution is also flexible
for arbitrary number of agents, as convolution on 0 will not
change the result.

After acquiring the embeddings of each category, the
embeddings of any two categories are concatenated to ob-
tain fused embeddings. Subsequently, the category-category
attention scores At are generated by graph attention mecha-
nism [51], as follows:

Ac1,c2
t = δ (µc · (hc1

t ∥ hc2
t )) , (3)
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where Ac1,c2
t is the attention score vector of category c1 to c2

at time step t, µc denotes a learnable attention weight vector
of category c used to adjust the weights among categories,
δ(·) denotes a non-linear activation function.

The attention score vector Ac1,c2
t measures the interaction

of one category to other categories. The category-category
interaction aims to assist agent-agent interaction, and thus
we only acquire an importance factor by pooling operation
for each attention score vector Ac1,c2

t . We employ the max
pooling(Υ) to choose the biggest value in Ac1,c2

t as the im-
portance factor ac1,c2t , i.e.,

ac1,c2t = Υ(Ac1,c2
t ) . (4)

After acquiring the importance factor between any two
categories, the final category-category interaction CIc1,c2t is
obtained by normalizing all the importance factors (which
the number of categories is n):

CIc1,c2t =
exp (ac1,c2t )∑
i,j∈n exp (at

i,j)
. (5)

The weights of spatial category edges Dc1,c2
t represent the

category-category interaction, and thus we assign value to
Dc1,c2

t by the obtained interaction values.
Agent-Agent Interaction. Some related works [32] indi-

cate the relative distance between agents is essential in some
special scenarios. Therefore, we obtain the agent-agent in-
teraction by a combination of learning-based method and
distance-based method.

It is intuitive to define a weight that grows for approaching
agents based on an assumption that agents are more suscep-
tible to closer ones. Meanwhile, the attention mechanism
ensures that far interacting agents can also be recognized by
the model.

The distance-based method initializes the spatial edge Et

with the relative distance between the corresponding agents.
Then, the normalized interaction matrices Rt is obtained by
Laplace Transform [31] as follows:

Ei,j
t =

{
1/∥pit − pjt∥2, ∥pit − pjt∥2 ̸= 0
0, Otherwise

,

Rt = Λ
− 1

2
t ÊtΛ

− 1
2

t ,

(6)

where pit, p
j
t is the location coordinates for agent i, j at time

step t, Êt = Et + I , and Λt is the diagonal node degree
matrix of Et.

For the learning-based method, we need to fuse the fea-
tures of all agents. Fortunately, the learned attention score
vector At shown in Equation 3 already includes the required
information, and thus we directly employ the learned At to
obtain the agent-agent interaction ATTt, i.e.,

ATTt = Rt ⊗At, (7)

where operator ⊗ denotes dot-product operation.

3.3. Unlimited Neighborhood Interaction

In a real traffic scenario, interactions differ among the
uncertain numbers of agents, i.e., an agent could respond dif-
ferently as the number of interacted agents varies. However,
the existing graph attention mechanism [53] only computes
the interaction between pair-wise agents because the inner-
product is operated only between two vectors once. And
graph convolutional network with many layers suffers from
over-smoothing [9, 19]. According to our observation, GCN
with one or two layers is optimal for our task. Hence, the
learned agent-agent interaction ATTt can not adaptively cap-
ture the interaction among the uncertain number of agents.

To mitigate this, we propose the Unlimited Neighborhood
Interaction module to capture the information of all agents
involved in a same interaction simultaneously. Note that
all agents involved in an interaction are called “unlimited
neighborhood”, regardless of the numbers of agents. In
particular, we employ an asymmetric convolution to obtain
and aggregate the global interaction information on ATTt,
i.e.,

ht = δ(Conv1D(ATTt)), (8)

where δ is the non-linear activation function, and we use
padding operation to ensure the output size the same as the
input size.

The asymmetric convolution is computed repeatedly and
thus the global spatial interaction information can be aggre-
gated, meaning that all agents involved in an interaction are
considered, regardless of the number of the agents. Because
small asymmetrical kernel with padding captures implicit
interactions, which are not limited by the number of agents
or the range of area. It ensures any number of agents in a
specific interaction can be considered, while a big symmetric
kernel mixes different numbers/ranges of agents in different
interactions.

The final interaction Ft is obtained through fusing unlim-
ited neighborhood and category-category interaction:

Ft = CIc1,c2t ⊗ ht. (9)

3.4. Trajectory Prediction

After obtaining the final interaction Ft, we regard it as
the adjacency matrix of the spatio-temporal-category graph
and feed it in GCN, which is followed by a TCN to esti-
mate the parameters of Gaussian Mixture Model. A residual
connection is used in GCN, i.e.,

H
(l)
t = δ(H

(l−1)
t + F

(l)
t · Conv(H(l−1)

t )),

HT = TCN(Ht),
(10)

where δ is a non-linear activation function, l is the index of
layers of GCN, H0

t = Vt represents the node of the graph,
and HT is the output features of TCN. Thus we acquire the
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Models Argoverse nuScenes Avg Apolloscape

ADE FDE ADE FDE ADE FDE WADE WFDE

S-LSTM [1] 1.385 2.567 1.390 2.676 1.388 2.622 1.89 3.40
DESIRE* [21] 0.896 1.453 1.079 1.844 0.988 1.649 - -
R2P2-MA [38] 1.108 1.771 1.179 2.194 1.144 1.983 - -

CAM [34] 1.131 2.504 1.124 2.318 1.128 2.411 - -
MFP [45] 1.399 2.684 1.301 2.740 1.350 2.712 - -

MATFD [58] 1.344 2.484 1.261 2.538 1.303 2.511 - -
MATFG* [58] 1.261 2.313 1.053 2.126 1.157 2.220 - -
STGCNN [32] 1.305 2.344 1.274 2.198 1.289 2.371 - -
StarNet [59] - - - - - - 1.343 2.498
TPNet [11] - - - - - - 1.281 1.910

NLNI (Ours) 0.792 1.256 1.049 1.521 0.921 1.388 1.094 1.545

Table 1. Comparison with other methods on dataset Argoverse, nuScenes and Apollscape in ADE and FDE metrics (the lower the better).
All methods observe 2 seconds and predict the next 3 seconds of trajectories. Note that the Apolloscape dataset uses weighted ADE and
FDE metric, i.e., the weights of vehicles, pedestrians and cyclists are assigned as 0.20, 0.58 and 0.22, respectively. The methods marked by
“*“ use additional scene context. Our UNIN significantly outperforms the state-of-the-art works.

Datasets Models

S-LSTM [1] MATF [58] DESIRE [21] NRI [17] S-GAN [12] SOPHIE [40] Traject++ [41] STGCN [32] SIMAUG* [32] STGAT [20] Ours

SDD 31.2 / 57 22.6 / 33.5 19.3 / 34.1 25.6 / 40.3 27.3 / 41.4 16.3 / 29.4 19.3 / 32.7 20.6 / 33.1 15.7 / 30.2 18.8 / 31.3 15.9 / 26.3

Table 2. Comparison with the previous approaches on the SDD benchmark dataset, which mainly contains the trajectories of pedestrian. The
performance is evaluated in ADE/FDE metrics (the lower the better). The approach marked by “*“ uses additional simulation data.

collective interaction information from both the space and
the time information.

Loss Function. Since the traffic agents of different cate-
gories have their own unique movement pattern, e.g., a cer-
tain velocity range, front and rear distance to another object,
we assume that the trajectory coordinates (xi

t, y
i
t) of traffic

agents i follow a Gaussian Mixture Model [10]. Hence, our
model is trained by minimizing the negative log-likelihood
loss as follows:

Li = −
Tpred∑

t=Tobs+1

log
K∑

k=1

πkN
(
(xi

t, y
i
t) | µ̂t

n, σ̂
t
n, ρ̂

t
n

)
,

(11)
where µ̂t

n is the mean, σ̂t
n is the standard deviation, ρ̂tn is the

correlation co-efficient, and πk is the weight factor of the
k-th Gaussian distribution.

4. Experiments
Datasets. Some datasets focus on homogeneous trajec-

tories, and contain fewer traffic scenes, e.g., ETH [35] and
UCY [22], which only label pedestrian trajectory within
three scenes. However, there are often diverse categories
in the real scenario, and thus we train and evaluate our
model on more complex datasets, including Stanford Drone
Dataset(SDD) [39], nuScenes [5], Argoverse [8] and Apol-
loscape [29], which are widely used in heterogeneous trajec-
tory prediction with diverse categories and rich traffic scenes.
The SDD consists of eight unique scenes on the university
campus, more than 100 static scenes, 19K traffic agents
of 6 categories, and approximately 40K interactions. The
nuScenes, Argoverse and Apolloscape are large-scale trajec-

tory datasets for urban streets with dense traffic in highly
complicated situations. Besides, trajectories in them are col-
lected through an in-vehicle camera so that they have more
different scenarios.

We follow the existing works, observing 3.2 seconds of
trajectories while predicting the next 4.8 seconds in Stanford
Drone Dataset, and observing 2 seconds while predicting
the next 3 seconds in nuScenes, Argoverse, and Apolloscae
datasets.

Evaluation Metrics. We follow existing works [56] and
employ two common metrics to evaluate the performance:
Average Displacement Error (ADE) and the Final Displace-
ment Error (FDE), which are defined as follows:

ADE =

∑
n∈N

∑
t∈Tp

∥p̂nt − pnt ∥2
N × Tp

,

FDE =

∑
n∈N ∥p̂nT − pnT ∥2

N × Tp
,

(12)

where ADE measures the average L2 distance between
ground truth and our predicted future positions over all time
steps, while FDE measures the L2 distance between our
predicted final destination and the true final destination.

4.1. Implementation Details

In the Hierarchical Attention Module, the embedding
dimension of one category is set to 8 and the output size
after padding is equal to the largest number of nodes in
the scenario. In the Unlimited Neighborhood Module, the
kernel-size k of the convolution(UNIConv) is fixed at 3. We
train our model with SGD, and the learning rate is set to
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Dataset MLP CNN NLIN (Ours)w/o HGA w/o UNI w/o HGA w/o UNI

Apolloscape 1.460/1.794 1.576/1.843 1.837/2.014 1.792/1.955 1.094/1.545
nuScenes 1.613/1.969 1.547/1.728 1.763/1.982 1.701/1.934 1.049/1.521

Table 3. The ablation study of each component (Using MLP/CNN to replace each component). UNIN (Ours) combines with each component.

UNIConv Size 1 2 3 5 10

ADE 1.179 0.921 0.998 1.247 2.691
FDE 1.632 1.388 1.323 1.766 3.515

Table 4. Ablation study of kernel size for Unlimited Neighborhood
convolution.

0.005, which decays by a factor 0.2 after every 10 epochs.
The weighted factor of GMM loss is acquired from the Hier-
archical Attention Module and the approximate ratio of the
categories in scenes. We train our model on an RTX2080Ti
GPU for up to 50 epochs. And we use a dataset split of 60%,
20%, 20% for training, validation and testing, respectively.
The complete code will be published once upon acceptance.

4.2. Quantitative Evaluation

Table 1 and Table 2 show the comparison of our
method against state-of-the-art approaches, including So-
cial LSTM [1], Social GAN [12], STGAT [20], Social
STGCNN [32], Trajectron++ [41], NRI [17], SoPhie [40],
MATF [58], DESIRE [21], SimAug [26], P2P2-MA [38],
CAM [34], MFP [45], StarNet [59] and TPNet [11]. Overall,
our method significantly outperforms all compared meth-
ods on all datasets according to the tables. Particularly, our
UNIN surpasses the DESIRE (the second best) by 2.7%
on average in ADE and 13.85% on average in FDE for
nuScenes, Argoverse and Apolloscape. Meanwhile, our
method achieves a performance improvement by 10.5% on
average in FDE for SDD dataset. The underlying reason is
that our method can model the collective interaction among
the agents involved in the same interaction simultaneously.
Meanwhile, the Hierarchical Attention enhances the agent-
agent interaction based on category-category interaction.

nuScenes, Argoverse and Apolloscape. Our UNIN out-
performs all the competing methods on the three datasets.
The nuScense, Argoverse and Apolloscape are multi-
category mixed datasets with a majority of vehicles. Com-
pared with the RNN-based method, such as S-LSTM [1],
our method surpasses it by 42.8%/51.1% in FDE/ADE met-
rics. We speculate that S-LSTM employs a pooling mech-
anism to aggregate local agents’ states, while it does not
take the long-range interaction into account. In addition, our
method also outperforms the Graph-based methods, e.g., S-
STGCNN [32], by 28.5%/41.3% in FDE/ADE metrics. We
speculate it takes the long-range interaction into account but
the interactions are only modeled between pairwise agents.
Interestingly, our method outperforms the methods employed
scene context, such as DESIRE [21] and MATFG [58]. Both

of them employ a LSTM to model each agent and fuse the in-
teraction with in a local area, while our model considers the
unlimited neighborhood, which is not limited by the number
of agents and the range of interaction. Thus, our method can
capture more global and local detail information to improve
the accuracy of future trajectories.

Stanford Drone Dataset. Stanford Drone Dataset(SDD)
is a multi-category mixed dataset including pedestrians, bicy-
clists, skateboarders, carts, cars and buses with a majority of
pedestrians. Our method outperforms the methods modeling
the interaction in a local area, such as S-LSTM [1] (ours
achieves 49%/52% better on average in ADE/FDE) and S-
GAN [12] (ours achieves 41.7%/36.5% better on average
in FDE/ADE). We speculate the reason is they employ a
pooling mechanism to aggregate the local agent’s interaction
states, while our method employs an unlimited interaction ca-
pable of capturing the information of flexible interactions. In
addition, our method is better than the graph-based methods,
such as STGCNN [32], by 22.8%/20.5% average. More-
over, our method is slightly outperformed by SIMAUG [26]
in ADE metric, possibly due to SIMAUG uses extra 3D sim-
ulation data for training, leading to more robust representa-
tions. We also evaluate the data efficiency and generalization
ability of our model, please refer to supplemental material
for detail.

4.3. Qualitative Evaluation

We further study the ability of our method to model inter-
actions of large-scale traffic agents with multiple categories.
As discussed previously, there are often interactions with
large numbers of agents and uncertain distances between
them in real traffic scenarios. And agents often adopt dif-
ferent strategies when interacting with different categories
of traffic participants. We illustrate some qualitative evalu-
ation results in Figure 4. Overall, our predicted trajectory
distributions are in line with the ground truth trajectories.
Result (a) is the long time trajectories from the beginning
time instant to the last time instant, which demonstrates the
great prediction accuracy achieved by our method. Result
(b) shows a single traffic agent that is turning. As expected,
our model captures the agent’s tendency of turning. Result
(c) shows our method successfully predicts the trajectory
when two agents are going in parallel orienting towards the
same direction, which means our method does not appear to
be over-fitting. In (d), two non-adjacent agents interact with
each other rather than with another closest agent to them.
Our method leverages the UNI to capture the long-range
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Figure 4. Visualization of predicted trajectory distribution. Each line represents the ground-truth trajectory of an agent. The colored
dots represent our predicted trajectory distribution, and different colors represent different densities of our predicted distribution, where
yellow represents the most likely trajectory distribution. (a) shows the overall trajectories in the whole scene at all of the time instants. (b)
shows that we successfully predict a turning agent. (c) shows that we successfully predict two agents going in parallel to the same direction.
(d) shows that we successfully predict two agents separated by another interacting and avoiding each other. (e) shows that we successfully
predict the possible trajectory of a group of agents after collective interaction. All results are randomly sampled from the nuScenes dataset.

interaction, successfully predicting that relatively distant
agents interacting and the subsequent trajectories. Result (e)
shows the collective interaction involving a group of agents
belonging to different categories. Our method successfully
predicts the possible trajectory of them with a complex in-
teraction. And our predicted trajectory distributions show
that the agents of different categories react differently when
interacting with a specific agent, which demonstrates the
efficiency of our HGA. We also visualize the relation be-
tween category attention and agent attention in supplemental
material.

4.4. Ablation Study

We study the contribution of each component in our
model as shown in Table 3. In addition, we set different
values of kernel size of Unlimited Neighborhood Interaction
to find the empirical optimal value, as shown in Table 4.

Contribution of Each Component. As illustrated in Ta-
ble 3, we evaluate two variants of our method: (1) UNIN w/o
HGA, which means the category-to-category attention is re-
placed with CNN/MLP and only the agents-to-agents interac-
tion is kept; (2) UNIN w/o UNI, which means the unlimited
neighborhood interaction is replaced with CNN/MLP. Ac-
cording to the results, removing any component will lead to
a large performance drop. Particularly, the results of UNIN
w/o HGA show a performance reduction by 28.3%/16.4%
in ADE/FDE metrics, reflecting the effectiveness of hier-
archical attention. The results of UNIN w/o UNI shows
a performance degradation by 30.1%/14.2% in ADE/FDE
metrics, which validates the contribution of unlimited neigh-
borhood interaction.

Optimal Kernel Size. As shown in Table 4, the optimal
value of the kernel size of Unlimited Neighborhood Interac-
tion convolution is 2 in ADE metric, and 3 in FDE metric.
From the table, a larger kernel size is unhelpful. The con-
volution with kernel size 2 and 3 are the best performing

settings to capture the relation among group agents.

5. Conclusion
To capture the interaction information with varying num-

bers of agents from an uncertain distance, we present an
Unlimited Neighborhood Interaction Network to predict tra-
jectories in multiple categories. An Unlimited Neighborhood
Interaction Module generates the interaction with all of the
agents involved in the interaction simultaneously. A Hier-
archical Graph Attention module is designed to acquire the
category-to-category interaction and agent-to-agent interac-
tion, where the former one is used to enhance the repre-
sentation of agent-to-agent interaction. Extensive quantita-
tive evaluations show our method achieves state-of-the-art
performance, even outperforming methods leveraging addi-
tional scene context. Qualitative evaluations illustrate the
advantage of our method when predicting heterogeneous
trajectories in dense and complex traffic scenarios.
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[50] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adri-
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