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Abstract

Convolution on 3D point clouds that generalized from
2D grid-like domains is widely researched yet far from per-
fect. The standard convolution characterises feature cor-
respondences indistinguishably among 3D points, present-
ing an intrinsic limitation of poor distinctive feature learn-
ing. In this paper, we propose Adaptive Graph Convolution
(AdaptConv) which generates adaptive kernels for points
according to their dynamically learned features. Compared
with using a fixed/isotropic kernel, AdaptConv improves the
flexibility of point cloud convolutions, effectively and pre-
cisely capturing the diverse relations between points from
different semantic parts. Unlike popular attentional weight
schemes, the proposed AdaptConv implements the adaptive-
ness inside the convolution operation instead of simply as-
signing different weights to the neighboring points. Exten-
sive qualitative and quantitative evaluations show that our
method outperforms state-of-the-art point cloud classifica-
tion and segmentation approaches on several benchmark
datasets. Our code is available at https://github.com/
hrzhou2/AdaptConv-master.

1. Introduction

Point cloud is a standard output of 3D sensors, e.g., Li-
DAR scanners and RGB-D cameras; it is considered as the
simplest yet most efficient shape representation for 3D ob-
jects. A variety of applications arise with the fast advance
of 3D point cloud acquisition techniques, including robotics
[31], autonomous driving [20, 43] and high-level semantic
analysis [35, 15]. Recent years have witnessed consider-
able attempts to generalize convolutional neural networks
(CNNs) to point cloud data for 3D understanding. However,
unlike 2D images, which are organized as regular grid-like
structures, 3D points are unstructured and unordered, dis-
cretely distributed on the underlying surface of a sampled
object.
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Figure 1. Illustration of adaptive kernels and fixed kernels in
the convolution. (a) The standard graph convolution applies a
fixed/isotropic kernel (black arrow) to compute features for each
point indistinguishably. (b) Based on these features, several at-
tentional weights ai are assigned to determine their importance.
(c) Differently, AdaptConv generates an adaptive kernel êi that is
unique to the learned features of each point.

One common approach is to convert point clouds into
regular volumetric representations and hence traditional
convolution operations can be naturally applied to them
[24, 30]. Such a scheme, however, often introduces exces-
sive memory cost and is difficult to capture fine-grained ge-
ometric details. In order to handle the irregularity of point
clouds without conversions, PointNet [27] applies multi-
layer perceptrons (MLPs) independently on each point,
which is one of the pioneering works to directly process
sparse 3D points.

More recently, several researches have been proposed
to utilize the graph-like structures for point cloud analy-
sis. Graph CNNs [44, 21, 41, 4, 7] represent a point cloud
as graph data according to the spatial/feature similarity be-
tween points, and generalize 2D convolutions on images to
3D data. In order to process an unordered set of points with
varying neighborhood sizes, standard graph convolutions
harness shared weight functions over each pair of points
to extract the corresponding edge feature. This leads to a
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fixed/isotropic convolution kernel, which is applied identi-
cally to all point pairs while neglecting their different fea-
ture correspondences. Intuitively, for points from different
semantic parts of the point cloud (see the neighboring points
in Fig. 1), the convolution kernel should be able to distin-
guish them and determine their different contributions.

To address this drawback, several approaches [41, 38]
are proposed inspired by the idea of attention mechanism
[3, 5]. As shown in Fig. 1 (b), proper attentional weights ai
corresponding to the neighboring points are assigned, try-
ing to identify their different importance when performing
the convolution. However, these methods are, in principle,
still based on the fixed kernel convolution, as the attentional
weights are just applied to the features obtained similarly
(see the black arrows in Fig. 1 (b)). Considering the intrin-
sic isotropy of current graph convolutions, these attempts
are still limited for detecting the most relevant part in the
neighborhood.

Differently, we propose to adaptively establish the rela-
tionship between a pair of points according to their learned
features. This adaptiveness represents the diversity of ker-
nels unique to each pair of points rather than relying on
the predefined weights. To achieve this, in this paper, we
propose a new graph convolution operator, named adap-
tive graph convolution (AdaptConv). AdaptConv gener-
ates adaptive kernels êi for points in the convolution which
replace the aforementioned isotropic kernels (see Fig. 1
(c)). The key contribution of our work is that the proposed
AdaptConv is employed inside the graph convolution rather
a weight function that is based on the resulting feature. Fur-
thermore, we explore several choices for the feature con-
volving design, offering more flexibility to the implemen-
tation of the adaptive convolution. Extensive experiments
demonstrate the effectiveness of the proposed AdaptConv,
achieving state-of-the-art performances in both classifica-
tion and segmentation tasks on several benchmark datasets.

2. Related Work
Voxelization-based and multi-view methods. The vox-

elization/projection strategy has been explored as a simple
way in point cloud analysis to build proper representations
for adapting the powerful CNNs in 2D vision. A number
of works [24, 47, 16, 42] project point clouds onto regu-
lar grids, but inevitably suffer from information loss and
enormous computational cost. To alleviate these problems,
OctNet [30] and Kd-Net [14] attempt to use more efficient
data structures and skip the computations on empty voxels.
Alternatively, the multi-view-based methods [12, 34] treat a
point cloud as a set of 2D images projected from multiple
views, so as to directly leverage 2D CNNs for subsequent
processing. However, it is fundamentally difficult to apply
these methods to large-scale scanned data, considering the
struggle of covering the entire scene from single-point per-

spectives.
Point-based methods. In order to handle the irregularity

of point clouds, state-of-the-art deep networks are designed
to directly manipulate raw point cloud data, instead of intro-
ducing an intermediate representation. In this way, PointNet
[27] first proposes to use MLPs independently on each point
and subsequently aggregate global features through a sym-
metric function. Thanks to this design, PointNet is invari-
ant to input point orders, but fails to encode local geometric
information, which is important for semantic segmentation
tasks. To solve this issue, PointNet++ [29] proposes to ap-
ply PointNet layers locally in a hierarchical architecture to
capture regional information. Alternatively, Huang et al.
[9] sorts unordered 3D points into an ordered list and em-
ploys Recurrent Neural Networks (RNN) to extract features
according to different dimensions.

More recently, various approaches have been proposed
for effective local feature learning. PointCNN [19] aligns
points in a certain order by predicting a transformation ma-
trix for local point set, which inevitably leads to sensitiv-
ity in point order since the operation is not permutation-
invariant. SpiderCNN [48] defines its convolution kernel
as a family of polynomial functions, relying on the neigh-
bors’ order. PCNN [2] designs point kernels based on the
spatial coordinates and further KPConv [36] presents a scal-
able convolution using explicit kernel points. RS-CNN [22]
assigns channel-wise weights to neighboring point features
according to the geometric relations learned from 10-D vec-
tors. ShellNet [51] splits local point set into several shell ar-
eas, from which features are extracted and aggregated. Re-
cently, [53, 6] utilize the successful transformer structures
in natural language processing [37, 45] to build dense self-
attention between local and global features.

The graph-based methods treat points as nodes of a
graph, and establish edges according to their spatial/feature
relationships. Graph is a natural representation for a point
cloud to model local geometric structures but is challenging
for processing due to its irregularity. The notion of Graph
Convolutional Network is proposed by [13], which gener-
alizes convolution operations over graphs by averaging fea-
tures of adjacent nodes. Similar ideas [32, 44, 8, 19, 17]
have been explored to extract local geometric features from
local points. Shen et al. [32] define kernels according to
euclidean distances and geometric affinities in the neighbor-
ing points. DGCNN [44] gathers nearest neighboring points
in the feature space, followed by the EdgeConv operators
for feature extraction, in order to identify semantic cues dy-
namically. MoNet [25] defines the convolution as Gaussian
mixture models in a local pseudo-coordinate system. In-
spired by the idea of attention mechanism, several works
[38, 41, 39] propose to assign proper attentional weights to
different points/filters. 3D-GCN [21] develops deformable
kernels, focusing on shift and scale-invariant properties in
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Figure 2. The illustration of AdaptConv processed in the neighborhood of a target point xi. An adaptive kernel êijm is generated from
the feature input ∆fij of a pair of points on the edge, which is then convolved with the corresponding spatial input ∆xij . Concatenating
hijm of all dimensions yields the edge feature hij . Finally, the output feature f ′i of the central point is obtained through a pooling function.
AdaptConv differs from other graph convolutions in that the convolution kernel is unique for each pair of points.

point cloud analysis.
Convolution on point clouds. State-of-the-art re-

searches have proposed many methods to define a proper
convolution on point clouds. To improve the basic de-
signs using fixed MLPs in PointNet/PointNet++, a variety
of works [38, 41, 39, 36, 22] try to introduce weights based
on the learned features, with more varients of convolution
inputs [44, 25, 48]. Other methods [33, 46, 10] try to learn
a dynamic weight for the convolution. However, their idea
is to approximate weight functions from the direct 3D coor-
dinates while AdaptConv uses features to learn the kernels,
which represents more adaptiveness. In addition, their im-
plementation is heavily memory consuming when convolv-
ing with high-dimensional features. Thus, the main focus
of this paper is to handle the isotropy of point cloud convo-
lutions, by developing an adaptive kernel that is unique to
each point in the convolution.

3. Method
We exploit local geometric characteristics in point cloud

analysis by proposing a novel adaptive graph convolu-
tion (AdaptConv) in the spirit of graph neural networks
(Sec. 3.1). Afterwards, we discuss several choices for the
feature decisions in the adaptive convolution (Sec. 3.2). The
details of the constructed networks are shown in Sec. 3.3.

3.1. Adaptive graph convolution

We denote the input point cloud as X = {xi|i =
1, 2, ..., N} ∈ RN×3 with the corresponding features de-
fined as F = {fi|i = 1, 2, ..., N} ∈ RN×D. Here, xi
processes the (x,y, z) coordinates of the i-th point, and, in
other cases, can be potentially combined with a vector of ad-
ditional attributes, such as normal and color. We then com-
pute a directed graph G(V, E) from the given point cloud
where V = {1, ..., N} and E ⊆ V × V represents the set of
edges. We construct the graph by employing the k-nearest
neighbors (KNN) of each point including self-loop. Given
the input D-dimensional features, our AdaptConv layer is
designed to produce a new set of M -dimensional features

with the same number of points while attempting to more
accurately reflect local geometric characteristics than previ-
ous graph convolutions.

Denote that xi is the central point in the graph convolu-
tion, and N (i) = {j : (i, j) ∈ E} is a set of point indices
in its neighborhood. Due to the irregularity of point clouds,
previous methods usually apply a fixed kernel function on
all neighbors of xi to capture the geometric information of
the patch. However, different neighbors may reflect differ-
ent feature correspondences with xi, particularly when xi is
located at salient regions, such as corners or edges. In this
regard, the fixed kernel may incapacitate the geometric rep-
resentations generated from the graph convolution for clas-
sification and, particularly, segmentation.

In contrast, we endeavor to design an adaptive kernel to
capture the distinctive relationships between each pair of
points. To achieve this, for each channel in the output M -
dimensional feature, our AdaptConv dynamically generates
a kernel using a function over the point features (fi, fj):

êijm = gm(∆fij), j ∈ N (i). (1)

Here,m = 1, 2, ...,M indicates one of theM output dimen-
sions corresponding to a single filter defined in our Adapt-
Conv. In order to combine the global shape structure and
feature differences captured in a local neighborhood [44],
we define ∆fij = [fi, fj − fi] as the input feature for the
adaptive kernel, where [·, ·] is the concatenation operation.
The g(·) is a feature mapping function, and here we use a
multilayer perceptron.

Like the computations in 2D convolutions, which obtain
one of the M output dimensions by convolving the D input
channels with the corresponding filter weights, our adaptive
kernel is convolved with the corresponding points (xi, xj):

hijm = σ 〈êijm,∆xij〉 , (2)

where ∆xij is defined as [xi, xj −xi] similarly, 〈·, ·〉 repre-
sents the inner product of two vectors outputting hijm ∈ R
and σ is a nonlinear activation function. As shown in Fig. 2
(middle part), the m-th adaptive kernel êijm is combined
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Figure 3. AdaptConv network architectures for classification and segmentation tasks. The GraphConv layer denotes our standard convolu-
tion without an adaptive kernel. The segmentation model uses pooling and interpolating to build a hierachical graph structure, while the
classification model applies a dynamic structure [44].

with the spatial relations ∆xij of the corresponding point
xj ∈ R3, which means the size of the kernel should be
matched in the dot product, i.e., the aforementioned fea-
ture mapping is gm : R2D → R6. In this way, the spa-
tial positions in the input space can be efficiently incor-
porated into each layer, combined with the feature corre-
spondences extracted dynamically from our kernel. Stack-
ing the hijm of each channel yields the edge feature hij =
[hij1, hij2, ..., hijM ] ∈ RM between the connected points
(xi, xj). Finally, we define the output feature of the central
point xi by applying an aggregating function over all the
edge features in the neighborhood (see Fig. 2 (right part)):

f ′i = max
j∈N (i)

hij , (3)

where max is a channel-wise max-pooling function. Over-
all, the convolution weights of AdaptConv are defined as
Θ = (g1, g2, ..., gM ).

3.2. Feature decisions

In our method, AdaptConv generates an adaptive kernel
for each pair of points according to their individual features
(fi, fj). Then, the kernel êijm is applied to the point pair
of (xi, xj) in order to describe their spatial relations in the
input space. The feature decision of ∆xij in the convolu-
tion of Eq. 2 is an important design. In other cases, the
inputs can be xi ∈ RE including additional dimensions
representing other valuable point attributes, such as point
normals and colors. By modifying the adaptive kernel to
gm : R2D → R2E , our AdaptConv can also capture the
relationships between feature dimensions and spatial coor-
dinates which are from different domains. Note that, this
is another option in our AdaptConv design, and we use the
spatial positions as input xi by default in the convolution in
our experiments.

As an optional choice, we replace the ∆xij with ∆fij
in Eq. 2 with a modified dimension of êijm. Therefore, the

adaptive kernel of a pair of points is designed to establish
the relations of their current features (fi, fj) in each layer.
This is a more direct solution, similar to other convolution
operators, that produces a new set of learned features from
features in the preceding layer of the network. However,
we recommend xyz rather than feature in that: (i) the point
feature fj has been already included in the adaptive kernel
and convolving again with fj leads to redundancy of feature
information; (ii) it is easier to learn spatial relations through
MLPs, instead of detecting feature correspondences in a
high-dimensional space (e.g. 64, 128 dimensional features);
(iii) the last reason is the memory cost and more specifically
the large computational graph in the training stage which
cannot be avoided. We evaluate all these choices in Sec. 4.4.

3.3. Network architecture

We design two network architectures for point cloud
classification and segmentation tasks using the proposed
AdaptConv layer. The network architectures are shown in
Fig. 3. In our experiments, the AdaptConv kernel function
is implemented as a two-layer MLP with residual connec-
tions to extract important geometric information. More de-
tails are available in the supplemental material. The stan-
dard graph convolution layer with a fixed kernel uses the
same feature inputs ∆fij as in the adaptive kernels.

Graph pooling. For segmentation tasks, we reduce the
number of points progressively in order to build the net-
work in a hierarchical architecture. The point cloud is sub-
sampled using furthest point sampling algorithm [27] with
a sampling rate of 4, and is applied by a pooling layer to
output aggregated features on the coarsened graph. In each
graph pooling layer, a new graph is constructed correspond-
ing to the sampled points. The feature pooled at each point
in the subcloud can be simply obtained by a max-pooling
function within its neighborhood. Alternatively, we can use
a AdaptConv layer to aggregate this pooled features. To pre-
dict point-wise labels for segmentation purpose, we need to
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Method Input #points mAcc(%) OA(%)

3DShapeNetParts [47] voxel - 77.3 84.7
VoxNet [24] voxel - 83.0 85.9

Subvolume [28] voxel - 86.0 89.2

PointNet [27] xyz 1k 86.0 89.2
PointNet++ [29] xyz, normal 5k - 91.9

Kd-Net [14] xyz 1k - 90.6
SpecGCN [40] xyz 1k - 92.1

SpiderCNN [48] xyz, normal 5k - 92.4
PointCNN [19] xyz 1k 88.1 92.2

SO-Net [18] xyz, normal 5k - 93.4
DGCNN [44] xyz 1k 90.2 92.9
KPConv [36] xyz 6.8k - 92.9
3D-GCN [21] xyz 1k - 92.1

PointASNL [49] xyz, normal 1k - 93.2

Ours xyz 1k 90.7 93.4

Table 1. Classification results on ModelNet40 dataset. Our net-
work achieves the best results according to the mean class accu-
racy (mAcc) and overall accuracy (OA).

interpolate deeper features from subsampled cloud to the
original points. Here, we use the nearest upsamping to get
the features for each layer, which are concatenated for the
final point-wise features.

Segmentation network. Our segmentation network ar-
chitecture is illustrated in Fig. 3. The AdaptConv encoder
includes 5 layers of convolutions in which the last one is a
standard graph convolution layer, as well as several graph
pooling layers. The subsampled features are interpolated
and concatenated for the final point features which are fed
to the decoder part.

Classification network. The classification network uses
a similar encoder part as in the segmentation model (see
Fig. 3). For sparser point clouds used in the ModelNet40
classification dataset, we simply apply dynamic graph struc-
tures [44] without pooling and interpolation. Specifically,
the graph structure is updated in each layer according to
the feature similarity among points, rather than fixed us-
ing spatial positions. That is, in each layer, the edge set
El is recomputed where the neighborhood of point xi is
N (i) = {j1, j2, ..., jk} such that the corresponding features
fj1 , fj2 , ..., fjk are closest to fi. This encourages the net-
work to organize the graph semantically and expands the
receptive field of local neighborhood by grouping together
similar points in the feature space.

4. Evaluation

In this section, we evaluate our models using Adapt-
Conv for point cloud classification, part segmentation and
indoor segmentation tasks. Detailed network architectures
and comparisons are provided.

4.1. Classifcation

Data. We evaluate our model on ModelNet40 [47]
dataset for point cloud classification. This dataset contains
12,311 meshed CAD models from 40 categories, where
9,843 models are used for training and 2,468 models for
testing. We follow the experimental setting of [27]. 1024
points are uniformly sampled for each object and we only
use the (x,y, z) coordinates of the sampled points as input.
The data augmentation procedure includes shifting, scaling
and perturbing of the points.

Network configuration. The network architecture is
shown in Fig. 3. Following [44], we recompute the graph
based on the feature similarity in each layer. The number k
of neighborhood size is set to 20 for all layers. Shortcut con-
nections are included and one shared fully-connected layer
(1024) is applied to aggregate the multi-scale features. The
global feature is obtained using a max-pooling function. All
layers are with LeakyReLU and batch normalization. We
use SGD optimizer with momentum set to 0.9. The initial
learning rate is 0.1 and is dropped until 0.001 using cosine
annealing [23]. The batch size is set to 32 for all training
models. We use PyTorch [26] implementation and train the
network on a RTX 2080 Ti GPU. The hyperparameters are
chosen in a similar way for other tasks.

Results. We show the results for classification in Tab. 1.
The evaluation metrices on this dataset are the mean class
accuracy (mAcc) and the overall accuracy (OA). Our model
achieves the best scores on this dataset. For a clear compar-
ison, we show the input data types and the number of points
corresponding to each method. Our AdaptConv only con-
siders the point coordinates as input with a relatively small
size of 1k points, which already outperforms other methods
using larger inputs.

4.2. Part segmentation

Data. We further test our model for part segmentation
task on ShapeNetPart dataset [50]. This dataset contains
16,881 shapes from 16 categories, with 14,006 for training
and 2,874 for testing. Each point is annotated with one la-
bel from 50 parts and each point cloud contains 2-6 parts.
We follow the experimental setting of [29] and use their pro-
vided data for benchmarking purpose. 2,048 points are sam-
pled from each shape. The input attributes include the point
normals apart from the 3D coordinates.

Network configuration. Following [27], we include a
one-hot vector representing category types for each point.
It is stacked with the point-wise features to compute the
segmentation results. Other training parameters are set the
same as in our classification task. Note that, we use spa-
tial positions (without normals) as ∆xij as discussed in
Sec. 3.2. Other choices will be evaluated later in Sec. 4.4.

Results. We report the mean class IoU (mcIoU) and
mean instance IoU (mIoU) in Tab. 2. Following the eval-
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Method mcIoU mIoU air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
plane phone bike board

Kd-Net [14] 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 87.4 86.7 78.1 51.8 69.9 80.3
PointNet [27] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ [29] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SO-Net [18] 81.0 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
DGCNN [44] 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

PointCNN [19] - 86.1 84.1 86.4 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
PointASNL [49] - 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

3D-GCN [21] 82.1 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.9 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8
KPConv [36] 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

Ours 83.4 86.4 84.8 81.2 85.7 79.7 91.2 80.9 91.9 88.6 84.8 96.2 70.7 94.9 82.3 61.0 75.9 84.2

Table 2. Part segmentation results on ShapeNetPart dataset evaluated as the mean class IoU (mcIoU) and mean instance IoU (mIoU).

Ablations mcIoU(%) mIoU(%)

GraphConv 81.9 85.5
Attention Point 78.0 83.3

Attention Channel 77.9 83.0

Feature 82.2 85.9
Normal 83.2 86.2

Initial attributes 83.2 86.1
Ours 83.4 86.4

Table 3. Ablation studies on ShapeNetPart dataset for part segmen-
tation.

uation scheme of [27], the IoU of a shape is computed by
averaging the IoU of each part. The mean IoU (mIoU) is
computed by averaging the IoUs of all testing instances.
The class IoU (mcIoU) is the mean IoU over all shape cat-
egories. We also show the class-wise segmentation results.
Our model achieves the state-of-the-art performance com-
pared with other methods.

4.3. Indoor scene segmentation

Data. Our third experiment shows the semantic segmen-
tation performance of our model on the S3DIS dataset [1].
This dataset contains 3D RGB point clouds from six in-
door areas of three different buildings, covering a total of
271 rooms. Each point is annotated with one semantic la-
bel from 13 categories. For a common evaluation protocol
[35, 27, 15], we choose Area 5 as the test set which is not in
the same building as other areas.

Real scene segmentation. The large-scale indoor
datasets reveal more challenges, covering larger scenes in
a real-world enviroment with a lot more noise and outlin-
ers. Thus, we follow the experimental settings of KPConv
[36], and train the network using randomly sampled clouds
in spheres. The subclouds contain more points with var-
ing sizes, and are stacked into batches for training. In the
test stage, spheres are uniformly picked in the scenes, and
we ensure each point is tested several times using a voting
scheme. The input point attributes include the RGB colors

(a) Input (b) Prediction (c) Ground Truth

Figure 4. Visualization of semantic segmentation results on the
S3DIS dataset. We show the input point cloud, and labelled points
mapped to RGB colors.

and the original heights.
Results. We report the mean classwise intersection over

union (mIoU), mean classwise accuracy (mAcc) and over-
all accuracy (OA) in Tab. 4. The IoU of each class is also
provided. The proposed AdaptConv outperforms the state-
of-the-arts in most of the categories, which further demon-
strates the effectiveness of adaptive convolutions over fixed
kernels. The qualitative results are visualized in Fig. 4
where we show rooms from different areas of the building.
Our method can correctly detect less obvious edges of, e.g.,
pictures and boards on the wall.

4.4. Ablation studies

In this section, we explain some of the architecture
choices used in our network, and demonstrate the effective-
ness of AdaptConv compared to several ablation networks.

Adaptive convolution vs Fixed kernels. We com-
pare our AdaptConv with fixed kernel convolutions, includ-
ing methods using the attention mechanism and standard
graph convolution (DGCNN[41]), as discussed in the intro-
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Method OA mAcc mIoU ceiling floor wall beam column window door table chair sofa bookcase board clutter

PointNet [27] – 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [35] – 57.4 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
PointCNN [19] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

PCCN [43] – 67.0 58.3 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2
PointWeb [52] 87.0 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
HPEIN [11] 87.2 68.3 61.9 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
GAC [41] 87.7 - 62.8 92.2 98.2 81.9 0.0 20.3 59.0 40.8 78.5 85.8 61.7 70.7 74.6 52.8

KPConv [36] – 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
PointASNL [49] 87.7 68.5 62.6 94.3 98.4 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 56.4 52.1

Ours 90.0 73.2 67.9 93.9 98.4 82.2 0.0 23.9 59.1 71.3 91.5 81.2 75.5 74.9 72.1 58.6

Table 4. Semantic segmentation results on S3DIS dataset evaluated on Area 5. We report the mean classwise IoU (mIoU), mean classwise
accuracy (mAcc) and overall accuracy (OA). IoU of each class is also provided.

duction. We train these models on ShapeNetPart dataset
for segmentation, and design several ablation networks by
replacing AdaptConv layers with fixed kernel layers and
keeping other architectures the same.

Specifically, [38] assign attentional weights to different
neighboring points and [41] further designs a channel-wise
attentional function. We use their layers and denote these
two ablations as Attention Point and Attention Channel in
Tab. 3 respectively. We only replace the AdaptConv layers
in our network and the feature inputs ∆fij are the same as
our model. Besides, we also show the result by using stan-
dard graph convolutions (GraphConv), which can be seen
as a similar version of DGCNN [44]. From the comparison,
we see that our method achieves better results than the fixed
kernel graph convolutions.

Feature decisions. In AdaptConv, the adaptive kernel
is generated from the feature input ∆fij , and subsequently
convolved with the corresponding ∆xij . Note that, in our
experiments, ∆xij corresponds to the (x,y, z) spatial co-
ordinates of the points. We have discussed several other
choices of ∆xij in Eq. 2 in Sec. 3.2, which can be evalu-
ated by designing these ablations:
• Feature - In Eq. 2, we convolve the adaptive kernel

êijm with their current point features. That is, ∆xij is re-
placed with ∆fij and the kernel function is gm : R2D →
R2D. This makes the kernel learn to adapt to the features
from previous layer and extracts the feature relations.
• Initial attributes - The point normals (nx, ny, nz) are

included in the part segmentation task on ShapeNetPart,
leading to a 6-dimensional initial feature attributes for each
point. Thus, we design three ablations where we use only
spatial inputs (Ours), only normal inputs (Normal) and both
of them (Initial attributes). The kernel function is modified
correspondingly.

The resulting IoU scores are shown in Tab. 3. As one
can see, (x,y, z) is the most critical initial attribute (prob-
ably the only attribute) in point clouds, thus it is recom-
mended to use them in the convolution with adaptive ker-
nels. Althrough achieving a promising result, the computa-
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Figure 5. Robustness test on ModelNet40 for classification.
GraphConv indicates the standard graph convolution network. At-
tention indicates the ablation where we replace the AdaptConv lay-
ers with graph attention layers (point-wise). From the comparison,
we can see that our model is more robust to point density and noise
perturbation.

Number k mAcc(%) OA(%)

5 89.4 92.8
10 90.7 93.2
20 90.7 93.4
40 90.4 93.0

Table 5. Results of our classification network with different num-
bers k of nearest neighbors.

tional cost for the Feature ablation is extremely high since
the network expands heavily when it is convolved with a
high-dimensional feature.

4.5. Robustness test

We further evaluate the robustness of our model to point
cloud density and noise perturbation on ModelNet40 [47].
We compare our AdaptConv with several other graph con-
volutions as discussed in Sec. 4.4. All the networks are
trained with 1k points and neighborhood size is set to k =
20. In order to test the influence of point cloud density, a
series of numbers of points are randomly dropped out dur-
ing testing. For noise test, we introduce additional Gaussian
noise with standard deviations according to the point cloud
radius. From Fig. 5, we can see that our method is robust
to missing data and noise, thanks to the adaptive kernel in
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(a) Spatial (b) Layer1 (c) Layer2 (d) Layer3 (e) Layer4 (f) Ours (g) GT

Figure 6. Visualize the euclidean distances between two target points (blue and green stars) and other points in the feature space (red: near,
yellow: far).

Method #parameters OA(%)

PointNet [27] 3.5M 89.2
PointNet++ [29] 1.48M 91.9

DGCNN [44] 1.81M 92.9
KPConv [36] 14.3M 92.9

Ours 1.85M 93.4

Table 6. The number of parameters and overall accuracy of differ-
ent models.

which the structural connections can be extracted dynami-
cally in a sparser area.

Also, we experiment the influence of different numbers
k of the nearest neighboring points in Tab. 5. We choose
several typical sizes for testing. Reducing the number of
neighboring points leads to less computational cost while
the performance will degenerate due to the limitation of re-
ceptive field. Our network still achieves a promising result
when k is reduced to 5. On the other hand, with certain
point density, a larger k doesn’t improve the performance
since the local information dilutes within a larger neighbor-
hood.

4.6. Efficiency

To compare the complexity of our model with previous
state-of-the-arts, we show the parameter numbers and the
corresponding results of networks in Tab. 6. These models
are based on ModelNet40 for classification task. From the
table, we see that our model achieves the best performance
of 93.4% overall accuracy and the model size is relatively
small. Compared with DGCNN [44] which can be seen as a
standard graph convolution version in our ablation studies,
the proposed adaptive kernel performs better while being
efficient.

5. Visualization and learned features
To achieve a deeper understanding of AdaptConv, we ex-

plore the feature relations in several intermediate layers of

the network to see how AdaptConv can distinguish points
with similar spatial inputs. In this experiment, we train
our model on ShapeNetPart dataset for segmentation. In
Fig. 6, two target points (blue and green stars in 1-st and
2-nd rows respectively) are selected which belong to dif-
ferent parts of the object. We then compute the euclidean
distances to other points in the feature space, and visualize
them by coloring the points with similar learned features
in red. We can see that, while being spatially close, our
network can capture their different geometric characteris-
tics and segment them properly. Also, from the 2-nd row
of Fig. 6, points belonging to the same semantic part (the
wings) share similar features while they may not be spa-
tially close. This shows that our model can extract valuable
information in a non-local manner.

6. Conclusion

In this paper, we propose a novel adaptive graph convo-
lution (AdaptConv) for 3D point cloud. The main contri-
bution of our method lies in the designed adaptive kernel
in the convolution, which is dynamically generated accord-
ing to the point features. Instead of using a fixed kernel that
captures correspondences indistinguishably between points,
our AdaptConv can produce learned features that are more
flexible to shape geometric structures. We have applied
AdaptConv to train end-to-end deep networks for several
point cloud analysis tasks, outperforming the state-of-the-
arts on several public datasets. Further, AdaptConv can be
easily integrated into existing graph CNNs to improve their
performance by simply replacing the existing kernels with
the adaptive kernels.
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