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Abstract

We develop a conceptually simple, flexible, and effec-
tive framework (named T-Net) for two-view correspondence
learning. Given a set of putative correspondences, we reject
outliers and regress the relative pose encoded by the essen-
tial matrix, by an end-to-end framework, which is consist-
ed of two novel structures: “ − ” structure and “|” struc-
ture. “ − ” structure adopts an iterative strategy to learn
correspondence features. “|” structure integrates all the
features of the iterations and outputs the correspondence
weight. In addition, we introduce Permutation-Equivariant
Context Squeeze-and-Excitation module, an adapted ver-
sion of SE module, to process sparse correspondences in
a permutation-equivariant way and capture both global
and channel-wise contextual information. Extensive exper-
iments on outdoor and indoor scenes show that the pro-
posed T-Net achieves state-of-the-art performance. On out-
door scenes (YFCC100M dataset), T-Net achieves an mAP
of 52.28%, a 34.22% precision increase from the best-
published result (38.95%). On indoor scenes (SUN3D
dataset), T-Net (19.71%) obtains a 21.82% precision in-
crease from the best-published result (16.18%). Source
code: https://github.com/x-gb/T-Net.

1. Introduction
Two-view feature matching is the core of many funda-

mental computer vision problems [15, 12], including Struc-
ture from Motion (SfM) [32, 25], visual Simultaneous Lo-
calization and Mapping [17, 3] and image retrieval [29, 18].
However, establishing reliable correspondences is not a triv-
ial task, due to a large number of false correspondences
(i.e. outliers), caused by the large viewpoint and lighting
changes, occlusion, blur, and lack of texture.

Recently, learning-based outlier rejection algorithm-
s [16, 22, 26, 36] obtain superior matching performance due
to the powerful ability in the feature extraction and nonlin-
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Figure 1. The proposed T-Net architecture.

ear expression. The most popular networks often adopt an
iterative network [22, 36], where the latter iteration inherits
the weights and residuals of the previous iteration, since it
can extremely boost the performance for outlier rejection.
Nevertheless, we find that a large amount of information in
the previous iteration is not fully exploited, and only the last
iteration result could be used as the predicted weight, which
may lead to sub-optimal performance.

To further improve the performance, we develop a novel
network (named T-Net), which integrates the features of all
the iterations to comprehensively utilize all the information
of iterations. For convenience understanding, we regard all
iterations as a whole network and each iteration as the fea-
ture learning of the sub-network in that network. As shown
in Fig. 1, T-Net consists of two structures: “ − ” structure
and “|” structure. “ − ” structure iteratively learns corre-
spondence features in each sub-network, and “|” structure
integrates all the features of sub-networks and learns the in-
tegrated features.

Moreover, previous works [16, 22, 36] often rely on a
PointNet-like architecture with Context Normalization to
learn the features. Although that module is an effective
module to process unordered and sparse data (e.g., sparse
correspondences), that module is not very robust to out-
liers [26]. To address this issue, we introduce a novel
Permutation-Equivariant Context Squeeze-and-Excitation
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(PCSE) module, which can replace PointCN [16] to cap-
ture both global and channel-wise contextual information,
thus, it can extremely boost the performance.

The contributions of our work are summarized as fol-
lows:

• We propose a simple and effective framework, called
T-Net, which not only learns two-view correspon-
dences by an iterative strategy but also synthesizes the
different information of each iteration.

• We propose a reformulation of SE module in the con-
text of sparse correspondences, to capture contextual
information in an equivariant manner.

• We achieve state-of-the-art performance for two-
view correspondence learning. On YFCC100M un-
known dataset, T-Net achieves an mAP of 52.28%, a
34.22% precision increase from the best-published re-
sult (38.95%). On SUN3D dataset, T-Net (19.71%)
obtains a 21.82% precision increase from the best-
published result (16.18%).

2. Related Work
2.1. Handcrafted Methods

Typically, the most popular formulation of the handcraft-
ed methods is RANSAC [7] and its variations [30, 4, 21, 2].
The common idea of these methods uses a hypothesize-and-
verify approach to seek the largest co-consistent correspon-
dence set. Inspired by RANSAC, many methods have been
proposed. For instance, MLESAC [30] uses likelihood in-
stead of reprojection and shows improvements on image ge-
ometry problems. DEGENSAC [4] employs homographies
for degeneracy checking. USA [21] integrates multiple ad-
vancements into a unified framework. GC-RANSAC [2]
uses local optimization to distinguish inliers and outliers.
Those methods perform well and often are regarded as a s-
tandard solution for establishing correspondences. Howev-
er, those methods rely on the reliability of sampled subsets,
making it limited or even failed when the data involves a
large number of outliers.

2.2. Learning-Based Methods

Recent works [34, 5, 19, 6, 23] are proposed to improve
handcrafted features (e.g., SIFT [14]) for local features de-
tection. However, they inevitably generate correspondences
that contain numerous outliers in real-world applications.

Other approaches generate correspondences by graph
neural networks [37, 24], which treat the matching problem-
s as an assignment problem or an optimal transport problem.
Such as, CMPNN [37] proposes a graph neural network to
transform coordinates of feature points into local features.
SuperGlue [24] adopts a context aggregation mechanism

based on attention to infer underlying 3D scenes and fea-
ture assignments jointly. Although graph neural network
provides a new view on feature matching, those method-
s require an excessive memory footprint and huge network
parameters. They often fail when the data involves a large
number of correspondences per image pairs.

As a new direction, some works [16, 22, 26, 36] attemp-
t to establish reliable correspondences by formulating the
matching problem as an inlier/outlier classification prob-
lem. For instance, CNe-Net [16] introduces a PointNet-
like architecture and Context Normalization, which we cal-
l PointCN, to classify the putative correspondences, and
adopts the weighted eight-point algorithm to regress the es-
sential matrix. DFE [22] not only uses PointCN but al-
so adopts an iterative strategy to drastically improve per-
formance. ACNe-Net [26] proposes Attentive Contex-
t Normalization to establish reliable correspondences. OA-
Net++ [36] uses a Differentiable Pooling layer, Order and
Aware Filtering block, and Differentiable Unpooling layer,
which we refer to as DP&OA&DUP module, to capture lo-
cal and global spatial context. Moreover, OA-Net++ adopts
an iterative network and achieves a significant performance
improvement on pose estimation. In this paper, our network
is also based on the iterative network. However, unlike DFE
and OA-Net++, which only use the information of residual-
s and weights from the last sub-network, we gather all the
features of the iterative sub-networks and predict weights
based on gathered features. In addition, we also propose a
novel module (i.e., PCSE module), which can capture more
context information and boost the matching performance
over PointCN.

2.3. Channel Attention

Recently, the channel attention mechanism has achieved
significant success in the deep convolutional neural net-
works. For instance, SE-Net [11] proposes the “Squeeze-
and-Excitation” (SE) block and achieves promising perfor-
mance. SK-Net [13] proposes a dynamic selection mech-
anism in CNNs which can adaptively adjust its receptive
field. MobileNetV3 [10] adopts SE block and a hard-swish
activation function to build lightweight attention modules.
ECA-Net [31] employs an adaptive kernel size to replace
FC layers in SE block. However, all of the above methods
focus on regular grid data, such as image data. In contrast,
our PCSE module aims to handle sparse and unordered data
in a permutation-equivariant way.

3. T-Net
In this section, we introduce the details of the proposed

T-Net for learning two-view correspondences and geometry.
Specifically, we first describe the formulation of our prob-
lem in Sec. 3.1. Then, we develop a T-Structure network to
synthesize the information of all the iterative sub-networks
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Figure 2. The proposed sub-network architecture.

in Sec. 3.2. After that, in Sec. 3.3, we propose a novel basic
module (named PCSE module) that can efficiently capture
both global and channel-wise contextual information. Fi-
nally, we describe the network architecture in Sec. 3.4.

3.1. Problem Formulation

Given a pair of images in the same scene, our goal is
to establish reliable correspondences and recover the rel-
ative pose. Specifically, we first adopt local features (e.g.,
SIFT [14]) to detect keypoints and extract descriptors. Then
the descriptors are computed by nearest neighbor search to
create a set of N putative correspondences:

C = [c1; c2; ......; cN ],
ci = [ui

1, v
i
1, u

i
2, v

i
2],

(1)

where ci represents a putative correspondence; (ui
1, v

i
1) and

(ui
2, v

i
2) are keypoint coordinates from an image pairs, re-

spectively. Following [16], the keypoint coordinates are
normalized by camera intrinsics. After that, we treat the
two-view geometry estimation task as an outlier/inlier clas-
sification problem and an essential matrix regression prob-
lem. As shown in Fig. 2, our T-Net takes the putative corre-
spondence set C as input and output the weight set W :

W = [w1;w2;w3; ...;wN ], (2)

where wi ∈ [0, 1) is the output weight of correspondences
ci. wi > 0 indicates an inlier, and outlier otherwise. Final-
ly, we employ the weighted eight-point algorithm [16] to
regress the essential matrix based on the weight set W . The
whole architecture can be written as:

W = fϕ(C), (3)

Ê = g(W,C), (4)

where fϕ(·) represents a permutation-equivariant neural
network. ϕ denotes the network parameters. Ê represents
the regressed essential matrix. g(·, ·) is the weighted eight-
point algorithm to compute the essential matrix Ê via self-
adjoint eigen-decomposition.

3.2. T-Structure Network

As reported by previous works [22, 36], there are two
important discoveries about the iterative network: 1) The it-
erative network can significantly promote the network per-
formance for outlier rejection. 2) A network with more sub-
networks (i.e., iterations) means the network tends to have
superior experiment performance. However, in the itera-
tive network of previous works [22, 36], only the last sub-
network result is used as the predicted weight, while a large
amount of information in the previous sub-network is ig-
nored. This kind of operation will cause a significant loss
of information.

In this section, we develop a novel structure (called T-
Structure), which includes two structures: “ − ” structure
and “|” structure. “ − ” structure consists of a series of
iterative sub-networks where the latter sub-network inher-
its the weights and residuals of the previous sub-network.
“|” structure comprises three novel operations (i.e., feature
extraction, feature concatenation and feature learning).

Feature extraction: “|” structure extracts the features
of the last built block in each sub-network. This opera-
tion is used to capture valuable information from each sub-
network.

Feature concatenation: “|” structure adopts concate-
nate strategy to integrate the features of each sub-network:

Fall = F1

⊕
F2 · · ·

⊕
FS , (5)

where FS represents the feature in S sub-network.
⊕

indi-
cates the concatenate operation.

Feature learning: Following feature concatenation op-
eration, we employ four PCSE modules to learn the con-
catenated features:

Ffinal = f|(Fall), (6)

where Ffinal is the output of the feature learning operation.
f|(·) denotes the feature learning module which consists of
four PCSE modules. At last, we achieve the final weights
by two activation functions W = tanh(ReLU(Ffinal)).
Based on the above operations, our T-Structure will enhance
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Figure 3. Visual results of top 15 response correspondences (the
top row) and a fixed threshold of w > 0.9 (the bottom row) in
the same image pair from the different sub-networks. From left to
right: the results of the first sub-network, the second sub-network,
the third sub-network and the final output. We draw the corre-
spondences in yellow if they conform to the ground truth epipolar
geometry.

the model. That is because our T-Structure not only depends
on the last sub-network results, but also captures valuable
information from every single sub-network.

To further illustrate our network, we show an example to
visualize the output in each sub-network and the final result
of our network in Fig. 3. For the top row, we visualize the
top 15 responses in each sub-network and our final output.
We can see that, the focus of each sub-network is different,
but our T-Net will combine the focus of each sub-network.
Compared with other sub-networks, T-Net has wider points
of interest. For the bottom row, we visualize matches with a
weight greater than 0.9. After collecting all features, T-Net
will assign higher weights to inliers compared with other
sub-networks.

3.3. PCSE module

SE module is a key basic module for many neural net-
work architectures [11, 27, 10]. The standard SE module
involves three convolution layers with 1×1 or 3×3 kernels
and a squeeze-and-excitation Block. In particular, the 3× 3
convolution layer, which is used to extract local informa-
tion, is a crucial convolution layer for SE module. However,
the 3 × 3 convolution kernel will mix putative correspon-
dences that are sparse and unordered in the form of point
clouds. Thus, SE module is ill-suited for processing un-
ordered correspondences. To address the above issues, we
propose the PCSE module (i.e., a permutation-equivariant
module) to learn sparse and unordered correspondences. As
illustrated in Fig. 4, all the convolution layers use 1×1 con-
volution kernel, therefore, this framework will learn corre-
spondence features in a particular canonical order. More-
over, we introduce Context Normalization [16] after every

convolution layer. That operation can embed global context
information for each correspondence, which is critical for
sparse correspondences.

Formally, let f c
i ∈ RCc

be the output of c-th channel C
for the i correspondence, Context Normalization is formu-
lated as:

CN(f c
i ) =

f c
i − ul

oc
, (7)

where

uc =
1

N

N∑
i=1

f c
i , o

c =

√√√√ 1

N

N∑
i=1

(f c
i − uc). (8)

Following Context Normalization, we adopt Batch Nor-
malization and the ReLU activation function to process fea-
ture maps. All processes are formulated as:

fout = δ(BN(CN(fin))), (9)

where fin denotes the output of convolution layer. BN rep-
resents Batch Normalization. δ is the ReLU. For capturing
the contextual information in different channels, we adopt a
squeeze and excitation strategy [11], after the second ReLU
layer. Specifically, given the c-th feature map fc, we first
adopt the global average pooling to capture channel-wise
global contextual information gc:

gcc =
1

N

N∑
i=1

fci, (10)

where c is the c-th layer feature-map. Next, for learning the
contextual information in different channels, we employ a
bottleneck with two fully connected (FC) layers and a soft-
max operator to process global contextual and get gc′. After
that, a weighted fusion of the c-th feature-map Vc is:

Vc = gc′c × FGc. (11)

At last, we obtain the output V of PCSE lay-
er by concatenating all the feature-maps (i.e., V =
cat(V1, V2, V3, . . . , VC)). Note that, we also adopt a resid-
ual structure for PCSE module to prevent network degrada-
tion:

fy = fx + FPCSE(fx), (12)

where fx and fy represent the input and output features,
respectively. FPCSE(·) is the PCSE module.

3.4. Network Architecture

In the subsection, we describe our T-Net in detail. As
shown in Fig. 1, T-Net consists of two structures: “ − ”
structure and “|” structure. “ − ” structure contains three
sub-networks. “|” structure collects the feature from each
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sub-network and learns the feature by four PCSE modules.
For each sub-network (see Fig. 2), seven PCSE modules are
stacked. The detailed structure of PESA module (Fig. 4)
is C(128, 1) - C(128,1) - P(128) - FC(64) - FC(128) -
C(128,1), where C(c, k) represents a convolution layer with
c output channels and convolution kernel = k × k. P(c) and
FC(c) are global pooling layer and fully connected layer, re-
spectively. Moreover, the DP&OA&DUP module follows
the 3-th PCSE module.

3.4.1 DP&OA&DUP module

The DP&OA&DUP module [36] can effectively extract lo-
cal and global information of correspondences. In T-Net,
we employ the DP&OA&DUP module in each sub-network
to help extract the local and global features. Here, we briefly
introduce DP&OA&DUP module.

Specifically, DP&OA&DUP module involves three part-
s: Differentiable Pooling layer, Order and Aware Filtering
block, and Differentiable Unpooling layer. The Differen-
tiable Pooling Layer is first proposed by Graph Neural Net-
work [35], which is permutation-invariant and originally de-
signed for GNN. OA-Net++ generalizes it to capture the
local information of correspondences. The Differentiable
Pooling Layer adopts a soft assignment matrix to map the
correspondence features into a set of clusters and employs a
Softmax function to normalize the clusters. For the Order-
Aware Filtering Block, it exploits the cluster relation with
spatially-correlated operators by applying Multi Layer Per-
ceptrons (MLPs) directly on the spatial dimension. The Dif-
ferentiable Unpooling layer first reverses the behavior of the
DiffPool layer and recovers the clusters to the original size.
Next, it embeds cluster features by the channel-wise multi-
plication with the input feature of the P&OA&UP module.

3.4.2 Loss Function

Following [8, 22], we employ a hybrid loss function to op-
timize T-Net:

Loss = lc(W,L) + αle(Ê, E), (13)

where lc(·, ·) denotes the binary cross entropy loss for the
classification term. W is the predicted weights. In partic-
ular, L represents weakly supervised labels, which are e-
valuated by geometric error [22], with a threshold of 10−4

used to determine valid correspondences. lg(·, ·) is the es-
sential matrix loss. Êq and Eq are the predicted essential
matrix and the ground truth essential matrix, respectively.
α is a weight to balance the binary cross entropy loss and
the essential matrix loss.

For the essential matrix loss, we calculate it by:

le(Ê, E) =
(p′T Êp)

2

||Ep||2[1] + ||Ep||2[2] + ||Ep′||2[1] + ||Ep′||2[2]
,

(14)
where p and p′ denote two keypoint positions forming the
correspondence. A[i] indicates the i-th element of vector A.

4. Experiments
In the section, we evaluate the performance of T-Net and

compare it with recent state-of-the-art methods on outdoor
YFCC100M [28] and indoor SUN3D [33], for the camera
pose estimation and outlier rejection tasks. In addition, we
also test on different local features and report the results. In
the following: we first introduce the datasets and evaluation
metrics, and then we report the implementation details and
experiment results. Finally, we analyze the ablation study.

4.1. Datasets

4.1.1 Outdoor Scenes

We use Yahoo’s YFCC100M dataset [28], an outdoor
dataset composed of 100 million photos from the internet.
The authors of [9] splits it into 72 image sequences from
different tourist spots. Following [36], we use 4 sequences
(i.e., Buckingham palace, Sacre Coeur, Reichstag and Notre
dame front facade) as unknown scenes to test generaliza-
tion ability and the remaining 68 sequences as training se-
quences. In addition, we use [9] to recover the camera poses
and generate ground truth.

4.1.2 Indoor Scenes

For the indoor dataset, we evaluate on the SUN3D
dataset [33], which includes a series of RGB-D videos with
camera poses. We sub-sample videos in every 10 frames to
generate an image. In addition, we preserve the same set-
ting as [36] (i.e., 15 scenes as unknown scenes for testing
and 239 scenes for training).

In this work, we re-train all models in the same set-
ting and test both known scenes and unknown scenes. The
unknown sequences are the testing sequences introduced
above. For the known scenes, we split the training se-
quences into three sets, i.e., the training set (60%), valida-
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Table 1. Performance comparison for camera pose estimation on YFCC100M and SUN3D datasets. Results without/with RANSAC
post-processing under error thresholds of 5◦ and 20◦ are reported. The best result of each dataset is boldfaced.

Local
Features

Datasets YFCC100M(%) SUN3D(%)

Matcher
Known Scene Unknown Scene Known Scene Unknown Scene

5◦ 20◦ 5◦ 20◦ 5◦ 20◦ 5◦ 20◦

SuperPoint

RANSAC -/12.85 -/31.22 -/17.47 -/38.83 -/14.93 -/38.16 -/12.15 -/33.01
Point-Net++ 11.87/28.46 33.35/51.01 17.95/38.83 49.32/64.04 11.40/21.19 31.96/47.03 9.38/17.08 31.16/40.13
CNe-Net 12.18/30.25 34.75/52.13 24.25/42.57 52.70/66.89 12.63/21.81 32.46/46.96 10.68/17.36 32.68/40.66
DFE 18.79/31.72 40.53/53.56 29.13/43.00 58.41/67.51 13.35/22.57 35.45/47.84 12.04/17.41 33.62/40.99
OA-Net++ 29.52 /35.72 53.76/57.75 35.27/45.45 66.81/70.99 20.01/24.43 45.97/49.77 15.62/18.56 40.95/42.66
ACNe-Net 26.72/31.16 49.29/56.68 32.98/45.34 62.68/69.19 18.35/21.12 43.97/48.76 13.82/18.05 37.73/41.78
T-Net 35.73/37.99 58.95/59.01 40.62/46.37 70.62/71.01 21.62/24.66 47.60/50.17 17.18/19.09 42.83/43.25

SIFT

RANSAC -/5.81 -/16.88 -/9.07 -/22.92 -/4.52 -/15.46 -/2.84 -/11.19
Point-Net++ 10.49/33.78 31.17/56.24 16.48/46.25 42.09/67.53 10.58/19.17 35.75/44.06 8.10/15.29 30.97/35.83
CNe-Net 13.81/34.55 35.20/57.27 23.95/48.03 52.44/69.10 11.55/20.60 36.12/44.33 9.30/16.40 31.32/37.23
DFE 19.13/36.46 42.03/59.15 30.27/51.16 59.18/70.88 14.05/21.32 39.12/44.67 12.06/16.26 36.17/37.72
OA-Net++ 32.57/41.53 56.89/63.91 38.95/52.59 66.85/72.99 20.86/22.31 48.06/47.17 16.18/17.18 41.83/39.39
ACNe-Net 29.17/40.32 52.59/62.11 33.06/50.89 62.91/71.25 18.86/22.12 46.35/46.90 14.12/16.99 39.17/39.01
T-Net 44.49/47.00 66.75/68.30 52.28/56.08 75.85/75.46 24.96/23.81 52.69/48.46 19.71/18.00 46.33/40.75

tion set (20%), and testing set (20%), and pick the testing
set as known scenes.

4.2. Evaluation Metrics

We use two set different evaluation metrics for two d-
ifferent tests, i.e., camera pose estimation and outlier re-
jection. For camera pose estimation, we employ the mean
average precision (mAP) both on rotation and translation to
evaluate the angular difference between the predicted vec-
tors and ground truth. For outlier rejection, we adopt three
popular metrics, including precision (P), recall (R), and F-
measure (F) to verify performance.

4.3. Implementation Details

T-Net is implemented in PyTorch. We train our net with
a batch size of 32. During training, we adopt Adam [1] opti-
mizer with the learning rate of 10−3 to minimize the loss. In
addition, the parameter α is 0 during the first 2k iterations
and 0.1 in the rest 480k. All experiments are performed on
Linux 3.10.0 with NVIDIA TESLA P100 GPUs.

4.4. Camera Pose Estimation

Camera pose estimation is an extremely challenging test.
When testing on the outdoor dataset, lighting changes, and
occlusion often limit the performance of matchers. For the
indoor dataset, lacking texture and large viewpoint changes
are the main challenges. Here, we test our network on both
outdoor and indoor datasets with five state-of-the-art base-
lines. As shown in the experimental results, T-Net can over-
come these challenges and achieve the best performance.

4.4.1 Baselines

We evaluate T-Net and six state-of-the-art baselines (i.e.,
RANSAC [7], Point-Net++ [20], CNe-Net [16], DFE [22],
OA-Net++ [36] and ACNe-Net [26]) using both handcraft-
ed features (i.e., SIFT [14]) and learned features (i.e., Su-
perPoint [5]). For Point-Net++, we replace 3D Euclidean
space to 4D to search neighbors. For CNe-Net [16] and
DFE [22], we replace their original loss formulation to our
hybrid loss function. For OA-Net++, we employ the offi-
cial implementation. For ACNe-Net, we implement it on
the PyTorch version with the authors’ help. To have a fair
comparison, we train all these models at the same settings.

4.4.2 Results

We show the performance comparison for camera pose es-
timation on YFCC100M and SUN3D datasets in Table 1.
We can see that, when evaluating on SIFT, our network out-
performs state-of-the-art baselines under all settings. T-Net
achieves the mean average precision (mAP) of 52.28% and
19.71% on both outdoor and indoor unknown scenes at 5◦

error threshold without RANSAC, which are the 13.33%
and 3.53% improvements than OA-Net++. In addition, we
also achieve a clear improvement gain the baseline OA-
Net++ on both outdoor and indoor unknown scenes with
RANSAC post-processing. These results demonstrate the
effectiveness of our T-Net. One of the reasons for the effec-
tiveness is the using of our T-Structure. Different from the
iterative network, we collect all the features and reduce the
feature loss from the sub-network as much as possible.

Fig. 5 shows some typical results of our network and
other baselines. Moreover, we observe that RANSAC post-
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Table 2. Comparative results of outlier rejection on the YFCC100M and SUN3D datasets.

Datasets YFCC100M(%) SUN3D(%)

Matcher Known Scene Unknown Scene Known Scene Unknown Scene

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

RANSAC 47.35 52.39 49.74 43.55 50.65 46.83 51.87 56.27 53.98 44.87 48.82 46.76
Point-Net++ 49.62 86.19 62.98 46.39 84.17 59.81 52.89 86.25 65.57 46.30 82.72 59.37
CNe-Net 54.43 86.88 66.93 52.84 85.68 65.37 53.70 87.03 66.42 46.11 83.92 59.52
DFE 56.72 87.16 68.72 54.00 85.56 66.21 53.96 87.23 66.68 46.18 84.01 59.60
OA-Net++ 60.03 89.31 71.80 55.78 85.93 67.65 54.30 88.54 67.32 46.15 84.36 59.66
ACNe-Net 60.02 88.99 71.69 55.62 85.47 67.39 54.11 88.46 67.15 46.16 84.01 59.58
T-Net 62.14 91.70 74.08 57.48 88.39 69.66 54.98 88.82 67.92 46.94 84.53 60.36

procession may harm performance, especially on SUN3D
dataset, which is an extremely challenging dataset. This
is because the SUN3D dataset contains large viewpoint
changes, lack of texture, and a large amount of self-
similarity, which is difficult for SIFT descriptors to provide
effective information, resulting in SIFT generating a large
number of outliers. Through the feature fusion of different
sub-networks and the rich contextual information extract-
ed by PCSE, our network can retain many key inliers, but
RANSAC mainly focuses on the largest collective set and
may remove some key inliers. The bottom part in Table 1
can support our point. RANSAC can improve performance
when evaluating SuperPoint of the SUN3D dataset. Note
that, our network gets the best result in the extremely chal-
lenging scenes, including lighting changes, occlusion, lack-
ing texture and large viewpoint changes.

When evaluating on SuperPoint, our network ranks the
1-st on both outdoor and indoor scenes and surpasses all
baselines both with and without RANSAC post-processing.
In addition, as reported by Table 1, we observe that Su-
perPoint can improve the performance when the method
performs worse, but degrades the performance when the
method performs well. The main reason is that SuperPoint
has better descriptors but suffers from the accuracy of key-
point position. The better descriptors can offer higher inli-
er ratio in putative correspondence set. However, the less
keypoint accuracy will mainly limit the final performance
when the method rejects enough outliers, thus, SuperPoint
performs worse.

4.5. Outlier Rejection

Outlier rejection is a critical step in two-view matching.
In the test, we further evaluate the outlier rejection perfor-
mance of T-Net. We test the outdoor and indoor dataset
with SIFT local features and set the comparison method-
s as the same as the camera pose estimation task. As
shown in Table 2, our T-Net gets the best result in all e-
valuation metrics (i.e., precision, recall, and F-measure).
The learning-based method clearly outperforms the classi-

Figure 5. Visualization results on two challenging datasets, i.e.,
YFCC100M, SUN3D. From left to right: Buckingham-palace,
Notre-dame-front-facade, Reichstag, Sacre-coeur, Te-mit1, Te-
brown1, Te-harvard1 and Te-hotel1. From top to bottom: Original
image pairs, and the results of RANSAC [7], OA-Net++ [36] and
our network. We draw the correspondences in green if they con-
form to the ground-truth epipolar geometry, and in red otherwise.

cal method (i.e., RANSAC), which demonstrates that the
learning-based method can effectively reject outliers. Addi-
tionally, as reported in Tables 1 and 2, the performance of
relative pose estimation is positively related to the perfor-
mance of outlier removal.

4.6. Ablation Study

The core of our network is two key ideas: a novel archi-
tecture (T-Structure) extensively collects all the features of
each sub-network and outputs the weight, and a PCSE mod-
ule captures contextual information not only global-wise
but also channel-wise to boost the performance. For exam-
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Table 3. Ablation study on YFCC100M. The result is mAP
(%) under error thresholds of 5◦ on both known and unknown
scenes with weighted 8-point algorithm. P&O&U: using the D-
P&OA&UDP module. Iter: using the iterative network. SE: using
the SE module. SE-P: using the permutation-equivariant version
for SE module. PCSE: using the PCSE module. T: T-Structure
network.

PointCN P&O&U Iter SE SE-P PCSE T Known Unknown

X 21.79 30.08

X X 31.99 36.95

X X X 36.16 40.88

X X X 25.55 32.68

X X X 31.00 36.85

X X X 40.43 47.73

X X X 44.49 52.28

ining the impact of these two choices, we implement each
network with 25 build blocks to make sure their parameters
almost the same, and use the weighted 8-point algorithm to
compute the essential matrix. In addition, we will compare
with Graph Neural Networks on YFCC100M with SIFT de-
tectors.

4.6.1 Plain Network vs Iterations vs T-Structure

We consider three different settings: one plain network
without iterations or T-Structure, one refinement network
with iterative structure, and one network with T-Structure.
From the results, we find that our T-Structure can work well
for the task. Although the iterative structure performs much
better than the pain network, they will lose a mass of infor-
mation in the previous sub-network. Table 3 reports that our
T-Structure can largely improve the mAP of iterative struc-
ture from 47.73% to 52.28% on unknown scenes without
RANSAC.

4.6.2 PointCN vs SE module vs SE-P module vs PCSE
module

We replace PointCN with PCSE module which can extrac-
t both global and channel-wise contextual information. In
addition, we also compare with SE module, a popular ar-
chitecture on regular data (i.e., image data), and SE-P mod-
ule, a permutation-equivariant version for SE module which
simply replaces the 3×3 convolution kernel as 1×1. From
Table 3, we observe that SE module performs worse than
SE-P module. It demonstrates that permutation-equivariant
architecture is very important for unordered and sparse cor-
respondences. Moreover, both SE module and SE-P module
perform worse than PointCN. That is because SE module
and SE-P module cannot capture enough contexture infor-
mation which is critical for sparse correspondences. In con-
trast to SE module and SE-P module, our PCSE module not

Table 4. Comparison with Graph Neural Networks. The results of
mAP (%) under error thresholds of 5◦ on indoor unknown scenes
(with/without RANSAC processing) are reported.

Methods 5◦ 10◦ Parameters GFLOPs

RANSAC -/12.07 -/19.86 - -
SuperGlue 6.30/16.09 11.21/25.96 12.02M 19.59
T-Net 14.45/16.35 24.08/26.23 3.73M 1.01

only learns features in a permutation-equivariant manner
but also extracts more contextual information, thus, PCSE
module achieves better improvement over other methods.

4.6.3 Comparison with Graph Neural Networks

We compare our T-Net with the state-of-the-art Graph Neu-
ral Network, i.e. SuperGlue [24], for feature matching. As
mentioned in Sec. 2.2, the Graph Neural Network direct-
ly generates reliable correspondences from local features.
The evaluation metrics include both effectiveness (i.e., the
mean average precision (mAP)) and efficiency (i.e., net-
work parameters and floating-point operations). For com-
parison, we test again on an extremely challenging dataset
(i.e., SUN3D) with 512 SuperPoint keypoints. To have a
fair comparison, both T-Net and SuperGlue use the pre-
trained model provided by previous tests and official imple-
mentations, respectively. The result is reported in Table 4.
We observe that SuperGlue extremely relies on RANSAC
for post-processing, when directly recovering the pose by
the weighted eight-point algorithm, T-Net outperforms Su-
perGlue 8.15% and 12.87% on 5◦ and 10◦ threshold under
the obviously fewer network parameters and computational
cost.

5. Conclusion
In this work, we propose T-Net, a new end-to-end train-

able model, for learning two-view correspondences and ge-
ometry. Our work mainly contains two contributions: (i)
T-Structure architecture, which iteratively learns the corre-
spondence features and predicts the final weight based on
all the features from each sub-network. (ii) PCSE module,
which is able to capture the contextual information from
not only global but also channel-wise aspects. Extensive
experiments demonstrate that T-Net achieves significant im-
provements over existing approaches on both camera pose
estimation and outlier rejection task.
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