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Abstract

Current neural architecture search (NAS) algorithms
still require expert knowledge and effort to design a search
space for network construction. In this paper, we consider
automating the search space design to minimize human in-
terference, which however faces two challenges: the ex-
plosive complexity of the exploration space and the expen-
sive computation cost to evaluate the quality of different
search spaces. To solve them, we propose a novel differ-
entiable evolutionary framework named AutoSpace, which
evolves the search space to an optimal one with follow-
ing novel techniques: a differentiable fitness scoring func-
tion to efficiently evaluate the performance of cells and a
reference architecture to speedup the evolution procedure
and avoid falling into sub-optimal solutions. The frame-
work is generic and compatible with additional compu-
tational constraints, making it feasible to learn special-
ized search spaces that fit different computational bud-
gets.  With the learned search space, the performance
of recent NAS algorithms can be improved significantly
compared with using previously manually designed spaces.
Remarkably, the models generated from the new search
space achieve 77.8% top-1 accuracy on ImageNet under
the mobile setting (MAdds<500M), outperforming previ-
ous SOTA EfficientNet-BO by 0.7%. https://github.
com/zhoudaquan/AutoSpace.git.

1. Introduction

Recently neural architecture search (NAS) algorithms
are popularly explored and applied, yielding several state-
of-the-art (SOTA) deep neural network architectures [32,
31, 15, 34]. Applying a NAS algorithm typically com-
prises three steps: (1) designing a search space by speci-
fying its elementary operators; (2) developing a searching
algorithm to explore the space and select operators from
it to build the candidate model; and (3) implementing an
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Figure 1: Comparison of different search space construction
schemes. (a) Most existing NAS methods deploy handcrafted
search spaces whose construction heavily relies on expertise and
trial-and-error. (b) Our proposed method automatically builds and
optimizes the search space by learning to form the basic operators
into candidate building blocks and using an efficient approach to
evolve and evaluate these building blocks. (¢) Compared with ex-
isting schemes, our proposed one involves lower human effort and
searching cost.

evaluation strategy to validate the performance of searched
models. Extensive studies have been devoted to the latter
two steps, i.e. searching algorithms and evaluation strate-
gies [33, 2, 15, 31, 35, 34, 33, 12, 32].

To reduce the complexity of the search space to ex-
plore, the common practice of recent NAS algorithms is to
leverage human prior knowledge to design smaller search
spaces, most of which are based on well performing hand-
crafted building blocks and their variants, e.g., the inverted
residual block [2, 32, 33, 31, 14] and the channel shuffling
block [12]. On one hand, using restricted search spaces in-
deed enables NAS algorithms to enjoy higher efficiency;

337



however on the other hand, due to such heavy human in-
terference, the possibility to discover novel and better ar-
chitectures is limited [9]. How to reduce human efforts in
designing the search space and make the procedure auto-
matic is still under-explored [27, 30].

In this work, we consider the open architecture space
that consists of only basic operators with minimal human
prior knowledge on cell graph typologies. Despite some
early pilot investigations [41, 26], the progress is much hin-
dered by several practical challenges. First of all, searching
over the open space is unaffordably time consuming due to
the combinatorial nature of the problem [27]. How to fast
prune the unnecessary combinations of operators and lower
the number of possible candidates to explore is thus nec-
essary but remains an open question. Secondly, applying
the RL-alike algorithms to search from scratch usually suf-
fers poor exploration performance as they easily get stuck
at sub-optimum. As a result, the model searched from the
obtained space may perform no better than the ones from a
manually designed search space.

In view of the above challenges, we then wonder whether
it is possible to maximally reduce human interference in
search space construction in a way such that the algorithms
can effectively explore over the large space within an ac-
ceptable time and computation cost budget? To this end,
we develop a novel differentiable AutoSpace framework to
automatically evolve the full search space to an optimal sub-
space for the target applications. Our main insight is that a
one-time searching for an optimal subspace at first and fur-
ther performing NAS within it would provide higher explo-
ration capability and searching efficiency at the same time,
while avoiding getting stuck at the sub-optimum. Figure 1
illustrates the differences between our space evolving strat-
egy and the previous ones for designing search spaces.

Concretely, AutoSpace starts with an open space that
comprises all the possible combinations of basic operators
(e.g. convolution, pooling, identity mapping). Then a dif-
ferentiable evolutionary algorithm (DEA) is developed to
evolve the search space to a subspace of high-quality cell
structures. The subspace can then be adopted in any NAS
algorithms seamlessly to find the optimal model architec-
tures. To reduce the potential high cost of subspace search-
ing and evaluation, AutoSpace introduces a couple of new
techniques to remove the redundant cell structures and im-
prove the parallelism of the evolution process as detailed in
Section 3.

We verify the superiority of the search space from Au-
toSpace on the ImageNet [18] dataset. With the same NAS
algorithm, AutoSpace provides much more accurate models
than the previous SOTA models searched from the manually
designed spaces. Besides, by combining the cell structures
discovered with AutoSpace to EfficientNet, we successfully
improve the Top-1 accuracy on ImageNet by 0.7%.

In summary, we make the following contributions:

* We are among the first to explore the automatic learn-
ing of search spaces in NAS algorithms. Compared
to searching for network architectures on a manu-
ally designed search space, searching for a search
space is more challenging due to the larger exploration
space/computational complexity.

* We propose a novel learning framework that takes ad-
vantage of both the high exploration capability of evo-
lutionary algorithms and the high optimization effi-
ciency of gradient descend methods. The proposed
framework can be seamlessly integrated with popular
neural architecture searching algorithms.

» By directly replacing the original search space with the
learned search space, the top-1 classification accuracy
of previous SOTA NAS algorithms can be improved
significantly at different model sizes. Specifically, at
200M MAdds, the performance of the searched model
is improved by more than 1.8% on ImageNet.

2. Related Work

Most of the previous neural architecture search (NAS)
works focus on better searching algorithms while the de-
sign of the search space is less studied. This is primarily
due to the unaffordable computation cost for automatically
searching a search space. For example, a recent method of
evaluating search spaces uses empirical distribution func-
tion (EDF) [24] where each evaluation iteration takes 25k
GPU hours! even on a small dataset of CIFAR10 [17].

Thus, most of the NAS algorithms use manually de-
signed search spaces. An early work NAS-RL [41] de-
fines its space via macro and micro architectures. The
macro architecture is used for connections between lay-
ers and the micro architecture space includes the structural
hyper-parameters for each filter within a layer. Such a huge
space is extremely hard or even impractical to enumerate
each candidate within it for evaluation. Thereafter, most
NAS methods change to adopt size-reduced search spaces
to improve their searching efficiency. For example, the
cell based methods [42, 25, 21, 20, 23, 36, 19, 3] achieve
affordable cost by only searching two types of cell struc-
tures, i.e., a normal cell and a reduction cell, which are
shared across all the layers for constructing a neural net-
work. However, those methods can only search on a small
proxy dataset due to high memory cost. Most recent NAS
algorithms [31, 33, 32, 2, 15, 35, 7, 34, 6, 40] employ
well handcrafted inverted residual blocks (IRB) with vary-
ing kernel sizes and expansion ratios as search space candi-
dates. Though offering good efficiency, such a constrained

IThe work [24] evaluates the distribution on 50k models and the re-
ported training speed is 2 models per GPU hour.
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Table 1: Search space design choices comparison. The number
of design choices in AutoSpace eclipse the previous algorithms’
search space. AutoSpace automatically finds an optimized sub-
space of comparable size to [2] and [31]. “Layer Variety” indi-
cates if the searching algorithms allow different cell structures at
different model layers; “# Models (log)” denotes the log10 value
of the total number of architectures included in the search space
for a 21-layer model.

Layer Searchon Space # Models

Algo.

Variety ImageNet Design (log)
DARTS [21] X X Manual 2.38
ENAS [23] X X Manual 3.70
PNAS [20] X X Manual 5.74
Amoeba [26] X X Manual 5.74
NASNet [42] X X Manual 7.85
MNasNet [31] v X Manual 52.72
SPOS [12] v v Manual 12.64
ProxylessNAS [2] v v Manual 17.74
AutoSpace (ours) v v Auto 104.37

search space severely limits the exploration capability of
NAS algorithms to search for more powerful network struc-
tures.

In this work, we propose a simple and efficient method
for automating the search space design in two steps. First,
we conduct a one-time searching for the optimal subspace
from a full search space on the target dataset. Using the
search space obtained, a typical NAS algorithm can be ap-
plied to search for the final network architecture. In this
way, we can not only minimize the human interference in
the search space design but also improve the network per-
formance by searching in a better space. A comparison of
the design choices of our proposed method and previous
SOTAs are listed in Table 1. More discussions are deferred
to supplementary materials.

3. Method
3.1. Problem Formulation

We consider the NAS problem of searching for a model
architecture [V from a search space S that consists of multi-
ple basic building blocks (cells) d. Different from previous
NAS work using a manually pre-defined search space, we
aim to learn a proper search space automatically. We for-
mulate the neural architecture search as a two-phase prob-
lem: first searching for an optimized search space and then
searching network architectures using the optimized search
space.

Formally, given an open search space S with minimal
human prior knowledge on the network architecture, we
aim at finding a subset of the full space (called subspace)
Sk, C S which contains cells with optimized structures
such that the constructed model architecture can achieve
maximal accuracy Acc on the target dataset D at afford-

able computation cost (in MAdds). The objective can be
formulated as a bi-level optimization problem:

Szup = arg max Acc(N(d, Ssub), D),
SsubCS

s.t. d=argmaxAcc(N(d, Ssub), D), (1)
d€Ssun

MAdds(d;) < MAddSax, Vd;,

where N (d, Ssu) denotes the network searched from the
subspace Ssup and d = {dy,ds, ...} denotes the set of se-
lected cells for all the layers. MAdds,,,x denotes the upper
limit of the allowed MAdds of cell d;. In particular, we
consider searching for different subspaces at different lay-
ers of an L-layer model architecture, i.e., Sgyp = Hle S?
and d; € S'(i = 1,...,L). In the following, we use d} to
denote the k' candidate cell in the generated subspace of
layer [, with d, € S, |S!| = K.

Following [42, 21], each cell in the subspace is repre-
sented by a directed acyclic graph (DAG) G. Each node
x; of GG is the output feature representation from a certain
edge and each directed edge (;; is associated with some
operation that transforms the input x; to ;. In particular, o
denotes the set of basic operators defined below and o(G;)
denotes the selected operation between node ¢ and j.

Basic operators To minimize the human prior knowledge
required on designing the network architecture, we do not
specify any constraints on the node connection topology for
the cells except for specifying two nodes as input and output
of its DAG respectively. The edge connections are learned
with our proposed learning framework as detailed in Sec-
tion 3.2. For each edge, similar to most previous works
[2, 12, 35], we consider five basic operations: 1 x 1 con-
volution, 3 X 3 convolution, depth-wise convolution, iden-
tity mapping, and the zero operation. The input and output
nodes are used as dimension adjustment nodes and follow-
ing [35, 2], the ratios between the input channels and the
output channels € {1, 3,6} are learned through our pro-
posed method which will be detailed in Section 3.2.1. The
aggregation function oy over the output features from dif-
ferent operators is selected from {addition, dot product}.

3.2. AutoSpace Method

Our AutoSpace learns the subspace in three steps as il-
lustrated in Figure 2. Following previous works [31, 2], we
construct an L-layer classification super-network (supernet)
with a 3 x 3 convolutional layer as the head and one fully-
connected layer for score prediction. Each layer in between
has K parallel paths and each path is associated with a can-
didate cell dﬁc in the corresponding layer-wise search space
S'. The population of cells with different structures will be
updated and evaluated via differentiable evolutionary algo-
rithm (DEA). After the evolution process, for each layer, the
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Figure 2: Illustration on the search space generation process of AutoSpace. Given a target network with a specified layer number
and channel dimension, AutoSpace aims to learn an optimal layer-wise search space to be used in following NAS algorithms. The entire
process is performed by iterative sampling-and-update. For each layer [, we first sample K cells (X = 4 in this example) from a randomly
initialized population through tournament selection [11, 10]. « is the fitness score for each cell. Then a layer is represented by stacking
K cells in parallel. The layer output is calculated as the weighted sum of the outputs of each single cell whthin the layer (ref. Eqn. (3)).
In this way, the network can be trained on the target dataset with o updated efficiently via gradient back-propagation (ref. Eqn. (4)). In
the end of each iteration, a cell’s fitness score is updated via Eqn. (5). After the network converges, the top K cells with the largest fitness

scores in each layer are output as the final search space.

top-K performing cells from the population are selected to
form the search space S’.

3.2.1 Automatic search space generation

A typical evolutionary algorithm consists of three steps [1].
The first step is to generate a population of cells with dif-
ferent structures (i.e., different DAG connection topolo-
gies). We maintain a population of cells, denoted as G,
for each layer of the constructed supernet. The second step
is to apply a scoring function to evaluate the individual cell
via tournament selection, where the winner cells with the
largest K fitness scores are allowed to generate off-springs
via mutation. The third step is to generate new off-springs
via mutation between the selected cells to enrich and im-
prove the population. The last two steps are performed in
an iterative manner. At the end of evolution, the top K per-
forming cells from the population will be used as the layer-
wise subspace S'.

However, the above EA method cannot be directly used
to solve Eqn. (1) and search for a subspace, due to the fol-
lowing challenges. First, a large redundancy exits in the full
space (population), incurring high computation overhead.
Secondly, a one-by-one evaluation for the subspace is ex-
tremely time consuming. Thirdly, an EA process usually
starts from scratch and is slow to converge. To solve these
challenges, we propose to leverage a reference DAG to as-
sist in removing the redundant cells, speedup the conver-
gence, and increase the parallelism for subspace evaluation.

Reference DAG Instead of evolving from scratch as con-
vention, we propose to speedup the evolution process by
inheriting the prior knowledge of a reference graph set at
initialization. We use G"*/ to denote the DAG of a verified
well performing cell structure, and use it as the reference
DAG. Hamming distance is harnessed as a measure of simi-
larity between DAGs [8]. After each mutation, we calculate
the hamming distance between the generated DAG and the
reference DAG as follows:
i — G il

G
ru(G,G7T) = | U )
2%}

The mutation process will repeat until the distance is below
the threshold 7. Note that this reference graph regulariza-
tion is only applied for the first half iterations of the entire
training process to avoid adversely affecting learning of a
better search space.

3.2.2 Differentiable scoring function

As our approach allows different layers to select differ-
ent cell structures, previous cell-based evaluation methods
[26, 25] cannot be applied here due to the explosive increase
in size of the search space, and there is no one-to-one cor-
respondence between network performance and quality of
the cell structure. To evaluate different cell structures, we
propose to learn the fitness score afc for each individual cell
structure dfc via gradient optimization to make the search
process fully differentiable.
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As illustrated in Fig. 2, we maintain a layer-wise popula-
tion G' for layer [ of the supernet. Each layer is initialized
with K randomly sampled cell structures {G', G5, ..., G4 }
from the corresponding population G’. The output of each
sampled cell structure from the population will be weighted

by its fitness score in the constructed supernet:

K K 1
for =Y prdi(z) =) Zakaz di(2), (©)
k=1 k=14~ J

where py, is the weight for each cell structure dj, in the su-
pernet and fq: is evaluated by computing its classification
loss over the provided training dataset D. In this manner,
multiple individuals at different layers can be evaluated con-
currently. To save the computation memory, we employ the
binary gating function as proposed in [2] when learning the
fitness score for each selected cell.

The fitness scores for the selected K cells in cer-
tain layer’s population will be updated by gradient back-
propagation when training the supernet to minimize the
cross-entropy loss on the target dataset. To alleviate the
imbalanced gradient updates on the fitness scores in each
cell population due to the random sampling in tournament
selection, we compensate the gradient update step of the fit-
ness score via a scaling factor based on the training iteration
number:

K

oL n(d)
> o k(ik — pi)— )
= Ok ' (df)

where gy, is the binary gates as introduced in [2] and §; ,, =
1if i = k and 0 otherwise. n(d}) denotes the accumulative
training iteration number in the supernet and n’(d%) denotes
that for d’ in the whole population. More discussions can
be found in the supplementary materials.

After training the supernet for a few iterations, the up-
dated fitness scores in the supernet, denoted as a*, will be
used to update those of corresponding cell structures in the
population as below:

Q

oL
dat

7

ozfg(t) —ead” +(1- e)aff(t_l), ®)
where € € [0, 1] is the momentum hyperparameter for up-
dating the fitness score, and a1 denotes the old fitness
score recorded in the population before the updates.

The supernet will be re-generated every f iterations.
When sampling the new search space, the fitness scores and
the cell structures are sampled in pairs. The fitness scores
for each selected cell structure in each population will be
updated iteratively via Eqn. (4) and Eqn. (5) until the super-
net converges. After the evolution, the top-K cell structures
at each layer will be selected to form the searched space. In
this way, each training of the supernet will evaluate K ” net-
work structures concurrently and thus the evolution process
is sped up by K'* times compared to sequential evaluation.

3.3. Architectures search on the generated space

Our search space searching process only needs to be run
once for a target dataset and the generated search space can
be used by any searching algorithms. To verify the effec-
tiveness of AutoSpace, we allow different cell structures
for different layers and directly search on ImageNet dataset
to remove the transfer-ability issue. To speed up the train-
ing process and save computation memory, we implement
the weights sharing scheme as introduced in ENAS [23]
such that each time we re-build the supernet, the weights
are inherited from previous runs. We select three previous
SOTA architecture searching algorithms based on gradient
optimization (G), reinforcement learning (RL) and random
sampling (RS) methods respectively from ProxylessNAS
(G and RL) [2] and SPOS (RS) [12]. For both searching
algorithms, we add MAdds as a regualrization term to the
loss function following previous NAS works [2, 31]:

Loss = Losscg + AMAdds(N), (6)

where Lossc is the cross entropy loss and MAdds(N) is
the number of MAdds operation times in the selected net-
work. As will be shown in experiments, under all the three
different algorithms, our auto-generated search space out-
performs manually-designed ones significantly.

4. Experiments

4.1. Setup

Searching algorithm The learned search space from Au-
toSpace can be applied to various NAS algorithms. To eval-
uate the searched space, we use the differentiable search-
ing method ProxylessNAS [2] to search model architec-
tures because it allows layer variety and supports direct
model searching on large datasets with high computation
efficiency. Following [2, 31], we use MAdds-based regu-
larization to control the computation cost of the searched
models. Besides, to verify the generalization ability of
our learned search space in different NAS algorithms, we
also evaluate its performance with reinforcement learning
based [2] and random sampling based [12] NAS algorithms.
More details can be found in our supplementary material.

Model evaluation We train the searched model on the Im-
ageNet dataset [28] with an initial learning rate of 0.1 and
cosine learning rate decay policy for 250 epochs. The batch
size and weight decay are set to 512 and 1e—4, respectively.
We use 10 epochs for learning rate warmup. Following [2],
we do not apply extra data augmentation, like AutoAug-
ment [4, 5] for a fair comparison. When comparing with
state-of-the-art efficient models, we follow the same set of
training hyper-parameters as them and use RandAugment
[5] with default hyper-parameters during training.
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Manually designed search spaces for comparison We
choose the inverted residual block (IRB) [29] based search
space as the baseline for comparison, which has been
adopted by many recent SOTA NAS algorithms [2, 31, 33,
35]. It includes six variants of IRB, i.e., IRB with kernel
sizes of 3, 5, 7 and expansion ratios of 3, 6 respectively.
It also includes a zero operator for skipping certain layers.
Throughout the experiments, we refer to this baseline search
space as “manually-designed”.

4.2. Ablation Study

Effectiveness of AutoSpace We first validate our proposed
strategy, i.e., generating a subspace from the open space first
and then searching for models within the subspace, via com-
parison with the following two popular NAS strategies. The
first is to use the evolutionary algorithm to directly search
for a model in the same open space as ours, which consists
of all possible combinations of basic operators; the other
is to search for a model in the manually-designed search
space.

The performance of the searched models using the above
two strategies on ImageNet are summarized in Table 2. As
can be seen, the model searched by our method outperforms
the baseline models significantly in terms of both Top-1
accuracy and computational efficiency, which delivers two
interesting findings. First, the superiority over the direct
searching strategy demonstrates that our proposed strategy
can generate a high-quality search space that enables the
subsequent NAS algorithm to search for better network ar-
chitectures. Second, compared with the handcrafted search
space, our search space is optimized jointly with the model
architecture on the target dataset. This allows our method to
learn better task-specific models and benefit from the end-
to-end training pipeline.

Table 2: Performance comparison of different searching strate-
gies. ‘S.S’ denotes search space. ‘Full’ denotes full search space
as ours. ‘Manual’ denotes manually-designed search space.

S.S. Search Algo. Param. (M) MAdds (M) Acc. (%)
Full EA 4.2 480 73.7
Manual RL 7.2 470 74.9
AutoSpace RL 4.6 415 75.8

Comparison to handcrafted search space To compre-
hensively compare our learned search space and the hand-
crafted one, we first run AutoSpace to generate layer-wise
search spaces on ImageNet. Then, we run the Proxyless-
NAS gradient-based (G) searching algorithms [2] with dif-
ferent MAdds regularizations, obtaining models of sizes
spanning 100-200M (100M+), 300-400M (300M+), 400-
500M (400M+), and 500-700M (500M+), respectively.
From the results in Table 3, for each model size con-

straint, the searched model from our auto-generated search
space always outperforms the one from the manually-
designed space by a large margin with the same searching
algorithm. We argue that the advantage of our method is
that our auto-generated search space is optimized for each
layer on the target dataset, which is more likely to con-
tain superior model structures than the manually designed
search space that includes only identical operators across
layers. Above results evidently validate the advantage of
AutoSpace over the manually-designed search spaces.

Table 3: Comparison among the searched models based on
our search space and the manually-designed (‘manual’) search
space used by ProxylessNAS. ‘Acc.’ denotes the top-1 classifica-
tion accuracy on ImageNet.

Budget Search Space Param. (M) MAdds M) Acc. (%)
100M+ Manual [2] 33 190 69.2
MAdds Ours 3.3 175 71.1
300M+ Manual [2] 3.7 320 74.1
MAdds Ours 4.3 340 75.3
400M+ Manual [2] 5.3 465 74.8
MAdds Ours 4.7 430 75.7
S00M+ Manual [2] 6.9 590 76.6
MAdds Ours 6.4 570 77.0
Ours 7.2 650 77.2

Applications to different searching algorithms To ver-
ify the generalizability of the search space learned by Au-
toSpace, we run different searching algorithms on it as well
as on the baseline search space to compare the resulting
models. We choose two representative searching algorithms
which are based on reinforcement learning (RL) and ran-
dom sampling (RS) respectively. For the RL searching al-
gorithm, we choose the widely-used single path sampling
method proposed in [2]. For the RS algorithm, we use [12].
The results are shown in Table 4. Under different com-
putation budgets, the model searched using search spaces
from AutoSpace significantly outperforms the ones from
the baseline search space. For example, in the group with
300M+ Madds, our model outperforms competing models
searched by RL and RS by 0.8% and 0.4% respectively.
These results further verify the superiority of our auto-
learned search space.

4.3. Algorithm Analysis

Analysis on search space size We use 6 nodes for each
DAG including the two IO nodes. The IO nodes are only
used to adjust the dimensions. Thus, there are totally 6 edge
connections within each DAG for evolution. With the above
definition, for an L layer network, the total number of archi-
tectures included in each DAG is 5% x 3 x 2 = 93750. As
we allow a variety for different layers, the total number of
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Table 4: Performance of our auto-generated search space with
different searching algorithms. ‘Manual’ denotes the manually-
designed search space. ‘RL’ denotes reinforcement learning based
algorithms as used in ProxylessNAS [2]. ‘RS’ denotes the random
searching algorithm as used in SPOS [12]. ‘Cls’ denotes the Top-1
classification accuracy on ImageNet.

Group Search Algo. Param. (M) MAdds (M) Cls (%)

Manual-RL 4.1 330 74.3

300M+ Ours-RL 4.0 360 75.1
Manual-RS 4.0 350 73.5

Ours-RS 4.2 360 73.9

Manual-RL 7.2 470 74.9

400M+ Ours-RL 4.6 415 75.8
Manual-RS 4.3 420 74.4

Ours-RS 4.6 430 74.9

networks that could be formed via those DAG is 93750%.
A typical value of L is 21 [2, 31], and using it as an exam-
ple, the size of the full search space of AutoSpace is 232° x
larger than the DARTS search space. A more detailed com-
parison is shown in Table 1 in the main paper.

Reference graph speedups convergence We further study
the effects of using reference graph (described in Sec-
tion 3.2) for search space optimization. We use the refer-
ence graph regularization for the first 60 epochs and disable
it for the rest of the evolution iterations. The implemen-
tation of reference graph could speed up the convergence
of the evolution of the supernet significantly as shown in
Fig. 3. The overall searching time is reduced by 5.2x as
detailed in Tab. 5.

Search Cost Analysis For the search space evolution pro-
cess, we use 8 GPUs and run for 5 days. As we evalu-
ate 9 cells for each fitness score update in Eqn. (5), there
are in total 92! different numbers of models in the con-
structed supernet. Thus, this evaluation approach is roughly
92! x faster than the conventional EA process with the same
search space size. More importantly, the searching on the
large space only needs to be run once on a given dataset and
computation budget. A detailed comparison of searching
cost with other NAS algorithms is shown in Table 5.

Robustness to variations of fitness scores Each time we
update the layerwise subspace with the differentiable evo-
lutionary algorithm (DEA), the fitness score for each cell
will be updated together with the cell structures based on
the records in the population. Thus, during training, it is
expected that the fitness score can accurately reflect the rel-
ative advantages among selected cell structures. To study
the ranking accuracy of the differentiable fitness scoring
function, following previous works [38, 37], we measure
the stability of the generated rankings of three pre-defined
networks with our proposed differentiable scoring functions

Table 5: Searching cost analysis on ImageNet. ‘AutoSpace-G’
denotes the searching cost on our learned search space with gradi-
ent optimization method proposed in [2]. The search space design
only needs to be run once on the target dataset.

Search Space Design Cost  Searching Cost
Methods (GPU hours) (GPU hours)
NasNet-A [42] Manual 48,000
MNasNet [31] Manual 40,000
AmoebaNet-A [25] Manual 75,600
ProxylessNAS [2] Manual 200
AutoSpace-G (w/o ref) 5000 200
AutoSpace-G (w/ ref) 960 200
7.5
——w/ reference graph
7 ——w/o reference graph
6.5
A
S s
oo
£
£55
o
-
4.5
4
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Figure 3: The training loss curve of the evolution process with
and without reference DAG (blue vs. red line). The convergence
is faster with the reference graph.

Table 6: Fitness score robustness of the differentiable scoring
function. We list the initial fitness scores for the three predefined
networks. ‘Epochs’ denotes the starting number of epochs for the
fitness score, reflecting the correct ranking of the networks.

SN anet1 ((1073)  anet2 (1073)  anet3 ((1073)  Epochs
1 -0.296 2.670 -0.141 5
2 0.023 -0.577 0.705 3
3. 0.426 -0.752 -1.180 4
4 -1.950 -0.061 -0.334 5
5 0.304 1.220 0.774 6

and use this stability as a measurement of the robustness.
Specifically, we manually design three networks with the
basic building blocks proposed in ResNet [13], denoted as
Netl, Net2, and Net3. The three networks are using the
same building block with different depth and the detailed
configurations for these three networks can be found in our
supplementary material. We first train the three networks
on ImageNet to get the ground truth rankings of their clas-
sification accuracy: Netl < Net2 < Net3. Then, we use
the proposed differentiable scoring function as introduced
in Section 3.2 to learn the fitness scores with different ini-
tial values. The results are shown in Table 6. Based on
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Figure 4: Illustration of the learned cell structures. We list four most frequently selected cell structures learned via AutoSpace. ‘DConv’
denotes depthwise convolution; ‘k’ denotes the kernel size; ‘r’ denotes the ratio between the output channel and the input channel of a
convolution layer. ‘®’ denotes dot product of two feature maps and ‘@’ denotes element-wise addition of two feature maps. Among the

four cell structures, (d) is selected the most often.

Table 7: Comparison of our proposed AutoSpace with previous
SOTA NAS algorithms. Our model is obtained by applying Prox-
ylessNAS onto the auto-generated search space. For fair compari-
son, we split the methods into two groups, i.e., without SE [16] or
with SE (labeled with “§”). “x” denotes the EfficientNet-b0 model
improved with our searched cell structure as shown in Fig. 4(d).

Method Param. (M) MAdds (G) Top-1
MobileNetV2 [29] 3.5 300 72.0
ShuffleNetV2-1.5 [22] - 299 72.6
DARTS [21] 4.7 574 73.3
FBNet-C [35] 5.5 375 74.9
ProxylessNAS-M [2] 4.1 330 74.4
PNAS [20] 5.1 588 72.7
AmoebaNet-A [25] 5.1 555 74.5
ChamNet-B [7] 5.2 323 73.8
MNasNet-B1 [31] 4.4 326 74.2
MobileNeXt [39] 3.5 300 74.0
Ours 43 340 75.3
MobileNeXt" [39] 6.1 590 76.1
MNasNet-A3" [31] 5.2 403 76.7
EfficientNet-BOT [32] 5.3 390 77.1
MixNet-M' [33] 5.0 360 77.0
Ours’ 5.7 380 71.5
Ours* 52 420 77.8

the results, with different initial values, the proposed dif-
ferentiable scoring function is always able to learn the cor-
rect rankings of the three networks’ fitness scores within 6
epochs.

4.4. Comparison to the State-of-the-Arts

Classification on ImageNet We follow ProxylessNAS [2]
to use the single path searching algorithm for searching
model architectures from the auto-learned search space.
Then, we compare our model with other models obtained

by manual design or popular NAS algorithms, the results of
which are shown in Table 7. For fair comparison, we di-
vide compared models into two groups: models without SE
modules [16] and models with SE and extra data augmen-
tation techniques. In each group, our model outperforms
other models in terms of top-1 accuracy with less or compa-
rable computation cost. As aforementioned, we believe this
improvement comes from the high-quality cell structures
learned with our proposed AutoSpace method. To further
verify this, we summarize common characteristics appeared
in the learned search space, as illustrated in Fig. 4. Among
all the learned cell structures, we observe that (d) is the
most frequently selected. To further investigate the perfor-
mance of structure (d), we replace all the DEA learned cells
with (d) and add in SE modules [16] in the same manner as
EfficientNet-BO [32]. Surprisingly, without using excessive
data augmentation methods such as AutoAugmentation [4],
the modified model achieves 77.8% Top-1 classification ac-
curacy on ImageNet [18], outperforming the EfficientNet-
B0 model by 0.7%.

5. Conclusion

In this work, we present the first affordable approach to
generate search spaces for NAS algorithms automatically,
which targets at alleviating human effort in search space
design. The search space generation is based on a sub-
stantially improved evolutionary algorithm with three novel
techniques to enhance the efficiency. Extensive experiments
show that direct replacement of the manually-crafted search
space with our auto-generated one could significantly im-
prove performance of searched models in image classifica-
tion. We believe the proposed method will motivate the re-
search along the line of automatic search space design for
NAS algorithms.
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