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Abstract

Frame sampling is a fundamental problem in video ac-
tion recognition due to the essential redundancy in time
and limited computation resources. The existing sampling
strategy often employs a fixed frame selection and lacks
the flexibility to deal with complex variations in videos.
In this paper, we present a simple, sparse, and explain-
able frame sampler, termed as Motion-Guided Sampler
(MGSampler). Our basic motivation is that motion is an
important and universal signal that can drive us to adap-
tively select frames from videos. Accordingly, we propose
two important properties in our MGSampler design: mo-
tion sensitive and motion uniform. First, we present two
different motion representations to enable us to efficiently
distinguish the motion-salient frames from the background.
Then, we devise a motion-uniform sampling strategy based
on the cumulative motion distribution to ensure the sam-
pled frames evenly cover all the important segments with
high motion salience. Our MGSampler yields a new prin-
cipled and holistic sampling scheme, that could be in-
corporated into any existing video architecture. Experi-
ments on five benchmarks demonstrate the effectiveness of
our MGSampler over the previous fixed sampling strate-
gies, and its generalization power across different back-
bones, video models, and datasets. The code is available at
https://github.com/MCG-NJU/MGSampler.

1. Introduction

Video understanding is becoming more and more impor-
tant in computer vision research as huge numbers of videos
are captured and uploaded online. Human action recogni-
tion [31, 37, 40, 24] has witnessed great progress in the past
few years by designing various deep convolutional networks
in videos. The core effort has been devoted to obtaining
compact yet effective video representations for efficient and
robust recognition. Compared with static images, the extra
time dimension requires us to devise a sophisticated tem-
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poral module equipped with high capacity and figure out
an efficient inference strategy for fast processing. However,
in addition to these modeling and computational issues, a
more fundamental problem in video understanding is sam-
pling. Due to the essential redundancy in time and as well
limited computational budget in practice, it is unnecessary
and also infeasible to feed the whole video for subsequent
processing. How to sample a small subset of frames is very
important for developing a practical video recognition sys-
tem, but it still remains to be an unsolved problem.

Currently, deep convolutional networks (CNNs) typi-
cally employ a fixed hand-crafted sampling strategy for
training and testing in videos [31, 37, 40]. In the train-
ing phase, CNN is trained on frames/clips which are ran-
domly sampled either evenly or successively with a fixed
stride from the original video. In the test phase, in order to
cover the full temporal duration of video, clips are densely
sampled from video and the final result is averaged from
these dense prediction scores. There are multiple problems
with these fixed sampling strategies. First, the action in-
stance varies with different videos and sampling should not
be fixed across videos. Second, not all the frames are of
equal importance for classification and sampling should pay
more attention to discriminative frames rather than irrele-
vant background frames.

Recently, some works [47, 45, 5] focus on frame selec-
tion in untrimmed videos, and try to improve the inference
efficiency with an adaptive sampling module. These meth-
ods typically employ a learnable module to automatically
select more discriminative frames for subsequent process-
ing. However, these methods heavily rely on the train-
ing data with complicated learning strategies, and can not
easily transfer to unseen action classes in practice. In ad-
dition, they typically deal with untrimmed video recogni-
tion by selecting foreground frames and removing back-
ground information. But it is unclear how to adapt them
to trimmed video sampling due to the inherent difference
between trimmed and untrimmed videos.

Based on the analysis above, how to devise a princi-
pled and adaptive sampling strategy for trimmed videos still
needs further consideration in research. In this paper, we
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Figure 1. Sample eight frames from a video of throwing something in the air and catching it. Due to the quick moment in action, uniform
sampling may miss the key information while our sampling strategy can identify and select frames with large motion magnitude.

aim to present a simple, sparse and explainable sampling
strategy for trimmed video action recognition, which is in-
dependent of the training data for good generalization abil-
ity and also capable of dealing with various video content
adaptively. Our basic observation is that motion is a univer-
sal and transferable signal that can guide us to sample dis-
criminative frames, in the sense that action related frames
should be of high motion salience to convey most infor-
mation about human movement while background frames
typically contain no or limited irrelevant motion informa-
tion. According to this motion prior, we can roughly an-
alyze the frame importance and group frames into several
segments according to their temporal variations. Conse-
quently, these temporal segments enable us to perform a
holistic and adaptive sampling to capture most motion in-
formation while suppressing the irrelevant background dis-
traction, yielding a general frame sampler (MGSampler).

Specifically, to implement our motion-guided sampling,
two critical components are proposed to handle motion es-
timation and temporal sampling, respectively. For motion
representation, we use temporal difference at different lev-
els to approximate human movement information for effi-
ciency. In practice, temporal difference is highly correlated
with motion information, and the absolute value of the dif-
ference is able to reflect the motion magnitude to some ex-
tent. For temporal sampling, based on the motion distri-
bution along time, we present a uniform grouping strategy,
where each segment should convey the same amount of mo-
tion salience. Then, according to this uniform grouping, we
can perform adaptive sampling over the entire video by ran-
domly picking a representative frame from each segment.
Figure 1 exhibits a vivid example of sampling frames from a
video of the class “throwing something in the air and catch-
ing it”. The motion relevant content only contains a small

portion of the whole video (e.g., from the 24th frame to the
30th frame). If we use traditional uniform sampling, the im-
portant information between the 24th frame and 30th frame
will be missed and as a result, the video is classified into
holding a ball by mistake. In contrast, our motion-guided
sampler selects more frames between the 24th frame and
the 30th frame and makes a correct prediction.

We conduct extensive experiments on five different
trimmed video datasets: Something-Something V1 &
V2 [10], UCF101 [32], Jester [27], HMDB51 [18], and Div-
ing48 [23]. Significant improvement is obtained on these
datasets by adopting our motion-guided sampling strategy.
It is worth noting that using the motion-guided sampling
strategy will not increase the burden of computation and
running time greatly. In addition, the method is agnostic to
the network architecture, and can be used in both training
and test phases, demonstrating its strong applicability.

2. Related Work
Action Recognition. Action recognition is a task to iden-
tify various human actions in a video. The last decade has
witnessed a growing research interest in video action recog-
nition with the availability of large-scale datasets and the
rapid progress in deep learning. Methods can be generally
categorized into four types: (1) Two-Stream Networks or
variants: One stream takes RGB images as input to model
appearance and another stream takes optical flow as input to
model motion information. In the prediction stage, scores
from two streams were averaged in a late fusion way [31].
Based on this architecture, several works were proposed for
a better fusion of two streams [8, 42]. (2) 3D CNNs: 3D
CNN for action recognition aims to learn features along
both spatial and temporal dimensions [15, 36, 7]. However,
3D CNN suffers from more computational cost than their
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Figure 2. Motion-guided Sampler (MGSampler). Our MGSampler aims to on-the-fly select frames containing rich motion information
to help the classifier see the whole process of action. Our proposed MGSampler is a general and flexible sampling scheme, that could be
easily deployed for any existing video models for action recognition.

2D competitors due to the temporal dimension. In order to
reduce computational costs, these works [37, 29] decom-
posed 3D convolution into a 2D convolution and a 1D tem-
poral convolution or integrated 2D CNN into 3D CNN [53].
(3) Mixed spatiotemporal network models: ECO [54] and
TSM [24] designed the lightweight models to fuse spa-
tiotemporal features. MFNet [20], TEINet [25], TEA [22],
MSNet [19] and others [16, 33, 43, 44, 39] explored bet-
ter temporal modeling architecture for motion representa-
tion. (4) Long-term network models: short-term clip-based
networks are unable to capture long-range temporal infor-
mation. Several methods were proposed to overcome this
limitation by stacking more frames with RNN [48] or long
temporal convolution [38], or using a sparse sampling and
aggregation strategy [40, 52, 50]. Unlike them, our goal is
not designing a better model but devising effective frame
sampling for a more fundamental issue in video analysis.
Frame Sampling. For some 3D CNN based methods [36,
2, 7], the video clip is obtained by choosing a random frame
as the starting point. Then the next 64 consecutive frames
in the video are subsampled uniformly to a fixed number of
frames. TSN [40] performed a simple and effective sam-
pling strategy where frames are uniformly sampled along
the whole temporal dimension. The above two sampling
strategies are commonly used by different models. How-
ever, they treated every frame equally and ignored the re-
dundancy between frames, so selecting salient frames or
clips conditioned on inputs is a key issue for efficient ac-
tion recognition. Recently, several works proposed rein-
forcement learning (RL) to train agents with policy gradient
methods to choose frames. FastForward [5] utilized RL for
both frame skipping planning and early stop decision mak-
ing to reduce the computation burden for untrimmed video
action recognition. Adaframe [47] proposed a LSTM aug-
mented with a global memory to search which frames to
use over time, which was trained by policy gradient meth-
ods. Multi-agent [45] uses N agents in the framework and
each agent was responsible for selecting one informative

frame/clip from an untrimmed video. DSN [51] presented a
dynamic version of TSN with RL-based sampling. In or-
der to avoid complex RL policy gradients, LiteEval [46]
proposed a coarse-to-fine and differentiable framework that
contains a coarse LSTM and a fine LSTM organized hier-
archically, as well as a gating module for selecting either
coarse or fine features. AR-Net [28] addressed both the se-
lection of optimal frame resolutions and skipping in a uni-
fied framework and learned the whole framework in a fully
differentiable manner. Audio has also been used as an ef-
ficient way to select salient frames for action recognition.
SCSampler [17] used a lightweight CNN as the selector to
sample clips at test time using salience scores. In order to
train the selector effectively, they leveraged audio as an ex-
tra modality. Listen to Look [9] used audio as a preview
mechanism to eliminate both short-term and long-term vi-
sual redundancies for fast video-level recognition. Though
these approaches bring improvement in action recognition,
their target is long and untrimmed videos rather than short
and trimmed videos. What is more, the design of sampling
module is usually complex and the training process requires
large number of training samples with long training time.
Instead, our goal is to present a simple, general, explainable
frame sampling module without any learning strategy.

3. Method

In this section, we give detailed descriptions of our
motion-guided sampling strategy. First, we give an
overview of our motion-guided sampling. Then, we intro-
duce the details of representing motion information of each
frame. Finally, we elaborate on the concepts of using the
cumulative distribution of motion magnitude to guide the
sampling (MGSampler).

3.1. Overview

Videos are composed of a sequence of densely-captured
frames. Due to temporal redundancy and limited computa-

1515



tional resource, it is usual to sample a subset of frames to
develop an efficient yet accurate action recognition method.
Our proposed motion-guided sampling is a general and flex-
ible module to compress the whole video into a fixed num-
ber of frames, which could be used for subsequent recogni-
tion with any kind of video recognition network (e.g., TSM,
TEA, etc.).

Motion prior is the core of our proposed sampling mod-
ule and we assume this prior knowledge is general and
transferable across videos and helpful to devise a univer-
sal sampler. Based on this assumption, we devise an adap-
tive sampling strategy with two important properties: mo-
tion sensitive and motion uniform. Concerning the require-
ment of motion sensitive, we hope our sampler is able to
identify the motion salience along the temporal dimension
and distinguish the action-relevant frames from the back-
ground. For the property of motion uniform, we expect
our sampler can automatically select frames evenly accord-
ing to the motion information distribution. In this sense,
our sampled frames need to distribute uniformly over all of
the temporal motion segments to cover the important details
of action instances. To accomplish the above requirements
of motion-guided sampling, we design two critical compo-
nents: motion representation and motion-guided sampling.
For motion representation, to balance between accuracy and
efficiency, we use the temporal difference to approximately
capture the human movement. For motion-guided sam-
pling, we devise a uniform sampling strategy based on the
cumulative motion distribution to ensure cover all the im-
portant motion segments in the entire videos. Next, we will
give detailed descriptions of these two components.

3.2. Motion Representation

As RGB images usually represent static appearance at a
specific time point, we need to consider the temporal vari-
ations of adjacent frames to leverage temporal context for
motion estimation.

Optical flow [12] is a common choice for motion repre-
sentation, but the high computational cost makes it infeasi-
ble for efficient video recognition. Many works have been
proposed to estimate optical flow with CNN [4, 13, 6, 30]
or explore alternatives of optical flow such as RGBdiff [40],
optical guided feature [34], dynamic image [1] and fixed
motion filter [21]. Our target is to obtain an efficient yet
relatively accurate motion representation to guide the sub-
sequent sampling. We propose two motion representations
based on different levels at little computation cost for se-
lecting frames.

Image-level Difference. RGB difference between two
consecutive frames describes the appearance change and
has the correlation with the estimation of optical flow.
Therefore, we adopt image-level difference between adja-

cent RGB frames as an alternative lightweight motion rep-
resentation for the proposed sampling strategy. As shown
in Figure 3, the image-level difference between frames usu-
ally reserves only motion-specific features and suppresses
the static background.

Formally, given a frame I(x, y, t) from the video V ∈
RT×H×W where T,H,W is the length, height, and width
of the video, to formulate its motion magnitude, we first
subtract each pixel value of the previous frame I(x, y, t −
1) from the current frame I(x, y, t), then accumulate the
absolute value of difference values over the spatial domain
for each frame:

St =

H∑
y=1

W∑
x=1

|I(x, y, t)− I(x, y, t− 1)|, t ∈ {2, 3, . . . , T} (1)

where St describes the motion signal of frame I(x, y, t) and
S1 = 0. We further normalize St with `1-norm to obtain
motion salience distribution Mt (i.e.,

∑T
t Mt = 1).

Feature-level Difference. Although difference between
original images can reflect motion information to some ex-
tent, more precise patterns such as motion boundaries and
textures are hard to capture only by image-level difference.

It is a consensus that convolution has the ability to ex-
tract feature and filters in low convolutional layers usually
describe boundaries and textures, whereas filters in high
convolutional layers are more likely to represent abstract
parts. We reemphasize that the main idea in designing mo-
tion representation is to achieve a balance between compu-
tation and efficiency, so we perform shallow-layer convolu-
tion operation on original images. Then, in order to focus
on small motion displacements and motion boundaries, we
extend the subtraction operation to the feature space by re-
placing the original image I(x, y, t) by its corresponding
feature maps F (x, y, t). The feature-level difference is de-
fined as follows:

Diffi(x, y, t) = Fi(x, y, t)− Fi(x, y, t− 1) (2)

where the subscript i ∈ {1, 2, . . . , C} represents the i-th
feature map of the original image and C is the number of
channel. In experiments, we use one convolutional layer
which consists of eight 7×7 convolutions with stride=1 and
padding=3, following the design of PA module [49]. The
padding operation avoids the reduction in spatial resolution.

Because Diff(x, y, t) ∈ RH×W×C is three-
dimensional, to formulate the feature-level difference,
C channels are accumulated to 1 channel by the square
sum operation, leading Diff(x, y, t) ∈ RH×W . Then
all pixel values are added into one value. The mapping
RH×W×C → R makes Diff(x, y, t) represent the motion
magnitude of each frame.

St =

H∑
y=1

W∑
x=1

√√√√ C∑
i=1

(Diffi(x, y, t))
2, t ∈ {2, 3, . . . , T} (3)
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Figure 3. Examples of original frames and its corresponding motion representation.The RGB frame contains rich appearance information
and motion representation retains salient motion cues. Compared with image-level difference, feature-level difference captures more
detailed and core motion displacement.

Figure 4. Inspired by the cumulative distribution function.

Like image-level difference, we further normalize St
with `1-norm to obtain motion salience distributionMt, that
is
∑T
t Mt = 1.

3.3. Motion-Guided Sampling (MGSampler)

After obtaining the motion salience distribution along
time Mt, we are ready to describe how to use it to perform
motion-guided sampling. Similar to segment-based sam-
pling in TSN [40], our sampling is a holistic and duration-
invariant strategy, in the sense that we sample over the en-
tire video and compress the whole video into a subset of
frames. In contrast to TSN which is a fixed sampling strat-
egy, our motion-guided sampling adaptively selects frames
according to motion uniform property and hopes the sam-
pled frames could cover the important motion segments. In
order to perform sampling adaptively according to motion
distribution, we present a temporal segmentation scheme
based on the cumulative motion distribution and then ran-
domly sample a representative from each segment.

Specifically, the cumulative distribution function of a
purely discrete variable X , having n values x1, x2, . . . xn
with probability pi = p (xi) is the defined by the following
function:

FX(x) = P(X ≤ x) =
∑
xi≤x

P (X = xi) =
∑
xi≤x

p (xi) , (4)

where FX is the accumulation of the probability from x1 to

Figure 5. the cumulative motion distribution under different values
of µ.

xn and ranges from 0 to 1. Furthermore, the cumulative dis-
tribution function is non-decreasing and right-continuous.

FX(x0) = 0, FX(xn) = 1. (5)

Based on this definition of cumulative distribution function,
we construct motion cumulative curve along the temporal
dimension as shown in Figure 4, where x-axis represents
the frame index and y-axis represents the motion informa-
tion accumulation up to current frame. To further control
the smoothness of motion-guided sampling, we introduce a
hyper-parameter µ to adjust the original motion distribution
Mt:

M̂t =
(Mt)

µ∑T
t=1 (Mt)

µ
. (6)

As shown in Figure 5, a lower value for µ produces a more
uniform probability distribution of motion magnitude.

According to the obtained motion cumulative distribu-
tion curve, we now can perform our motion-guided sam-
pling strategy. In order to sample N frames from the orig-
inal video, the interval of y-axis is divided into N parts
evenly:

([
0, 1

N

]
,
(

1
N ,

2
N

]
,
(

2
N ,

3
N

]
, . . .

(
N−1
N , NN

])
. From

each interval
(
i−1
N , iN

]
, one value will be chosen randomly

in its segment and its corresponding frame index on the x-
axis will be picked out based on the curve. Considering that
the x-axis value on the curve might not be an integer, we
choose the integer closest to that value. Our sampling strat-
egy is able to sample more frames during motion salient
segments while sampling very small frames on static ones,
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Figure 6. Different datasets has different video time and action cat-
egories, yet motion-guided sampling method can guide the sam-
pling with the cumulative distribution of motion magnitude.

thus allowing the subsequent video recognition models to
focus on discriminative motion information learning. The
sampled frames constitute a frame volume and will be fed
into video CNNs to perform action recognition. In prac-
tice, we experiment with multiple network architectures and
datasets Figure 6 to verify the effectiveness of our motion-
guided sampler.

3.4. Discussion

We have noticed that there are several sampling meth-
ods proposed recently, such as SCSampler [17], DSN [51],
Adaframe [47], Listen to Look [9] and AR-Net [28]. How-
ever, their focus is completely different from ours. Firstly,
they aim at sampling a reduced set of clips from namely
long and frequently sparse videos with a typical length of
a minute or more, while our target is to choose a more ef-
fective input with a fixed length in trimmed videos. Sec-
ondly, some of the methods need extra input to train the
sampler. SCSampler [17] and Listen to Look [9] use au-
dio as an extra modality for exploiting the inherent se-
mantic correlation between audio and the visual image.
Thirdly, when training the sampler, Reinforcement Learn-
ing is commonly used where one agent or multiple agents
are trained with policy gradient methods to select relevant
video frames(Adaframe [47], DSN [51]). AR-net [28] con-
tains a policy network with a lightweight feature extractor
and an LSTM module. Both of the above training processes
are complex and bring the network much extra computation.

In contrast to previous work, our proposed sampling

strategy differs in three aspects. (1) The frame selection
aims at selecting more effective frames with a fixed length
in trimmed videos. (2) The sampling process doesn’t need
any extra input, making the input the same as the origi-
nal. (3) MGSampler avoids complex training and is flexible
enough to be inserted into other models.

4. Experiments
4.1. Datasets and Implementation Details

Datasets. We evaluate the motion-guided sampling strat-
egy on five video datasets. These datasets can be
grouped into two categories. (1) Motion-related datasets:
Something-Something V1&V2 [10], Diving 48 [23], and
Jester [27]. For these datasets, motion information rather
than static appearance is the key to action understanding. In
Something-Something V1&V2 [10], the same action is per-
formed with different objects (“something”) so that models
are forced to understand the basic actions instead of rec-
ognizing the objects. It includes about 100K videos cover-
ing 174 classes. Jester [27] is a collection of labeled video
clips that show humans performing hand gestures in front
of a laptop camera or webcam, containing 148k videos and
27 classes. Diving48 [23] is designed to reduce the bias
of scene and object context in action recognition. It has a
fine-grained taxonomy covering 48 different types of div-
ing with 18K videos in total. (2) Scene-related datasets:
UCF101 [32] and HMDB51 [18]. Action recognition in
these datasets can be greatly influenced by the scene con-
text. UCF101 [32] consists of 13,320 manually labeled
videos from 101 action categories. HMDB51 [18] is col-
lected from various sources, e.g., web videos and movies,
which proves to be realistic and challenging. It consists of
6,766 manually labeled clips from 51 categories.

Implementation details. In experiments, we use differ-
ent models and backbones to verify the robustness of the
motion-guided sampling strategy. Experiments are con-
ducted on MMAction2 [3]. For fair comparison, all the set-
tings are kept the same during training and testing. Taking
Sth-Sth V1 dataset and TSM model as an example, we uti-
lize 2D ResNet pre-trained on ImageNet dataset as the back-
bone. During training, random scaling and corner cropping
are utilized for data augmentation, and the cropped region is
resized to 224× 224 for each frame. The batch size, initial
learning rate, weight decay, and dropout rate are set to 64,
0.01, 5e-4, and 0.5 respectively. The networks are trained
for 50 epochs using stochastic gradient descent (SGD), and
the learning rate is decreased by a factor of 10 at 20 and
40 epochs. During testing, 1 clip with T frames is sampled
from the video. Each frame is resized to 256 × 256 , and a
central region of size 224×224 is cropped for action predic-
tion. The implementation on other backbones and datasets
is similar to this setting.
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µ 0 0.1 0.3 0.5 0.8 1 2

Image Diff
Sth V1 45.6 46.2 46.6 47.1 46.5 45.7 42.8
Sth V2 57.9 58.2 59.7 59.8 59.4 58.0 56.2

Feature Diff
Sth V1 46.0 46.5 46.8 47.3 46.7 46.2 43.9
Sth V2 58.2 58.5 60.0 60.1 59.8 58.3 56.4

Table 1. The effect of different values of µ on the results of
Something-Something V1&V2. We use TSM model for the abal-
ation study. Both train and test phase sample one clip of eight
frames.

Dataset Original Image Diff Feature Diff

Sth-V1 45.6 47.1(+1.5) 47.3(+1.7)

Sth-V2 57.9 59.8(+1.9) 60.1(+2.2)

Diving-48 35.2 36.9(+1.7) 37.4(+2.2)

UCF-101 94.5 94.9(+0.4) 95.2((+0.7)

HMDB-51 72.6 73.3(+0.7) 73.8(+1.2)

Jester 96.5 96.9(+0.4) 97.5(+1.0)

Table 2. Performance of different motion representations. The
original means using TSN method to sample frames, which is the
original sampling strategy in TSM. Noting that both UCF101 and
HMDB51 have 3 splits, we report the average result on all splits.

4.2. Ablation Studies

Study on the smoothing hyperparameter. As shown in
Figure 5, the smoothing hyperparameter µ controls the
smoothness degree in our motion-guided sampling. When µ
equals 1, the motion magnitude maintains the original one.
If µ is greater than 1, it will increase the difference of mo-
tion magnitude between frames. On the contrary, when µ
is set to less than 1, the influence of motion is decreased
and particularly if µ is 0, the sampling process is equiva-
lent to TSN [40] method. We perform the ablation study
on hyperparameter µ and the results are reported in Table 1.
We observe that µ = 0.5 achieves the best result because
it balances the relationship between the overall temporal
structure and motion difference. We also observe that our
motion-guided sampling is better than the baseline of TSN
sampling (i.e., µ = 0) by around 1.5% and 2% on Sth V1
and V2.

Study on different motion representations. We design
two motion representations based on different levels. The
image-level difference is a quite convenient way to capture
motion replacement, but it ignores some important features
and motion boundaries. On the other hand, feature-level
difference can represent more precise motion cue while it
needs a little bit more computation. Considering that our
goal is to find an efficient way to represent motion, we only
add one shallow convolutional layer to the original input
yet it brings significant improvement. PAN [49] indicates
that when the convolutional layer goes deeper, the perfor-
mance based on feature-level difference degrades because

Strategy Sth-V1 Sth-V2

Segment based sampling 45.6 57.9
Fixed stride sampling 43.7 53.4
Motion magnitude sampling 41.5 52.8

Motion-guided sampling(Ours) 47.3 60.1

Table 3. Performance of different sampling strategies on the
Something-Something V1 & V2 dataset.

Model Backbone Frames TSN MG Sampler

TSM [24] ResNet50 8 45.6 47.1(+1.5)
TSM [24] ResNet50 16 47.2 48.6(+1.4)
TSM [24] ResNet101 8 46.9 47.8(+0.9)
TSM [24] ResNet101 16 47.9 49.0(+1.1)

TEA [22] ResNet50 8 48.9 50.2(+1.3)
TEA [22] ResNet50 16 51.9 52.9(+1.0)
TEA [22] ResNet101 8 49.4 50.6(+1.2)
TEA [22] ResNet101 16 52.0 53.2(+1.2)

GSM [33] BNInception 8 47.2 48.2(+1.0)
GSM [33] BNInception 16 49.6 50.8(+1.2)
GSM [33] InceptionV3 8 49.0 50.1(+1.1)
GSM [33] InceptionV3 16 50.6 51.9(+1.3)

Table 4. Motion-guided sampling improves the accuracy for all
different backbones and models, proving to be quite robust. In
this ablation experiment, we use image-level difference as motion
representation.

high-level features have been highly abstracted and fail to
reflect small motion replacement and boundaries.

To compare the performance based on the two motion
representations, we conduct experiments on five different
datasets, using TSM as the base model and inputting 8
frames. The result shows that regardless of the dataset,
feature-level difference performs better than image-level
difference mainly because differences in low-level features
can capture small motion variations at boundaries.

Comparison with different sampling strategies. To bet-
ter illustrate the effectiveness of our proposed motion-
guided sampling, we compare it with three other sampling
methods. First, we compare with two fixed sampling base-
lines: (1) segment based sampling [40] where 8 frames
are sampled uniformly along the temporal dimension and
(2) fixed stride sampling [2] where an 8-frame clip with a
fixed stride (s=4) is randomly picked from the video. We
see that our adaptive sampling module is better than those
hand-crafted sampling schemes. Then, we compare with
another adaptive sampling method based on motion magni-
tude (motion magnitude sampling), where 8 frames selected
merely based on motion magnitude regardless of motion
uniform assumption. We see that this alternative motion-
guided sampling strategy yields much worse performance,
which confirms the effectiveness of our strategy based cu-
mulative motion distribution.
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Method Backbone Frames Sth-Sth V1
Top-1 (%)

Sth-Sth V2
Top-1 (%)

I3D [2] 3D ResNet50 32×3×2 41.6 -
NL I3D [41] 3D ResNet50 44.4 -

ECO [54] BNIncep+R18 8×1×1 39.6 -
ECOEn [54] 92×1×1 46.4 -

TSN [40] BNInception 8×1×1 19.5 -
TSN [40] ResNet50 19.7 27.8

TSM [24] ResNet50 8×1×1 45.6 57.9
TSM [24] 16×1×1 47.2 59.9

GST [26] ResNet50 8×1×1 47.0 61.6
GST [26] 16×1×1 48.6 62.6

TEINet [25] ResNet50 8×1×1 47.4 61.3
TEINet [25] 16×1×1 49.9 62.1

GSM [33] InceptionV3 8×1×1 49.0 -
GSM [33] 16×1×1 50.6 -

TDRL [43] ResNet50 8×1×1 49.8 62.6
TDRL [43] 16×1×1 50.9 63.8

MVFNet [44] ResNet50 8×1×1 48.8 60.8
MVFNet [44] 16×1×1 51.0 62.9

TEA [22] ResNet50 8×1×1 48.9 60.9
TEA [22] 16×1×1 51.9 62.2

MG-TEA(Ours) ResNet50 8×1×1 50.4 62.5
MG-TEA(Ours) 16×1×1 53.2 63.8
MG-TEA(Ours) ResNet101 8×1×1 50.8 63.7
MG-TEA(Ours) 16×1×1 53.3 64.8

Table 5. Comparison with other state-of-the-art methods on
Something-Something V1&V2. We use TEA model with our
motion-guided sampling strategy(MG-TEA) for the comparison.
We mainly compare with other methods with similar backbones
under the 1-clip and center crop setting. “-” indicates the numbers
are not available for us.

Varying backbones and models. We further demonstrate
the robustness of our sampling strategy by varying the back-
bones and models. We choose ResNet 50 [11], ResNet
101 [11], BNInception [14], Inception V3 [35] for back-
bones and TSM [24], TEA [22], GSM [16] for models. Re-
sults on Table 4 indicate that motion-guided sampling is
able to bring consistent performance improvement across
different methods.
Efficiency and latency analysis. During training phase,
we process the whole training set in advance by comput-
ing the difference. The 5th row of Table 7 reports the total
computing time of processing training data. For testing, we
first report the inference time of the standard sampling strat-
egy(TSN) for each video in 6th row. Our MGSampler can
slightly increase the inference time due to extra computa-
tion (7th row), which is acceptable.

4.3. Comparison with the state of the art

We further report the performance of our motion-guided
sampling on other datasets, including Diving48, UCF101,
HMDB51, and Jester, and compare with the previous state-

Model Frames Top-1

TSN [40] 16 16.8
C3D [36] 64 27.6
R(2+1)D [37] 64 28.9

P3D-ResNet50 [29] 16 32.4
GST-ResNet50 [26] 16 38.8
TEA-ResNet50 [22] 16 36.0
GSM-InceptionV3[33] 16 39.0

MG-TEA-ResNet50(Ours) 16 39.5

Table 6. Performance on the Diving-48 dataset compared with the
state-of-the-art methods. For fair comparison, all the models are
tested by one clip.

UCF101 HMBD51 Jester Diving48 Sth-V2

Training Set 9537 3750 118562 15943 168913
Testing Set 3783 1530 14743 2096 24777

Average Frame 187.3 96.6 36.0 159.6 45.8

Training Time (all videos) 72.4s 23.2s 264.5s 388.7s 451.9s

TSN Sampling (each video) 6.5ms 4.7ms 3.2ms 6.8ms 4.4ms

MGSampler (each video) 6.9ms 5.0ms 3.5ms 7.4ms 5.0ms

Table 7. Running time and latency of MGSampler.

of-the-art methods. All the results are tested by one clip
sampled from original video and reported in Table 2, Ta-
ble 5 and Table 6. We see that our motion-guided sampling
strategy is independent of the datasets and able to generalize
well across datasets by bringing consistent performance im-
provement for different kinds of datasets with similar back-
bones under the single-clip and center-crop testing scheme.

5. Conclusion
In this paper, we have presented a sparse, explainable,

and adaptive sampling module for video action recognition,
termed as MGSampler. Our new sampling module gener-
ally follows the assumption that motion is a universal and
transferable prior information that enables us to design an
effective frame selection scheme. Our motion-guided sam-
pling shares two important ingredients: motion sensitive
and motion uniform, where the former can help us identify
the most salient segments against the background frames,
and the latter enables our sampling to cover all these impor-
tant frames with high motion salience. Experiments on five
benchmarks verify the effectiveness of our adaptive sam-
pling over these fixed sampling strategies, and also the gen-
eralization power of motion-guided sampling across differ-
ent backbones, video models, and datasets.
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